

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2014) 38: 154 – 165 © TÜBİTAK doi:10.3906/mat-1210-60

Research Article

On Finsler metrics with vanishing S-curvature

Akbar TAYABI^{1,*}, Hassan SADEGHI¹, Esmaeil PEYGHAN²

¹Department of Mathematics, Faculty of Science University of Qom, Qom, Iran ²Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

Received: 25.10.2012	٠	Accepted: 01.01.2013	٠	Published Online: 09.12.2013	•	Printed: 20.01.2014
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: In this paper, we consider Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We study these metrics with vanishing S-curvature. We find some conditions under which such a Finsler metric is Berwaldian or locally Minkowskian.

Key words: (α, β) -metric, Berwald metric, S-curvature.

1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities: the Cartan torsion \mathbf{C} , the Berwald curvature \mathbf{B} , the S-curvature \mathbf{S} , the new non-Riemannian curvature \mathbf{H} , etc. They all vanish for Riemannian metrics; hence they are said to be non-Riemannian [6, 7, 9].

Let (M, F) be a Finsler manifold. The Finsler metric F on M induced a spray $\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$, which determines the geodesics, where $G^i = G^i(x, y)$ are called the spray coefficients of \mathbf{G} . A Finsler metric F is called a Berwald metric if $G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$ are quadratic in $y \in T_xM$ for any $x \in M$. The Berwald curvature \mathbf{B} of Finsler metrics is an important non-Riemannian quantity constructed by L. Berwald.

The S-curvature is constructed by Shen for given comparison theorems on Finsler manifolds [10]. A natural problem is to study and characterize Finsler metrics of vanishing S-curvature. It is known that some Randers metrics are of vanishing S-curvature [8, 13]. This is one of our motivations to consider Finsler metrics with vanishing S-curvature. Shen proved that every Berwald metric satisfies $\mathbf{S} = 0$ [10]. In [2], Bao and Shen find a class of non-Berwaldian Randers metrics with vanishing S-curvature. Thus the converse of Shen's theorem is not true, generally. A natural question arises: "Under which conditions does the converse of Shen's Theorem hold?"

There are 2 basic tensors on Finsler manifolds: fundamental metric tensor \mathbf{g}_y and the Cartan torsion \mathbf{C}_y , which are second and third order derivatives of $\frac{1}{2}F_x^2$ at $y \in T_x M_0$, respectively. The rate of change of \mathbf{C} along Finslerian geodesics is called Landsberg curvature \mathbf{L}_y . Taking a trace of \mathbf{C} and \mathbf{L} gives us mean Cartan torsion \mathbf{I} and mean Landsberg curvature \mathbf{J} , respectively. \mathbf{J}/\mathbf{I} is regarded as the relative rate of change of \mathbf{I} along Finslerian geodesics. Then F is said to be an isotropic mean Landsberg metric if $\mathbf{J} + cF\mathbf{I} = 0$, where c = c(x) is a scalar function on M.

^{*}Correspondence: akbar.tayebi@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 53C60, 53C25.

Theorem 1 Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on manifold M with vanishing Scurvature and $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$ for any constant $c_1 > 0$, c_2 , c_3 . Suppose that \mathbf{J}/\mathbf{I} is isotropic,

$$\mathbf{J} + c(x)F\mathbf{I} = 0.$$

where c = c(x) is a scalar function on M. Then F reduces to a Berwald metric.

There is a weaker notion of Berwald metrics, namely R-quadratic metrics. For a Finsler space (M, F), the Riemann curvature is a family of linear transformations $\mathbf{R}_y : T_x M \to T_x M$, where $y \in T_x M$, with homogeneity $\mathbf{R}_{\lambda y} = \lambda^2 \mathbf{R}_y$, $\forall \lambda > 0$ (the definition will be given in §2). If F is Riemannian, i.e. $F(y) = \sqrt{g(y, y)}$ for some Riemannian metric g, then $\mathbf{R}_y := \mathbf{R}(\cdot, y)y$, where $\mathbf{R}(u, v)z$ denotes the Riemannian curvature tensor of g. In this case, \mathbf{R}_y is quadratic in $y \in T_x M$. A Finsler metric is said to be R-quadratic if its Riemann curvature \mathbf{R}_y is quadratic in $y \in T_x M$ [11]. There are many non-Riemannian R-quadratic Finsler metrics. For example, all Berwald metrics are R-quadratic. Indeed a Finsler metric is R-quadratic if and only if the h-curvature of Berwald connection depends on position only in the sense of Bácsó-Matsumoto [1]. The notion of R-quadratic Finsler metrics was introduced by Shen, and can be considered a generalization of R-flat metrics.

