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Abstract: In this paper, we consider Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We

study these metrics with vanishing S-curvature. We find some conditions under which such a Finsler metric is Berwaldian

or locally Minkowskian.
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1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities: the Cartan torsion C , the Berwald

curvature B , the S-curvature S , the new non-Riemannian curvature H , etc. They all vanish for Riemannian

metrics; hence they are said to be non-Riemannian [6, 7, 9].

Let (M,F ) be a Finsler manifold. The Finsler metric F on M induced a spray G = yi ∂
∂xi −2Gi(x, y) ∂

∂yi ,

which determines the geodesics, where Gi = Gi(x, y) are called the spray coefficients of G . A Finsler metric

F is called a Berwald metric if Gi = 1
2Γ

i
jk(x)y

jyk are quadratic in y ∈ TxM for any x ∈ M . The Berwald

curvature B of Finsler metrics is an important non-Riemannian quantity constructed by L. Berwald.

The S-curvature is constructed by Shen for given comparison theorems on Finsler manifolds [10]. A

natural problem is to study and characterize Finsler metrics of vanishing S-curvature. It is known that some

Randers metrics are of vanishing S-curvature [8, 13]. This is one of our motivations to consider Finsler metrics

with vanishing S-curvature. Shen proved that every Berwald metric satisfies S = 0 [10]. In [2], Bao and Shen

find a class of non-Berwaldian Randers metrics with vanishing S-curvature. Thus the converse of Shen’s theorem

is not true, generally. A natural question arises: “Under which conditions does the converse of Shen’s Theorem

hold?”

There are 2 basic tensors on Finsler manifolds: fundamental metric tensor gy and the Cartan torsion

Cy , which are second and third order derivatives of 1
2F

2
x at y ∈ TxM0 , respectively. The rate of change of C

along Finslerian geodesics is called Landsberg curvature Ly . Taking a trace of C and L gives us mean Cartan

torsion I and mean Landsberg curvature J , respectively. J/I is regarded as the relative rate of change of I

along Finslerian geodesics. Then F is said to be an isotropic mean Landsberg metric if J + cF I = 0, where

c = c(x) is a scalar function on M .
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Theorem 1 Let F = αϕ(s) , s = β
α be a non-Riemannian (α, β)-metric on manifold M with vanishing S-

curvature and ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0 , c2 , c3 . Suppose that J/I is isotropic,

J+ c(x)F I = 0,

where c = c(x) is a scalar function on M . Then F reduces to a Berwald metric.

There is a weaker notion of Berwald metrics, namely R-quadratic metrics. For a Finsler space (M,F ), the

Riemann curvature is a family of linear transformations Ry : TxM → TxM , where y ∈ TxM , with homogeneity

Rλy = λ2Ry , ∀λ > 0 (the definition will be given in §2). If F is Riemannian, i.e. F (y) =
√
g(y, y) for some

Riemannian metric g , then Ry := R(·, y)y , where R(u, v)z denotes the Riemannian curvature tensor of g . In

this case, Ry is quadratic in y ∈ TxM . A Finsler metric is said to be R-quadratic if its Riemann curvature

Ry is quadratic in y ∈ TxM [11]. There are many non-Riemannian R-quadratic Finsler metrics. For example,

all Berwald metrics are R-quadratic. Indeed a Finsler metric is R-quadratic if and only if the h-curvature of

Berwald connection depends on position only in the sense of B ács ó-Matsumoto [1]. The notion of R-quadratic

Finsler metrics was introduced by Shen, and can be considered a generalization of R-flat metrics.

Theorem 2 Let F = αϕ(s) , s = β
α be a non-Riemannian (α, β)-metric on a manifold M with vanishing

S-curvature and ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0 , c2 , c3 . Suppose that F is R-quadratic. Then

F reduces to a Berwald metric.

