
Turk J Math

(2014) 38: 139 – 153

c⃝ TÜBİTAK
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Abstract: We characterize geodesic hyperspheres of radius r such that cot2(r) = 1
2
as the unique real hypersurfaces in

complex projective space whose structure Jacobi operator satisfies a pair of conditions.
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1. Introduction

We will consider connected orientable real hypersurfaces M in complex projective space CPm , m ≥ 3, endowed

with the Fubini–Study metric g of constant holomorphic sectional curvature equal to 4. Let J be the Kaehlerian

structure of CPm and N a unit normal vector field on M . Let (ϕ, ξ, η, g) be the almost contact metric structure

induced on M by (J, g) (see Section 2) and D the maximal holomorphic distribution on M ; that is, at any

point D contains any tangent vector orthogonal to ξ . We will say that M is Hopf if ξ is a principal vector

field for the shape operator associated to N .

Homogeneous real hypersurfaces were classified by Takagi in [14] and [15] into 6 classes: Type A1 are

geodesic hyperspheres of radius r , 0 < r < π
2 . Type A2 are tubes of radius r , 0 < r < π

2 , over totally

geodesic complex projective spaces CPn , 0 < n < m − 1. Type B are tubes of radius r , 0 < r < π
4 , over

the complex quadric. Type C are tubes of radius r , 0 < r < π
4 , over the Segre embedding of CP 1 × CPn ,

where 2n+ 1 = m and m ≥ 5. Type D are tubes of radius r , 0 < r < π
4 , over the Plucker embedding of the

complex Grassmannian manifold G(2, 5) in CP 9 . Type E are tubes of radius r , 0 < r < π
4 , over the canonical

embedding of the Hermitian symmetric space SO(10)/U(5) in CP 15 . See also the papers by Okumura [7],

Maeda [5], Kimura [3], and Cecil and Ryan [2]. All these hypersurfaces are Hopf and have constant principal

curvatures. In [6] there is a survey of the most important results on these real hypersurfaces.

On the other hand, we can consider ruled real hypersurfaces introduced by Kimura [4]. Except for these

real hypersurfaces there are few known examples of real hypersurfaces in CPm . Therefore, it is interesting to

know whether certain families of real hypersurfaces do or do not exist once we know the behavior of their shape

operator associated to N , A . In Section 3 we present 2 theorems of nonexistence of 2 families of such real

hypersurfaces. Namely, we will prove:
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Theorem 1.1 . There do not exist real hypersurfaces in CPm , m ≥ 3 , whose shape operator is given by

Aξ = αξ + βU , AU = βξ + β2−1
α U , AϕU = δϕU , where U is a unit vector field in D , and there exists

Z ∈ DU = Span{ξ, U, ϕU}⊥ such that AZ = 0 , AϕZ = − 1
α , α, β being nonvanishing functions on M and δ

is either 0 or −β2

α .

Theorem 1.2 . There do not exist real hypersurfaces in CPm , m ≥ 3 , whose shape operator is given by

Aξ = αξ+βU , AU = βξ+ β2−1
α U , AϕU = δϕU , and for any Z ∈ DU , AZ = λZ , where α, β are nonvanishing

functions defined on M , δ is either 0 or −β2

α and λ is either 0 or − 1
2α .

The Jacobi operator RX with respect to a unit vector field X is defined by RX = R(., X)X , where R

is the curvature tensor field on M . Then we see that RX is a self-adjoint endomorphism of the tangent space.

It is related to Jacobi vector fields, which are solutions of the second-order differential equation (the Jacobi

equation)∇γ̇(∇γ̇Y ) + R(Y, γ̇)γ̇ = 0 along a geodesic γ in M . The structure vector field given by ξ = −JN

is called the Reeb vector field on M . The corresponding Jacobi operator Rξ is called the structure Jacobi

operator on M .

In the line of characterizing real hypersurfaces of CPm in terms of Rξ it is natural to consider the problem

about the parallelism and the invariance, or Lie parallelism. In [8] the nonexistence of real hypersurfaces in

nonflat complex space forms with parallel structure Jacobi operator was proven. In [9], we also proved the

nonexistence of real hypersurfaces in CPm , m ≥ 3, whose structure Jacobi operator is invariant, that is, its

Lie derivative in any tangent direction vanishes.

