

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

On Kakutani–Krein and Maeda–Ogasawara spaces

Zafer ERCAN¹, Neşet Özkan TAN^{2,*}

¹Department of Mathematics, Abant İzzet Baysal University, Gölköy Campus, Bolu, Turkey ²Department of Mathematics, Uşak University, 1 Eylül Campus, Uşak, Turkey

Received: 29.12.2012	٠	Accepted: 11.04.2013	٠	Published Online: 09.12.2013	٠	Printed: 20.01.2014
----------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Let E be an Archimedean Riesz space. It is shown that the Kakutani–Krein space of the center of the Dedekind completion of E and the Maeda–Ogasawara space of E are homeomorphic. By applying this, we can reprove a Banach Stone type theorem for $C^{\infty}(S)$ spaces, where S is a Stonean space.

Key words: Riesz space, universal completion, Kakutani–Krein space, Maeda–Ogasawara space

1. Introduction

For standard definitions and terminology of Riesz space theory, we refer to [7], [11], or [4]. The Riesz space of real valued continuous functions on a topological space is denoted by C(X). A topological space X is called *extremely disconnected* if the closure of every open subset of X is also open. A compact extremely disconnected space is called *Stonean*.

Let E be a uniformly complete Riesz space with an order unit e > 0. The Kakutani–Krein representation theorem states [9] that there exists a unique (up to homeomorphism) compact Hausdorff space K such that Eand C(K) are Riesz isomorphic. We shall call K the Kakutani–Krein space of E.

Let S be an extremely disconnected space. A function f from S into $[-\infty, \infty]$ is called an *extended* continuous function if f is continuous and $f^{-1}(\mathbb{R})$ is dense in S, where $[-\infty, \infty]$ is equipped with the 2-point compactification of \mathbb{R} . The set of extended continuous functions is denoted by $C^{\infty}(S)$. If S is an extremely disconnected space and O is an open subset of S, then each extended continuous function f from O into $[-\infty, \infty]$ has a unique continuous extension $f: \overline{O} \to [-\infty, \infty]$. From this, it is easy to see that $C^{\infty}(S)$ is a Riesz space under point-wise order and the following algebraic operations:

$$f+g=\overline{(f+g)|_{f^{-1}(\mathbb{R})\cap g^{-1}(\mathbb{R})}} \quad \text{and} \quad \alpha f=\overline{(\alpha f)|_{f^{-1}(\mathbb{R})}}$$

for all $f, g \in C^{\infty}(S), \alpha \in \mathbb{R}$. Note that $f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R})$ is an open dense subset of X. The space $C^{\infty}(S)$ is laterally complete (that is, each nonempty disjoint subset of $C^{\infty}(S)$ has a supremum) and Dedekind complete. Namely, $C^{\infty}(S)$ is universally complete. Recall that a Riesz space E is called *universally complete* if it is Dedekind complete and the supremum of each nonempty disjoint subset of E exists. See [2] for details on the Riesz space $C^{\infty}(S)$.

^{*}Correspondence: nozkan.tan@usak.edu.tr

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 46A40, 28A05.

Let F and G be universally complete Riesz spaces and suppose that a Riesz space E is Riesz isomorphic to order dense Riesz subspaces of F and G. Then F and G are Riesz isomorphic spaces. For any Archimedean Riesz space E, there exists a unique (up to Riesz isomorphism) universally complete Riesz space E^u such that E is Riesz isomorphic to an order dense subspace of E. The space E^u is called the *universal completion* of E. For different construction of the universal completion, see [3], [5], and [12].

The Maeda–Ogasawara representation theorem ([8]; see also [10]) states that for any Archimedean Riesz space E there exists a unique (up to homeomorphism) Stonean space S such that $C^{\infty}(S)$ is Riesz isomorphic to the universal completion of E, and we shall call S the Maeda–Ogasawara space.

Let E be an Archimedean Riesz space. The center Z(E) consists of all operators $T: E \to E$ such that

$$-\alpha I \leq T \leq \alpha I$$

for some $\alpha \geq 0$. It is well known that Z(E) is a uniformly complete Riesz space with the order unit being the identity operator I on E, and so by the Kakutani–Krein representation theorem, Z(E) and C(K) are Riesz isomorphic spaces for a unique compact Hausdorff space K.

In this short paper we show that, for an Archimedean Riesz space E, the Kakutani–Krein space of Z(E)and the Maeda–Ogasawara space are homeomorphic.

2. The result

The Dedekind completion of an Archimedean Riesz space E is denoted by E^{δ} , and the universal completion of it is denoted by E^{u} . We note that for a Stonean space, the universal completion of $C(S)^{u}$ is $C^{\infty}(S)$.

Lemma 2.1 Let S be a Stonean space. Then the Kakutani-Krein space of $Z(C(S)^u)$ is S. That is, $Z(C(S)^u)$ and C(S) are Riesz isomorphic spaces.

Proof The proof goes along similar lines as the proof of Theorem 2.63 of [1].