Information geometry has emerged from investigating the geometrical structure of a family of probability

distributions and has been applied successfully to various areas including statistical inference, control system

theory, and multiterminal information theory. Dually flat Finsler metrics form a special and valuable class

of Finsler metrics in Finsler information geometry, and play a very important role in studying flat Finsler

information structures. A Finsler metric F = F (x, y) on a manifold M is said to be locally dually flat if at any

point there is a standard coordinate system (xi, yi) in TM satisfying [F 2]xkylyk = 2[F 2]xl . It is easy to see

that every locally Minkowskian metric satisfies in the above equation, hence is locally dually flat [14, 15]. Here,

we find some conditions under which a locally dually flat non-Randers type (α, β)-metric reduces to a locally

Minkowskian metric. More precisely, we prove the following.

Theorem 3 Let F = αϕ(s), s = β
α be a non-Randers type (α, β)-metric on a manifold M of dimension n ≥ 3

with vanishing S-curvature. Suppose that one of the following holds:

(a) ϕ′(0) ̸= 0 and (k2 − k3b
2)b2 ̸= −1 ;

(b) ϕ′(0) = ϕ′′(0) = 0 or ϕ is a polynomial that ϕ′(0) = 0 .

If F is locally dually flat then it reduces to a locally Minkowskian metric.

In this paper, we use the Berwald connection and the h - and v - covariant derivatives of a Finsler tensor

field are denoted by “ | ” and “, ” respectively [12].
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2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following properties:

(a) F is C∞ on TM0 := TM \ {0} ;

(b) F (λy) = λF (y), ∀λ > 0, y ∈ TM ;

(c) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]∣∣∣
s,t=0

, u, v ∈ TxM.

At each point x ∈ M , Fx := F |TxM is an Euclidean norm if and only if gy is independent of y ∈ TxM0 . To

measure the non-Euclidean feature of Fx , define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]∣∣∣
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0 , which in a

standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM0 satisfying

Gi(x, λy) = λ2Gi(x, y) λ > 0.

G is called the associated spray to (M,F ). The projection of an integral curve of G is called a geodesic in M .

In local coordinates, a curve c(t) is a geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0. A

Finsler metric F is called a Berwald metric if Gi are quadratic in y ∈ TxM for any x ∈ M or equivalently the

Berwald curvature

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl

is vanishing.

A Finsler metric F = F (x, y) on a manifold M is said to be locally dually flat if at any point there is a

coordinate system (xi) in which the spray coefficients are in the following form:

Gi = −1

2
gijHyj ,

where H = H(x, y) is a C∞ scalar function on TM0 satisfying H(x, λy) = λ3H(x, y) for all λ > 0. Such a

coordinate system is called an adapted coordinate system [4]. In [8], Shen proved that the Finsler metric F on

an open subset U ⊂ Rn is dually flat if and only if it satisfies

(F 2)xkylyk = 2(F 2)xl .
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In this case, H = − 1
6 [F

2]xmym .

Let U(t) be a vector field along a curve c(t). The canonical covariant derivative DċU(t) is defined by

DċU(t) :=
{dU i

dt
(t) + U j(t)

∂Gi

∂yj
(ċ(t))

} ∂

∂xi
|c(t).

U(t) is said to be parallel along c if Dċ(t)U(t) = 0.

To measure the changes in the Cartan torsion C along geodesics, we define Ly : TxM⊗TxM⊗TxM → R
by

Ly(u, v, w) :=
d

dt

[
Cċ(t)(U(t), V (t),W (t))

]∣∣
t=0

,

where c(t) is a geodesic and U(t), V (t),W (t) are parallel vector fields along c(t) with ċ(0) = y, U(0) =

u, V (0) = v,W (0) = w . The family L := {Ly}y∈TM0 is called the Landsberg curvature. A Finsler metric is

called a Landsberg metric if L = 0. An important fact is that if F is Berwaldian, then it is Landsbergian. L/C

is regarded as the relative rate of change in C along Finslerian geodesics. Then F is said to be an isotropic

Landsberg metric if L = cFC , where c = c(x) is a scalar function on M .