In [11] we obtained the following:

Theorem 1.3 . Let M be a real hypersurface of CPm , m ≥ 3 , such that the structure Jacobi operator Rξ is

invariant under the structure vector field ξ , that is, LξRξ = 0 . Then either M is locally congruent to a tube

of radius π/4 over a complex submanifold in CPm or to either a geodesic hypersphere or a tube over a totally

geodesic CP k , 0 < k < m− 1 , with radius r ̸= π/4 .

On the other hand, we do not know the classification of real hypersurfaces in CPm satisfying

ARξ = RξA, (1.1)

although we know that every Hopf real hypersurface satisfies it. The geometrical meaning of this condition is

that any eigenspace of Rξ is invariant by A .

In [12] we proved the nonexistence of real hypersurfaces in CPm satisfying this condition if the structure

Jacobi operator is D-invariant, that is LXRξ = 0 for any X ∈ D . In order to generalize this result we devote

this paper to studying real hypersurfaces satisfying (1.1), and at the same time the Lie derivative of the structure

Jacobi operator is always in the direction of the Reeb vector field ξ . Namely, we will suppose

(LXRξ)Y = −g(ϕAX, Y )ξ (1.2)
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for any X,Y ∈ D . A geodesic hypersphere of radius r such that cot2(r) = 1
2 clearly satisfies (1.1). It is also

easy to see that it satisfies (1.2) (see final section of this paper). Our purpose is to prove that the converse is

also true by the

Main Theorem. Let M be a real hypersurface in CPm , m ≥ 3 . Then M satisfies (1.1) and (1.2) if and only

if M is locally congruent to a geodesic hypersphere of radius r such that cot2(r) = 1
2 .

Remark If in addition we impose that the real hypersurface is complete, by Takagi [14], M should be

congruent (globally) to a geodesic hypersphere of radius r such that cot2(r) = 1
2 .

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc. will be considered of class C∞ unless otherwise stated.

Let M be a connected real hypersurface in CPm , m ≥ 2, without boundary. Let N be a locally defined

unit normal vector field of M . Let ∇ be the Levi–Civita connection on M and (J, g) the Kaehlerian structure

of CPm .

For any vector field X tangent to M we write JX = ϕX + η(X)N , and −JN = ξ , where ϕX is the

tangent component of JX . Then (ϕ, ξ, η, g) is an almost contact metric structure on M ; see [1]. That is, we

have

ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), (2.1)

for vector fields X,Y tangent to M . From (2.1) we obtain

ϕξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J we get

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ (2.3)

and

∇Xξ = ϕAX (2.4)

for any vector fields X,Y tangent to M , where A denotes the shape operator associated to N . As the ambient

space has holomorphic sectional curvature 4, the equations of Gauss and Codazzi are given respectively by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY
−2g(ϕX, Y )ϕZ + g(AY,Z)AX − g(AX,Z)AY,

(2.5)

and

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ (2.6)

for any vector fields X,Y , and Z tangent to M , where R is the curvature tensor of M .

We will write, in general, Aξ = αξ + βU , U being a unit vector field in D . M is Hopf (respectively,

non-Hopf) if β = 0 (respectively, β ̸= 0).

We will need the following results
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Theorem 2.1 . (See [5]). Let M be a real hypersurface in CPm , m ≥ 2 , such that Aξ = αξ . Then α is

locally constant and if X is a tangent vector field on M such that AX = λX and X is orthogonal to ξ , then

AϕX = αλ+2
2λ−αϕX .

Theorem 2.2 . (See [10]). There exist no real hypersurfaces in CPm , m ≥ 3 , whose shape operator satisfies

Aξ = αξ + U , AU = ξ , AϕU = − 1
αϕU , where U is a unit vector field in D and α a nonnull function defined

on M .

3. Proof of Theorems 1.1 and 1.2

We begin with the proof of Theorem 1.1.

By the Codazzi equation we get (∇ZA)ξ−(∇ξA)Z = −ϕZ . This gives Z(α)ξ+Z(β)U+β∇ZU+A∇ξZ =

−ϕZ . Taking its scalar product with ξ , we have

Z(α) + βg(∇ξZ,U) = 0, (3.1)

and its scalar product with U yields

Z(β) + β2−1
α g(∇ξZ,U) = 0. (3.2)

From (3.1) and (3.2) we obtain

αβZ(β) + (1− β2)Z(α) = 0. (3.3)

The Codazzi equation also gives (∇ZA)U − (∇UA)Z = 0. That is, Z(β)ξ+Z(β
2−1
α )U + β2−1

α ∇ZU −A∇ZU +

A∇UZ = 0. Its scalar product with ξ yields

Z(β) + βg(∇UZ,U) = 0 (3.4)

and its scalar product with U gives

Z(β
2−1
α ) + β2−1

α g(∇UZ,U) = 0. (3.5)

From (3.4) and (3.5) we obtain

Z(β
2−1
α ) + 1−β2

α Z(β) = 0. (3.6)

From (3.3) and (3.6) we get αZ(β) = 0. Thus, Z(β) = 0. From (3.6) we have 1−β2

α Z(α) = 0.