We are now in a position to state and prove our main result.

Theorem 2.2 Let E be an Archimedean Riesz space. Then the Kakutani–Krein space of $Z(E^{\delta})$ and the Maeda–Ogasawara space of E are homeomorphic spaces, where E^{δ} denotes the Dedekind completion of E.

Proof Let E^u be the universal completion of E. We note that E^u is also the universal completion of E^{δ} . Let $T \in Z(E^u)$, so $|T| \leq \lambda I$ for some $\lambda \geq 0$. Let $x \in E^{\delta}$ be given. Then $|T(x)| \leq \lambda x$ in E^u . Since E^{δ} is an ideal in E^u (see [3]), we have $T(x) \in E^{\delta}$, so $T(E^{\delta}) \subset E^{\delta}$. This implies, following Theorem 2.63 of [1], that $Z(E^u)$ and $Z(E^{\delta})$ are Riesz isomorphic spaces. By the Maeda–Ogasawara representation theorem, we have that, if S is the Maeda–Ogasawara space, then E^u and $C^{\infty}(S)$ are Riesz isomorphic, where $Z(E^u)$ is Riesz isomorphic to C(S). Let K be the Kakutani–Krein space of $Z(E^{\delta})$, so that $Z(E^{\delta})$ and C(K) are Riesz isomorphic spaces. Hence, C(S) and C(K) are Riesz isomorphic spaces. By the Banach–Stone theorem, Sand K are homeomorphic. This completes the proof. \Box

A proof of the following theorem can be found in ([2], p. 309). We can give a shorter and different proof of this fact as follows.

Theorem 2.3 Let S and K be extremely disconnected spaces. Then the following are equivalent.

i.) S and K are homeomorphic.

ii.) $C^{\infty}(S)$ and $C^{\infty}(K)$ are Riesz isomorphic spaces.

Proof Suppose that (*ii*) holds, i.e. $C^{\infty}(S)$ and $C^{\infty}(K)$ are Riesz isomorphic spaces. Then $Z(C^{\infty}(S))$ and $Z(C^{\infty}(K))$ are Riesz isomorphic. It is obvious that C(S) is Riesz isomorphic to $Z(C^{\infty}(S))$ and C(K) is Riesz isomorphic to $Z(C^{\infty}(K))$, so C(K) is Riesz isomorphic to C(S). Now, by the Banach–Stone theorem, S and K are homeomorphic. The converse implication is straightforward.

Let E be a uniformly complete Riesz space. In [6] it was proven that Z(E) is Riesz and algebraic isomorphic to $C_b(prime(E))$, where prime(E) is the topological space on E with the hull-kernel topology, such that

 $prime(E) = \{P : P \text{ is proper prime ideal of } E\}$

equipped with the topology having a basis

$$\{\{P \in prime(E) : x \notin P\} : x \in E\}.$$

Since $C_b(prime(E))$ is Riesz and algebraic isomorphic to $C(S_E)$ for a unique compact Hausdorff space S_E (up to homeomorphism), it follows that E is Dedekind complete if and only if S_E is Stonean, and thus we have the following.

Theorem 2.4 Let E be an Archimedean Riesz space. Then the Maeda–Ogasawara space of E defined above is homeomorphic to S_{E^u} .

References

- [1] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. New York. Academic Press 1985.
- [2] Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. Mathematical Surveys and Monographs, 105. Providence. American Mathematical Society 2003.
- Buskes, G.A., Van Rooij, A.C.M.: Whales and the universal completion. Proc. Amer. Math. Soc. 124, 423–427 (1996).
- [4] de Jonge, E., van Rooij, A.C.M.: Introduction to Riesz Spaces. Mathematical Centre Tracts, No. 78. Amsterdam. Mathematisch Centrums 1977.
- [5] Emel'yanov, E.Y.: Infinitesimal analysis and vector lattices. Siberian Adv. Math. 6, 19–70 (1996).
- [6] Flösser, H.O., Gierz, G., Keimel, K.: Structure spaces and the center of vector lattices. Q. J. Math. Oxford Ser. 29, 415–426 (1978).
- [7] Luxemburg W.A., Zaanen, A.C.: Riesz Spaces, Volume 1. Amsterdam. North-Holland Publishing Co. 1971
- [8] Maeda, F., Ogasawara, T.: Representation of vector lattices (in Japanese). J. Sci. Hiroshima Univ. Ser. A. 12, 17–35 (1942).
- [9] Meyer-Nieberg, P.: Banach Lattices. Berlin. Springer Verlag 1991.
- [10] Vulikh, B.Z.: Introduction to the Theory of Partially Ordered Spaces. New York. Gordon and Breach 1967.
- [11] Zaanen, A.C. : Introduction to Operator Theory in Riesz Spaces. Berlin. Springer-Verlag 1997.
- [12] Zaanen, A.C.: Another construction of the universal completion, Indag. Math. 45, 435–441 (1983).