For a vector y ∈ TxM0 , the Riemann curvature Ry : TxM → TxM is defined by Ry(u) := Ri
k(y)u

k ∂
∂xi ,

where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0 is called the Riemann curvature. There are many Finsler metrics whose Riemann

curvature in every direction is quadratic. A Finsler metric F is said to be R-quadratic if Ry is quadratic in

y ∈ TxM at each point x ∈ M .

Put

R i
j kl(y) :=

1

3

∂

∂yj

[∂Ri
k

∂yl
− ∂Ri

l

∂yk

]
.

R i
j kl are the coefficients of the h-curvature of the Berwald connection, which are also denoted by H i

j kl in the

literature. We have

Ri
k(y) = yjR i

j kl(y)y
l.

Thus Ri
k(y) is quadratic in y ∈ TxM if and only if R i

j kl(y) are functions of x only.

For a Finsler metric F on an n -dimensional manifold M , the Busemann-Hausdorff volume form dVF =

σF (x)dx
1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn

∣∣∣ F(
yi ∂

∂xi |x
)
< 1

} .

In general, the local scalar function σF (x) cannot be expressed in terms of elementary functions, even if F is

locally expressed by elementary functions.

Let Gi(x, y) denote the geodesic coefficients of F in the same local coordinate system. The S-curvature

is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
,

157



TAYABI et al./Turk J Math

where y = yi ∂
∂xi |x ∈ TxM . It is proved that S = 0 if F is a Berwald metric [8]. There are many non-Berwald

metrics satisfying S = 0 [2].

Given a Riemannian metric α , a 1-form β on a manifold M , and a C∞ function ϕ = ϕ(s) on [−bo, bo] ,

where bo := supx∈M ∥β∥x , one can define a function on TM by

F := αϕ(s), s =
β

α
.

If ϕ and bo satisfy (2.1) and (2.2) below, then F is a Finsler metric on M . Finsler metrics in this form are

called (α, β)-metrics. Randers metrics are special (α, β)-metrics.

Now we consider (α, β)-metrics. Let α =
√

aijyiyj be a Riemannian metric and β = biy
i a 1-form on

a manifod M . Let

∥β∥x :=
√

aij(x)bi(x)bj(x).

For a C∞ function ϕ = ϕ(s) on [−bo, bo] , where bo = supx∈M ∥β∥x , define

F := αϕ(s), s =
β

α
.

By a direct computation, we obtain

gij = ρaij + ρ0bibj − ρ1(biαj + bjαi) + sρ1αiαj ,

where αi := aijy
j/α , and

ρ := ϕ(ϕ− sϕ′),

ρ0 := ϕϕ′′ + ϕ′ϕ′,

ρ1 := s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′.

By further computation, one obtains

det (gij) = ϕn+1 (ϕ− sϕ′)
n−2

[
(ϕ− sϕ′) + (∥β∥2x − s2)ϕ′′

]
det (aij) .

Using the continuity, one can easily show that

Lemma 1 Let bo > 0 . F = αϕ(β/α) is a Finsler metric on M for any pair {α, β} with supx∈M ∥β∥x ≤ bo if

and only if ϕ = ϕ(s) satisfies the following conditions:

ϕ(s) > 0, (|s| ≤ bo) (2.1)

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, (|s| ≤ b ≤ bo). (2.2)

Let

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
.
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rj := birij , sj := bisij .

Let ri0 := rijy
j , si0 := sijy

j , r0 := rjy
j and s0 := sjy

j . Suppose that Gi = Gi(x, y) and Ḡi = Ḡi(x, y)

denote the coefficients of F and α respectively in the same coordinate system. By definition, we obtain the

following identity:

Gi = Ḡi + Pyi +Qi, (2.3)

where

P = α−1Θ
[
r00 − 2Qαs0

]
Qi = αQsi0 +Ψ

[
r00 − 2Qαs0

]
bi,

Q =
ϕ′

ϕ− sϕ′

Θ =
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
(
(ϕ− sϕ′) + (b2 − s2)ϕ′′

)
Ψ =

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

Clearly, if β is parallel with respect to α (rij = 0 and sij = 0), then P = 0 and Qi = 0. In this case, Gi = Ḡi

are quadratic in y , and F is a Berwald metric.