Theorem 2 Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on a manifold M with vanishing S-curvature and $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$ for any constant $c_1 > 0$, c_2 , c_3 . Suppose that F is R-quadratic. Then F reduces to a Berwald metric.

Information geometry has emerged from investigating the geometrical structure of a family of probability distributions and has been applied successfully to various areas including statistical inference, control system theory, and multiterminal information theory. Dually flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler information geometry, and play a very important role in studying flat Finsler information structures. A Finsler metric F = F(x, y) on a manifold M is said to be locally dually flat if at any point there is a standard coordinate system (x^i, y^i) in TM satisfying $[F^2]_{x^k y^l} y^k = 2[F^2]_{x^l}$. It is easy to see that every locally Minkowskian metric satisfies in the above equation, hence is locally dually flat [14, 15]. Here, we find some conditions under which a locally dually flat non-Randers type (α, β) -metric reduces to a locally Minkowskian metric. More precisely, we prove the following.

Theorem 3 Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Randers type (α, β) -metric on a manifold M of dimension $n \ge 3$ with vanishing S-curvature. Suppose that one of the following holds:

- (a) $\phi'(0) \neq 0$ and $(k_2 k_3 b^2) b^2 \neq -1$;
- (b) $\phi'(0) = \phi''(0) = 0$ or ϕ is a polynomial that $\phi'(0) = 0$.

If F is locally dually flat then it reduces to a locally Minkowskian metric.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively [12].

2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following properties:

- (a) F is C^{∞} on $TM_0 := TM \setminus \{0\};$
- (b) $F(\lambda y) = \lambda F(y), \ \forall \lambda > 0, \ y \in TM;$

(c) for each $y \in T_x M$, the following quadratic form \mathbf{g}_y on $T_x M$ is positive definite,

$$\mathbf{g}_{y}(u,v) := \frac{1}{2} \Big[F^{2}(y + su + tv) \Big] \Big|_{s,t=0}, \qquad u,v \in T_{x}M.$$

At each point $x \in M$, $F_x := F|_{T_xM}$ is an Euclidean norm if and only if \mathbf{g}_y is independent of $y \in T_xM_0$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by

$$\mathbf{C}_y(u, v, w) := \frac{1}{2} \frac{d}{dt} \left[\mathbf{g}_{y+tw}(u, v) \right] \Big|_{t=0}, \qquad u, v, w \in T_x M.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$ is called the Cartan torsion.

Given a Finsler manifold (M, F), then a global vector field **G** is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i},$$

where $G^{i}(x, y)$ are local functions on TM_{0} satisfying

$$G^{i}(x, \lambda y) = \lambda^{2} G^{i}(x, y) \quad \lambda > 0.$$

G is called the associated spray to (M, F). The projection of an integral curve of G is called a geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates $(c^i(t))$ satisfy $\ddot{c}^i + 2G^i(\dot{c}) = 0$. A Finsler metric F is called a Berwald metric if G^i are quadratic in $y \in T_x M$ for any $x \in M$ or equivalently the Berwald curvature

$$B^{i}{}_{jkl} := \frac{\partial^3 G^i}{\partial y^j \partial y^k \partial y^l}$$

is vanishing.

A Finsler metric F = F(x, y) on a manifold M is said to be locally dually flat if at any point there is a coordinate system (x^i) in which the spray coefficients are in the following form:

$$G^i = -\frac{1}{2}g^{ij}H_{y^j},$$

where H = H(x, y) is a C^{∞} scalar function on TM_0 satisfying $H(x, \lambda y) = \lambda^3 H(x, y)$ for all $\lambda > 0$. Such a coordinate system is called an adapted coordinate system [4]. In [8], Shen proved that the Finsler metric F on an open subset $U \subset \mathbb{R}^n$ is dually flat if and only if it satisfies

$$(F^2)_{x^k y^l} y^k = 2(F^2)_{x^l}.$$

In this case, $H = -\frac{1}{6} [F^2]_{x^m} y^m$.

Let U(t) be a vector field along a curve c(t). The canonical covariant derivative $D_c U(t)$ is defined by

$$\mathbf{D}_{\dot{c}}U(t) := \left\{ \frac{dU^{i}}{dt}(t) + U^{j}(t)\frac{\partial G^{i}}{\partial y^{j}}(\dot{c}(t)) \right\} \frac{\partial}{\partial x^{i}}|_{c(t)}$$

U(t) is said to be parallel along c if $D_{\dot{c}(t)}U(t) = 0$.