If Z(α) ̸= 0, β2 = 1. Maybe after changing ξ by −ξ we can suppose that β = 1. Therefore, either

δ = 0 or δ = − 1
α .

From the Codazzi equation we have (∇ξA)ϕU − (∇ϕUA)ξ = −2ξ . Its scalar product with U yields

δg(∇ξϕU,U) + 1 + αδ = −1. (3.7)
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If δ = 0, from (3.7) we have a contradiction. Thus δ = − 1
α .

From the Codazzi equation, (∇UA)ϕU − (∇ϕUA)U = −2ξ . Its scalar product with ξ gives

g(∇UϕU,U) = 1 (3.8)

and taking its scalar product with U , bearing in mind (3.8), it follows that − 2
α + g(AϕU, ϕU) = 0. That is,

− 3
α = 0, which is impossible. Therefore, Z(α) = Z(β) = 0.

Once more from the Codazzi equation we obtain (∇ϕZA)ξ − (∇ξA)ϕZ = Z . This yields (ϕZ)(α)ξ +

αϕAϕZ + (ϕZ)(β)U + β∇ϕZU − AϕAϕZ + ξ( 1
α )ϕZ + 1

α∇ξϕZ + A∇ξϕZ = Z . Taking its scalar product with

ξ we get

g(∇ξϕZ,U) = − 1
β (ϕZ)(α), (3.9)

and if we take its scalar product with U ,

(ϕZ)(β) + β2

α g(∇ξϕZ,U) = 0. (3.10)

From (3.9) and (3.10) we have

α(ϕZ)(β)− β(ϕZ)(α) = 0. (3.11)

As (∇ϕZA)U − (∇UA)ϕZ = 0, its scalar product with ξ yields

g(∇UϕZ,U) = − 1
β (ϕZ)(β) (3.12)

and its scalar product with U gives (ϕZ)(β
2−1
α ) + β2

α g(∇UϕZ,U) = 0. Bearing in mind (3.12), we get

(ϕZ)(β
2−1
α )− β

α (ϕZ)(β) = 0. (3.13)

From (3.13) we have αβ(ϕZ)(β)+(1−β2)(ϕZ)(α) = 0. This equation and (3.11) yield (ϕZ)(α) = (ϕZ)(β) = 0.

From the Codazzi equation, (∇ZA)ϕZ − (∇ϕZA)Z = −2ξ . Taking its scalar product with ξ we obtain

g([ϕZ,Z], U) = − 1
β . (3.14)

Taking its scalar product with U and bearing in mind (3.14), we have

g(∇ZϕZ,U) = 1
β − 2β. (3.15)

143
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From the Codazzi equation we get (∇ZA)ϕU − (∇ϕUA)Z = 0. As Z(α) = Z(β) = 0, Z(δ) = 0. Therefore,

we obtain δ∇ZϕU − A∇ZϕU + A∇ϕUZ = 0. Taking its scalar product with Z we have δg(∇ZϕU,Z) = 0. If

δ ̸= 0, g(∇ZϕU,Z) = 0. From (2.3) this yields g(∇ZϕZ,U) = 0. Now from (3.15) we have

2β2 = 1. (3.16)

Thus, β is constant. If we develop (∇ϕUA)ξ − (∇ξA)ϕU = U and take its scalar product with U we obtain

−αδ + δ(β
2−1
α )− β2 + ( 2β

2−1
α )g(∇ξϕU,U) = 1. (3.17)

As 2β2 = 1 and δ = −β2

α , from (3.17) we conclude

4α2 = 1. (3.18)

From the Codazzi equation, (∇ϕUA)U − (∇UA)ϕU = −2ξ . Taking its scalar product with U , from (3.16) and

(3.17) we get β2 + 1 = 0, which is impossible. Therefore, we must suppose δ = 0.