Now, let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0), let

Φ := −(Q− sQ′){n∆+ 1 + sQ} − (b2 − s2)(1 + sQ)Q′′ (2.4)

where

∆ := 1 + sQ+ (b2 − s2)Q′ (2.5)

Lemma 2 ([3]) Let F = αϕ(s) , s = β
α be a non-Riemannian (α, β)-metric on a manifold and b := ∥βx∥α .

Suppose that ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0, c2 and c3 . Then F is of isotropic S-curvature,

S = (n+ 1)cF , if and only if one of the following holds:

(a) β satisfies

rij = ε(b2aij − bibj), sj = 0, (2.6)

where ε = ε(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
, (2.7)

where k is a constant. In this case, S = (n+ 1)cF with c = kε .

(b) β satisfies

rij = 0, sj = 0 (2.8)

In this case, S = 0, regardless of choices of a particular ϕ .
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3. Proof of Theorem 1

We have the following formula for the spray coefficient Gi of F

Gi = Gi
α + αQsi0 + (−2Qαs0 + r00)(Θα−1yi +Ψbi), (3.9)

where sij := aihshj , s
i
0 := siy

i , r00 = rijy
iyj and

Θ =
Q− sQ′

2∆
, Ψ =

Q′

2∆
.

By a direct computation, we can obtain a formula for the mean Cartan torsion of (α, β)- metrics as follows:

Ii = −Φ(ϕ− sϕ′)

2∆ϕα2
(αbi − syi). (3.10)

According to Deickeğs theorem, a Finsler metric is Riemannian if and only if I = 0. Clearly, an (α, β)-metric

F = αϕ(s) is Riemannian if and only if Φ = 0.

In [5], Li and Shen obtained the mean Landsberg curvature of an (α, β)-metric F = αϕ(s), s = β
α as

follows

Ji = − 1

α2∆(b2 − s2)

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(r0 + s0)hi

− hi

2α3∆(b2 − s2)
(Ψ1 + s

Φ

∆
)(r00 − 2αQs0)

− Φ

2α3∆2

[
− αQ′s0hi + αQ(α2si − yis0) + α2∆si0

+ α2(ri0 − 2αQs0)− (r00 − 2αQs0)yi

]
. (3.11)

where hi := αbi − syi and

Ψ1 :=
√
b2 − s2∆

1
2

[√b2 − s2

∆
3
2

]′
.

They also obtained

J̄ := Jib
i = − ∆

2α2

[
Ψ1(r00 − 2αQs0) + αΨ2(r0 + s0)

]
, (3.12)

where

Ψ2 := 2(n+ 1)(Q− sQ′) + 3
Φ

∆
.

Lemma 3 Let F = αϕ(s) , s = β
α be n non-Riemannian (α, β)-metric on manifold M . Suppose that

ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0 , c2 .If F has vanishing S-curvature and a weakly Landsberg

metric then F is a Berwald metric.
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Proof By (2.8) and (3.11) we have

Ji = −Φsi0
2α∆

. (3.13)

From (3.13) we conclude if F is weakly Landsberg then si0 = 0 and because of r00 = 0, F is a Berwald metric. 2

Proof of Theorem 1 Let F be a relatively isotropic mean Landsberg curvature metric with vanishing

S-curvature. The following holds:

Jk + cFIk = 0. (3.14)

By (2.8) and (3.12) we have biJ
i = 0. Multiplying (3.14) by bk yields

cF (bkIk) = 0. (3.15)

If c ̸= 0 from (3.15) we have bkIk = 0 and so by (3.10) we conclude

Φ(ϕ− sϕ′)

2∆ϕα3
(b2α2 − β2) = 0 (3.16)

From (3.16) we conclude Φ = 0 or ϕ− sϕ′ = 0. Then by (3.10) we have I = 0 and F is a Riemannian metric.

By assumption F is a non-Riemannian metric and so c = 0. From (3.14), we conclude F is a weakly Landsberg

metric. Then, by Lemma 3, F is a Berwald metric. The proof of Theorem 1 is complete.

4. Proof of Theorem 2

Lemma 4 ([9]) For the Berwald connection, the following Bianchi identities hold:

Ri
jkl|m +Ri

jlm|k +Ri
jmk|l = Bi

jkuR
u
lm +Bi

jluR
u
km +Bi

kluR
u
jm (4.17)

Bi
jml|k −Bi

jkm|l = Ri
jkl,m (4.18)

Bi
jkl,m = Bi

jkm,l. (4.19)

Lemma 5 Let F = αϕ(s) , s = β
α be a non-Riemannian (α, β)-metric on manifold M . Suppose that

ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0 , c2 If F has vanishing S-curvature then we have

bmBm
jkl = 0 (4.20)

Proof By (2.8), we have s0 = 0. By assumption F has vanishing S curvature. By (2.8) and (3.9) we have

Gi = Gi
α + αQsi0. (4.21)

Multiplying (4.21) by bi yields biG
i = biG

i
α . Thus bmBm

jkl = 0. 2

Proof of Theorem 2 According to Lemma 5, we have

bm|sB
m
jkl + bmBm

jkl|s = 0. (4.22)
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By assumption F is an R-quadratic metric. Thus (4.18) implies that

Bi
jkl|m −Bi

jkm|l = 0. (4.23)

Multiplying (4.23) by bi yields

biB
i
jkl|m = biB

i
jkm|l. (4.24)

From (4.22) and (4.24) we conclude

bi|mBi
jkl = bi|lB

i
jkm. (4.25)

Since rij = 0, then by multiplying (4.25) by yl we obtain

si0B
i
jkm = 0. (4.26)

By (4.21) we get Bi
jkl = [αQsi0]yjykyl . From (4.26) we have

[αQ]yjykylsi0s
i
0 + [αQ]yjyksi0s

i
l + [αQ]yjylsi0s

i
k + [αQ]ykylsi0s

i
j = 0. (4.27)

By (2.8), we have si = si = 0. Then multiplying (4.27) by bjbkbl yields[
bjbkbl[αQ]yjykyl

]
si0s

i
0 = 0. (4.28)

Then by (4.28), we conclude that β is a closed 1-form and then F reduces to a Berwald metric. The proof of

Theorem 2 is complete. 2

5. Proof of Theorem 3

In this section, we are going to prove Theorem 3. First, we remark the following.

Lemma 6 ([16]) Let F = αϕ(s), s = β
α , be a non-Riemannian (α, β)-metric on a manifold M of dimension

n ≥ 3, where ϕ′(0) ̸= 0 and β ̸= 0. Then F is locally dually flat if and only if α, β , and ϕ satisfy

sl0 =
1

3
(βθl − θbl),

r00 =
2

3
θβ +

[
τ +

2

3
(b2τ − θlb

l)

]
α2 +

1

3
(3k2 − 2− 3k3b

2)τβ2,

Gl
α =

1

3
[2θ + (3k1 − 2)τβ]yl +

1

3
(θl − τbl)α2 +

1

2
k3τβ

2bl,

τ [s(k2 − k3s
2)(ϕϕ′ − sϕ′2 − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′)] = 0,

where τ := τ(x) is a scalar function, θ := θi(x)y
i is a 1-form on M , θl = almθm , and

k1 := Π(0), k2 :=
Π′(0)

Q(0)
,

k3 :=
1

6Q(0)2
[3Q′′(0)Π′(0)− 6Π′(0)2 −Q(0)Π′′′(0)],

Π :=
ϕ′2 + ϕϕ′′

ϕ(ϕ− sϕ′)
.
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By Lemma 6, we can get the following.

Corollary 1 ([16]) Let F = αϕ(s), s = β
α be an (α, β)-metric on a manifold M of dimension n ≥ 3 with the

same assumption as Lemma 6. Let ϕ satisfy

s(k2 − k3s
2)(ϕϕ′ − sϕ′ − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′) ̸= 0.