From the Codazzi equation, (∇ZA)ϕU − (∇ϕUA)Z = 0. Its scalar product with ϕZ yields

g(∇ZϕU, ϕZ)− g(∇ϕUZ, ϕZ) = 0. (3.19)

If we take the scalar product of (∇ϕZA)ϕU − (∇ϕUA)ϕZ = 0 with ϕZ and bear in mind (2.3), we get

1
αg(∇ϕZU,Z) + (ϕU)( 1

α ) = 0. (3.20)

Developing (∇ZA)ξ − (∇ξA)Z = ϕZ and taking its scalar product with ϕZ , we have

βg(∇ZU, ϕZ)− 1
αg(∇ξZ, ϕZ) = −1. (3.21)

Taking the scalar product of (∇ZA)U − (∇UA)Z = 0 with ϕZ , we also obtain

β2g(∇ZU, ϕZ)− g(∇UZ, ϕZ) = 0. (3.22)

The scalar product of (∇ϕZA)ξ − (∇ξA)ϕZ = Z with Z yields

βg(∇ϕZU,Z)− 1
αg(∇ξZ, ϕZ) = 0, (3.23)

and the scalar product of (∇ϕZA)U − (∇UA)ϕZ = 0 with Z implies

β + (β2 − 1)g(∇ϕZU,Z) + g(∇UϕZ,Z) = 0. (3.24)

From (3.21) and (3.23) it follows that

βg(∇ϕZU,Z)− βg(∇ZU, ϕZ) = 1, (3.25)
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and from (3.22) and (3.24) we get

β + (β2 − 1)g(∇ϕZU,Z)− β2g(∇ZU, ϕZ) = 0. (3.26)

From (3.25) and (3.26) we have

g(∇ϕZU,Z) = 2β
g(∇ZU, ϕZ) = 2β − 1

β .
(3.27)

From (3.20) and (3.27), (ϕU)( 1
α ) = −2β

α . Thus,

(ϕU)(α) = 2αβ. (3.28)

Now (∇ϕUA)ξ − (∇ξA)ϕU = U . Taking its scalar product with ξ and bearing in mind (3.28), we obtain

g(∇ξϕU,U) = −α (3.29)

and its scalar product with U yields

(ϕU)(β) = 2β2. (3.30)

As (∇ϕUA)U − (∇UA)ϕU = 2ξ , if we take its scalar product with ξ and bear in mind (3.30), we have

βg(∇UϕU,U) = 1− β2 (3.31)

and its scalar product with U , bearing in mind (3.31), gives

(ϕU)(β
2−1
α )− 2β(β2−1)

α + β2−1
αβ = 0. (3.32)

From (3.28), (3.30), and (3.32) we get 5β2 − 1 = 0. Therefore, β is constant. Thus, (ϕU)(β) = 2β2 = 0, which

is impossible. This finishes the proof of Theorem 1.1.

Now we begin proving Theorem 1.2.

If λ = 0, from the Codazzi equation we get (∇ZA)ϕZ− (∇ϕZA)Z = −2ξ . That is, A∇ϕZZ−A∇ZϕZ =

−2ξ . Taking its scalar product with ξ we have

βg([ϕZ,Z], U) = −2, (3.33)

and its scalar product with U yields

β2−1
α g([ϕZ,Z], U) = 0. (3.34)
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From (3.33) and (3.34) we obtain β2 = 1. If δ = − 1
α from Theorem 2.1, these real hypersurfaces do not exist.

Let us suppose that AϕU = 0 and that, after a possible change of ξ by −ξ , β = 1.

From the Codazzi equation, (∇ϕUA)ξ − (∇ξA)ϕU = U . Taking its scalar product with U we obtain

1 = −1.

Therefore, we must suppose that for any Z ∈ DU , AZ = − 1
2αZ . The same computations as above give

us

βg([ϕZ,Z], U) = 1
2α2 − 1 (3.35)

and

(2β2 − 1)g([ϕZ,Z], U) = 2β. (3.36)

From (3.35) and (3.36) we obtain

(2β2 − 1)(1− 2α2) = 4α2β2. (3.37)

From (3.37) for any X ∈ TM we get

1−4α2

α X(β) = 4β2−1
β X(α). (3.38)

Taking the scalar product of the Codazzi equation that we have used to obtain (3.35) and (3.36) with Z , and

respectively with ϕZ , we have Z(α) = (ϕZ)(α) = 0. From (3.38) we have 1−4α2

α Z(β) = 1−4α2

α (ϕZ)(β) = 0.

Thus, either 4α2 = 1 or Z(β) = (ϕZ)(β) = 0. If 4α2 = 1, from (3.37) we should have −1
2 = 0, which is

impossible. Therefore, Z(α) = (ϕZ)(α) = Z(β) = (ϕZ)(β) = 0.

From the Codazzi equation, (∇ZA)ξ − (∇ξA)Z = −ϕZ . Its scalar product with ϕZ yields

g(∇ZU, ϕZ) = β + 1
4α2β − 1

β . (3.39)

The scalar product of (∇ZA)U − (∇UA)Z = 0 with ϕZ , bearing in mind (3.39), gives

2β2 + 4α2 − 12α2β2 − 1 = 0. (3.40)

From (3.37) and (3.40) we obtain α2(1 − 2β2) = 0. Thus, 2β2 = 1. This and (3.37) yield α = 0, which is a

contradiction. This finishes the proof of Theorem 1.2.

4. Proof of Main Theorem

First, we suppose that M is non-Hopf and write Aξ = αξ + βU , where U is a unit vector field in D and β is

a nonvanishing function defined on M . Condition (1.2) gives

g(∇XAξ, ξ)AY + g(Aξ, ϕAX)AY + α∇XAY − g(∇XAY, ξ)Aξ
−g(AY, ϕAX)Aξ − η(AY )∇XAξ − α∇AY X + η(AY )∇AξX − αA∇XY

+g(∇XY,Aξ)Aξ − g(∇Y X, ξ)ξ + αA∇Y X − g(∇Y X,Aξ)Aξ = 0
(4.1)
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for any X,Y ∈ D . If we take the scalar product of (4.1) and ξ we obtain

βη(AY )g(ϕAX,U)− αg(AY, ϕAX) + αg(X,ϕA2Y )
−η(AY )g(X,ϕA2ξ) + g(X,ϕAY ) = 0

(4.2)

for any X,Y ∈ D . If we apply Condition (1.1) to ξ we obtain αAU = αβξ+(β2 − 1)U . Let us suppose α = 0.

Then β2 = 1 and changing, if necessary, ξ by −ξ , we can suppose β = 1.

If in (4.2) we take X = U , Y = ϕU , we obtain

g(AϕU, ϕU) = 0. (4.3)

Taking Y ∈ DU = Span{ξ, U, ϕU}⊥ , X = ϕU in (4.2), we have

g(AU, Y ) = 0. (4.4)

From (4.4) we know that AU has no component in DU . If we take Y ∈ DU , X = U in (4.2), it follows that

g(AϕU, Y ) = 0. (4.5)

Thus, AϕU has no component in DU . Take now X = Y = U in (4.2). We get

g(AU, ϕU) = 0. (4.6)

From (4.3), (4.5), and (4.6), we have AϕU = 0. From (4.4) we get Aξ = U , AU = ξ + γU . Take X,Y ∈ DU .

From (4.2) we obtain g(X,ϕAY ) = 0. From this, (4.4), and (4.5), AY = 0 for any Y ∈ DU . Therefore, the

type number of M , that is, the rank of its shape operator, is at most 2. By [13], M must be ruled and γ = 0.

From the Codazzi equation, (∇UA)ξ − (∇ξA)U = −ϕU . If we take its scalar product with ϕU we get

g(∇UU, ϕU) = 0. (4.7)

The Codazzi equation also yields (∇UA)ϕU − (∇ϕUA)U = −2ξ . Its scalar product with ξ gives

g(∇UϕU,U) = 2. (4.8)

As (4.7) and (4.8) give a contradiction, we assure that α ̸= 0 and we can write

AU = βξ + β2−1
α U. (4.9)

From (4.9), taking X ∈ DU , Y = U in (4.2), we get g(AϕU,X) = 0. So we write AϕU = δϕU .