Then F is locally dually flat on M if and only if

sl0 =
1

3
(βθl − θbl), (5.29)

r00 =
2

3

[
θβ − (θlb

l)α2
]
, (5.30)

Gl
α =

1

3

[
2θyl + θlα2

]
. (5.31)

where ki (1 ≤ i ≤ 3) are the same as those of Theorem 6.

In [16], Xia proved the following.

Lemma 7 ([16]) Let F := αϕ(s), s = β
α be a non-Riemannian (α, β)−metric on a manifold M of dimension

n ≥ 3. Suppose that ϕ(s) is an analytic function with ϕ′(0) = ϕ′′(0) = 0 or ϕ(s) is a polynomial of s with

ϕ′(0) = 0 and β = bi(x)y
i ̸= 0. Then F is locally dually flat if and only if α and β satisfy (5.29), (5.30) and

(5.31), where θ = θi(x)y
i is a 1-form on M and θl := almθm .

Proof of Theorem 3 To prove Theorem 3, we consider some cases.

Case (1): ϕ′(0) = ϕ′′(0) = 0 or ϕ(s) is a polynomial of s with ϕ′(0) = 0. In this case, by Lemma 7 we

have

sl0 =
1

3
(βθl − θbl), (5.32)

r00 =
2

3

[
θβ − (θlb

l)α2
]
, (5.33)

Gl
α =

1

3

[
2θyl + θlα2

]
. (5.34)

Since s0 = 0 then (5.32) reduces to the following:

θ =
blθl
b2

β. (5.35)

Plugging (5.35) into (5.33) implies that

r00 =
(blθl)

b2
[β2 − b2α2]. (5.36)
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By (2.8), we have r00 = 0. By (5.36), we get blθl = 0 and by (5.35) we have θ = 0. Then Gl
α = 0 and sl0 = 0.

So Gl = 0 and F is a locally Minkowski metric.

Case(2): ϕ′(0) ̸= 0 such that

s(k2 − k3s
2)(ϕϕ′ − sϕ′ − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′) ̸= 0.

According to Corollary 1, the proof of this case is similar to the proof of case (1).

Case(3): ϕ′(0) ̸= 0 such that

s(k2 − k3s
2)(ϕϕ′ − sϕ′ − sϕϕ′′)− (ϕ′2 + ϕϕ′′) + k1ϕ(ϕ− sϕ′) = 0.

According to Lemma 6, we have

sl0 =
1

3
(βθl − θbl), (5.37)

r00 =
2

3
θβ +

[
τ +

2

3
(b2τ − θlb

l)
]
α2 +

1

3
(3k2 − 2− 3k3b

2)τβ2, (5.38)

Gl
α =

1

3
[2θ + (3k1 − 2)τβ]yl +

1

3
(θl − τbl)α2 +

1

2
k3τβ

2bl. (5.39)

By (2.8) we have s0 = 0. Thus (5.37) implies that

θ =
(blθl)

b2
β. (5.40)

Plugging (5.40) into (5.38) we obtain

r00 =
2

3

(blθl)

b2
β2 +

[
τ +

2

3
(b2τ − θlb

l)
]
α2 +

1

3
(3k2 − 2− 3k3b

2)τβ2. (5.41)

By (2.8), since r00 = 0 then (5.41) reduces to the following:

2

3

(blθl)

b2
β2 +

[
τ +

2

3
(b2τ − θlb

l)
]
α2 +

1

3
(3k2 − 2− 3k3b

2)τβ2 = 0. (5.42)

Differentiating (5.42) with respect to ym yields

4

3

(blθl)

b2
βbm + 2

[
τ +

2

3
(b2τ − θlb

l)
]
ym +

2

3
(3k2 − 2− 3k3b

2)τβbm = 0. (5.43)

By multiplying (5.43) by bm we get

2
[
(k2 − k3b

2)b2 + 1
]
τβ = 0. (5.44)

By assumption, we have (k2−k3b
2)b2+1 ̸= 0. Then τ = 0. Plugging τ = 0 into (5.37), (5.38), and (5.39) yields

(5.29), (5.30), and (5.31). Thus the proof of Theorem in this case is similar to the first case. This completes

the proof. 2
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