Taking Y = ϕU , X = U in (4.2), we obtain −αg(AϕU, ϕAU) + αg(U, ϕA2ϕU) + g(U, ϕAϕU) = 0. That

is, δ(β2 − 1) + αδ2 + δ = 0. Thus, either δ = 0 or δ = −β2

α .
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Take now a unit Z ∈ DU . We have just seen that DU is A-invariant, so we suppose that AZ =

λZ . Let Y ∈ DU such that is orthogonal to Span{Z, ϕZ} . Applying (4.2) to Z and ϕY we obtain

(1+αλ)g(AϕZ, ϕY ) +αg(A2ϕZ, ϕY ) = 0. Therefore, (1+αλ)AϕZ +αA2ϕZ is proportional to ϕZ . Thus, we

can write (1 + αλ)AϕZ + αA2ϕZ + µϕZ = 0 for some function µ . If in (4.2) we take X = Z , Y = ϕZ we get

(1 + αλ)g(AϕZ, ϕZ) + αg(A2ϕZ, ϕZ) = 0. This yields µ = 0 and we have

(1 + αλ)AϕZ + αA2ϕZ = 0. (4.10)

Suppose that ω is another eigenvalue of A in DU , ω ̸= λ , and that W is a unit eigenvector corresponding to

ω . As above, we find

(1 + αω)AϕW + αA2ϕW = 0. (4.11)

If we take the scalar product of (4.10) and W and the scalar product of (4.11) and Z , we have ((1 + αλ)ω +

αω2)g(ϕZ,W ) = 0 and ((1 + αω)λ+ αλ2)g(ϕW,Z) = 0. If we add both expressions, as ω ̸= λ we obtain

(1 + α(ω + λ))g(ϕW,Z) = 0. (4.12)

From (4.12) we have:

1. If there exists W such that g(ϕW,Z) ̸= 0, ω + λ = − 1
α .

2. If for any W in the above conditions g(ϕW,Z) = 0, then AϕZ = λϕZ .

In the first case we can write ϕZ = a1Z1 + a2Z2 , where a1
2 + a2

2 = 1, AZ1 = λZ1 , AZ2 = ωZ2 with

1 + α(λ+ ω) = 0. From (4.10) we have ((1 + αλ)λa1 + αλ2a1)Z1 + ((1 + αλ)ωa2 + αω2a2)Z2 = 0. From this

equation we obtain a1λ(1 + 2αλ) = 0. If 1 + 2αλ = 0, as 1 + α(λ + ω) = 0 we should have λ = ω , which is

impossible. Then a1λ = 0. If λ = 0 and a1 = 1, AϕZ = 0 and we are in Case 2. So we suppose a2 ̸= 0 and

AϕZ = a2ωZ2 . From (4.10), (1+αλ)a2ω+αa22ω
2 = 0. If λ = 0 we obtain ω = − 1

α . The above equation yields

−a2

α +
a2
2

α = 0. Thus, a2(a2 − 1) = 0 and a2 = 1. Thus, AϕZ = − 1
αϕZ . From Theorem 1.1 this case does not

occur. Therefore, we must suppose that λ ̸= 0, a1 = 0 and AϕZ = ωϕZ , λ ̸= ω and 1 + α(λ+ ω) = 0.

From the Codazzi equation, (∇ZA)ϕU − (∇ϕUA)Z = 0. If we take its scalar product with ϕZ we obtain

(δ − ω)g(∇ZϕU, ϕZ) + (ω − λ)g(∇ϕUZ, ϕZ) = 0 (4.13)

and its scalar product with Z gives

(ϕU)(λ) = (δ − λ)g(∇ZϕU,Z). (4.14)

As (∇ϕZA)ϕU − (∇ϕUA)ϕZ = 0, its scalar product with Z yields

(δ − λ)g(∇ϕZϕU,Z) + (ω − λ)g(∇ϕUZ, ϕZ) = 0. (4.15)
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If we take its scalar product with ϕZ we get

(ϕU)(ω) = (δ − ω)g(∇ϕZϕU, ϕZ). (4.16)

From (4.14) and (4.16) we have

(ϕU)(− 1
α ) = (δ − λ)g(∇ZϕU,Z) + (δ − ω)g(∇ϕZϕU, ϕZ). (4.17)

Bearing in mind that (∇ZA)ξ − (∇ξA)Z = −ϕZ and taking its scalar product with ϕZ , we obtain

λ(α− ω) + βg(∇ZU, ϕZ) + (ω − λ)g(∇ξZ, ϕZ) = −1. (4.18)

Taking the scalar product of (∇ZA)U − (∇UA)Z = 0 with ϕZ , it follows that

λβ + (β
2−1
α − ω)g(∇ZU, ϕZ) + (ω − λ)g(∇UZ, ϕZ) = 0. (4.19)

The scalar product of (∇ϕZA)ξ − (∇ξA)ϕZ = Z with Z yields

ω(λ− α) + βg(∇ϕZU,Z) + (λ− ω)g(∇ξϕZ,Z) = 1. (4.20)

The scalar product of (∇ϕZA)U − (∇UA)ϕZ = 0 with Z gives

−ωβ + (β
2−1
α − λ)g(∇ϕZU,Z) + (ω − λ)g(∇UZ, ϕZ) = 0. (4.21)

From (4.18) and (4.20), bearing in mind that λ+ ω = − 1
α , we have

βg(∇ZU, ϕZ)− βg(∇ϕZU,Z) = 2λω − 1. (4.22)

Similarly, (4.19) and (4.21) yield

(β2 + αλ)g(∇ZU, ϕZ)− (β2 + αω)g(∇ϕZU,Z) = β. (4.23)

The determinant of the matrix given by the coefficients of the system of equations (4.22) and (4.23) is αβ(λ−ω) ̸=
0. Thus, we have a unique solution given by

g(∇ZU, ϕZ) = β2−(β2+αω)(2λω−1)
αβ(λ−ω)

g(∇ϕZU,Z) = β2−(β2+αλ)(2λω−1)
αβ(λ−ω)

(4.24)

and from (2.3) g(∇ZϕU,Z) = g(ϕ∇ZU,Z) = −g(∇ZU, ϕZ). From (4.17) and (4.24) we have

−(ϕU)( 1
α ) =

β2+(1−2λω)(β2+αδ)
αβ . (4.25)
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Thus, (ϕU)(α) = αβ + α(1−2λω)(β2+αδ)
β . Therefore,

If δ = −β2

α ,
(ϕU)(α) = αβ.

If δ = 0,
(ϕU)(α) = 2αβ(1− λω).

(4.26)

As (∇ϕUA)ξ − (∇ξA)ϕU = U , if we take its scalar product with ξ , we obtain

(ϕU)(α) + 3δβ − αβ + βg(∇ξϕU,U) = 0, (4.27)

and its scalar product with U yields

(ϕU)(β)− αδ + δ β2−1
α − β2 + (β

2−1
α − δ)g(∇ξϕU,U) = 1. (4.28)

From (4.26), (4.27), and (4.28) we get

If δ = −β2

α ,

g(∇ξϕU,U) = 3β2

α ,

(ϕU)(β) = 1 + 2β2−5β4

α2 .
If δ = 0,

g(∇ξϕU,U) = α− 2α(1− λω),
(ϕU)(β) = 2β2 + 2(1− β2)λω.

(4.29)

From the Codazzi equation, (∇ϕUA)U−(∇UA)ϕU = −2ξ . Its scalar product with ξ yields (ϕU)(β)+2δ β2−1
α −

αδ − (β2 − 1) + βg(∇UϕU,U) = 2. From (4.29), we obtain

If δ = −β2

α ,

g(∇UϕU,U) = 7β3−4β
α2 .

If δ = 0,
βg(∇UϕU,U) = (1− β2)(1− 2λω).

(4.30)

Its scalar product with U gives −2βδ + (ϕU)(β
2−1
α ) − β β2−1

α + (β
2−1
α − δ)g(∇UϕU,U) = 0. This and (4.30)

imply

If δ = −β2

α ,
4α2 + 4β4 − 11β2 + 4 = 0.

If δ = 0,
(5− 2λω)β2 + 2λω − 1 = 0.

(4.31)

In the case of δ ̸= 0, from (4.31) we have 8α(ϕU)(α) = (22β − 16β3)(ϕU)(β). Therefore, 4α4 = (−8β2 +

11)(α2 + 2β2 − 5β4). From (4.31) and this equation we obtain that β must be a root of an equation with

constant coefficients. Therefore, β is constant and α is also constant. As (ϕU)(α) = αβ , we should have

αβ = 0, which is impossible. Thus, δ = 0.
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From (4.31) we get λω = 1
2 − 2β2

1−β2 and from (4.29), (ϕU)(β) = 1− 3β2 . As moreover λ+ ω = − 1
α , we

find λ = − 1
2α +

√
1

4α2 − 1
2 + 2β2

1−β2 and ω = − 1
2α −

√
1

4α2 − 1
2 + 2β2

1−β2 . If we take X = Z , Y = U in (4.1) and

its scalar product with ϕZ , we have

g(∇UZ, ϕZ) = g(∇ZU, ϕZ). (4.32)

Taking X = ϕZ , Y = U in (4.1) and its scalar product with Z , we get

g(∇ϕZU,Z) = g(∇UϕZ,Z). (4.33)

From (4.32), (4.33), (2.3), and (4.24) we obtain −β2 +(β2 +αω)(2λω− 1) = β2 − (β2 +αλ)(2λω− 1). Bearing

in mind the value of λω , it follows that 3β2 = 1, and thus β is constant. Moreover λω = − 1
2 , (ϕU)(α) = 3αβ .

As (∇ϕZA)ξ − (∇ξA)ϕZ = Z , taking its scalar product with ξ we have

(ϕZ)(α) + βg(∇ξϕZ,U) = 0, (4.34)

and its scalar product with U gives

(2 + 3αω)g(∇ξϕZ,U) = 0. (4.35)

Looking at (4.35), if we suppose 2 + 3αω = 0, ω = − 2
3α . Now − 2

3α = 1
2α (−1 −

√
1 + 2α2). This yields

9α4 + 4α2 = 0. Thus, α should be constant and (ϕU)(α) = 3αβ = 0 should give a contradiction. Thus, we

must suppose g(∇ξϕZ,U) = 0. From (4.34), (ϕZ)(α) = 0. Analogously, we can obtain Z(α) = 0.

If we develop (∇ZA)ϕZ − (∇ϕZA)Z = −2ξ and take its scalar product with ξ , we get βg([ϕZ,Z], U) =

−2. If now we take its scalar product with U , considering (4.24) and the values of λ and ω , we arrive to

3α2 + 2α + 2 = 0. Thus, α is constant and we have a new contradiction. This proves that Case 1 does not
occur.

Suppose we have Case 2: for a unit Z in DU , AZ = λZ , AϕZ = λϕZ . From (4.10) we obtain

(1 + αλ)λ+ αλ2 = 0. From Theorem 1.2, this case is impossible.

Thus we have proven that non-Hopf real hypersurfaces do not satisfy our conditions.

Let us now suppose that M is Hopf, and write Aξ = αξ . Let Y ∈ D such that AY = λY . For any Y ∈ D
from Condition (1.2), we obtain αλAϕY + αλ2ϕY + λϕY = 0. From Theorem 2.1, calling µ the eigenvalue

corresponding to ϕY , we get

λ(αµ+ αλ+ 1) = 0. (4.36)

Suppose α(λ + µ) + 1 = 0. From the value of µ appearing in Theorem 2.1 we get 2αλ2 + 2λ + α = 0,

where α is locally constant. Thus, M has at most 3 distinct locally constant principal curvatures. When

the discriminant of such an equation is 1 − 2α2 = 0 we obtain only 2 distinct principal curvatures. Then

from [2] , M is locally congruent to a geodesic hypersphere of radius r . Writing α = 2cot(2r), we obtain

cot(r) = λ = − 1
2α . This yields cot2(r) = 1

2 . Clearly these geodesic hyperspheres satisfy condition (1.1). Now
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take X,Y ∈ D . Then AX = cot(r)X , AY = cot(r)Y . Moreover Aξ = 2cot(2r)ξ . Introducing X,Y in (4.1),

we obtain 2cot(2r)cot(r)∇XY − 2cot(2r)cot(r)∇Y X − 2cot(2r)A∇XY + 2cot(2r)A∇Y X + (8cot2(2r)cot(r) +

cot(r))g(X,ϕY )ξ . If we take the scalar product with any Z ∈ D we obtain 0. Its scalar product with ξ

gives {2cot(r)(cot(2r) + 1)cot(r)}g(X,ϕY ). As 2cot2(r) = 1, the above term equals zero. Thus, these geodesic

hyperspheres also satisfy condition (1.2).

If there are 3 distinct principal curvatures, as they must be locally constant, from [6] , M is locally

congruent to either a type A2 or B real hypersurface. However, in our case, we see that the distributions

corresponding to the principal curvatures different from α are not ϕ-invariant. This yields that M cannot be

of type A2 . If M is of type B , we can write α = 2tan(2r), λ1 = −cot(r), λ2 = tan(r), but these values do

not satisfy 2α2 + 2λ+ α = 0.

Therefore, the last possibility is to have λ = 0. From Theorem 2.1, AϕY = − 2
αϕY . If we apply (4.1) to

X = Y and ϕY we have −αg(AϕY, ϕAY ) + αg(Y, ϕA2ϕY ) + g(Y, ϕAϕY ) = 0. This yields −αµ2 − µ = 0. As

µ ̸= 0, we get µ = − 1
α and arrive at a contradiction.

This finishes the proof of the Theorem. 2
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