To measure the changes in the Cartan torsion \mathbb{C} along geodesics, we define $\mathbf{L}_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by

$$\mathbf{L}_{y}(u,v,w) := \frac{d}{dt} \Big[\mathbf{C}_{\dot{c}(t)}(U(t),V(t),W(t)) \Big] \big|_{t=0},$$

where c(t) is a geodesic and U(t), V(t), W(t) are parallel vector fields along c(t) with $\dot{c}(0) = y, U(0) = u, V(0) = v, W(0) = w$. The family $\mathbf{L} := {\mathbf{L}_y}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $\mathbf{L} = 0$. An important fact is that if F is Berwaldian, then it is Landsbergian. \mathbf{L}/\mathbf{C} is regarded as the relative rate of change in \mathbf{C} along Finslerian geodesics. Then F is said to be an isotropic Landsberg metric if $\mathbf{L} = cF\mathbf{C}$, where c = c(x) is a scalar function on M.

For a vector $y \in T_x M_0$, the Riemann curvature $R_y : T_x M \to T_x M$ is defined by $R_y(u) := R^i_{\ k}(y) u^k \frac{\partial}{\partial x^i}$, where

$$R^{i}{}_{k}(y) = 2\frac{\partial G^{i}}{\partial x^{k}} - \frac{\partial^{2}G^{i}}{\partial x^{j}\partial y^{k}}y^{j} + 2G^{j}\frac{\partial^{2}G^{i}}{\partial y^{j}\partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}}\frac{\partial G^{j}}{\partial y^{k}}.$$

The family $R := \{R_y\}_{y \in TM_0}$ is called the Riemann curvature. There are many Finsler metrics whose Riemann curvature in every direction is quadratic. A Finsler metric F is said to be R-quadratic if R_y is quadratic in $y \in T_x M$ at each point $x \in M$.

Put

$$R_{j\ kl}^{\ i}(y):=\frac{1}{3}\frac{\partial}{\partial y^{j}}\Big[\frac{\partial R^{i}{}_{k}}{\partial y^{l}}-\frac{\partial R^{i}{}_{l}}{\partial y^{k}}\Big].$$

 $R_{j\ kl}^{\ i}$ are the coefficients of the h-curvature of the Berwald connection, which are also denoted by $H_{j\ kl}^{\ i}$ in the literature. We have

$$R^i_{\ k}(y) = y^j R^{\ i}_{j\ kl}(y) y^l.$$

Thus $R^i_{\ k}(y)$ is quadratic in $y \in T_x M$ if and only if $R^i_{j\ kl}(y)$ are functions of x only.

For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume form $dV_F = \sigma_F(x)dx^1\cdots dx^n$ is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}(\mathbb{B}^n(1))}{\operatorname{Vol}\left\{(y^i) \in \mathbb{R}^n \mid F\left(y^i \frac{\partial}{\partial x^i}|_x\right) < 1\right\}}.$$

In general, the local scalar function $\sigma_F(x)$ cannot be expressed in terms of elementary functions, even if F is locally expressed by elementary functions.

Let $G^{i}(x, y)$ denote the geodesic coefficients of F in the same local coordinate system. The S-curvature is defined by

$$\mathbf{S}(\mathbf{y}) := \frac{\partial G^i}{\partial y^i}(x, y) - y^i \frac{\partial}{\partial x^i} \Big[\ln \sigma_F(x) \Big],$$

where $\mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$. It is proved that $\mathbf{S} = 0$ if F is a Berwald metric [8]. There are many non-Berwald metrics satisfying $\mathbf{S} = 0$ [2].

Given a Riemannian metric α , a 1-form β on a manifold M, and a C^{∞} function $\phi = \phi(s)$ on $[-b_o, b_o]$, where $b_o := \sup_{x \in M} \|\beta\|_x$, one can define a function on TM by

$$F := \alpha \phi(s), \qquad s = \frac{\beta}{\alpha}.$$

If ϕ and b_o satisfy (2.1) and (2.2) below, then F is a Finsler metric on M. Finsler metrics in this form are called (α, β) -metrics. Randers metrics are special (α, β) -metrics.

Now we consider (α, β) -metrics. Let $\alpha = \sqrt{a_{ij}y^iy^j}$ be a Riemannian metric and $\beta = b_iy^i$ a 1-form on a manifod M. Let

$$\|\beta\|_x := \sqrt{a^{ij}(x)b_i(x)b_j(x)}.$$

For a C^{∞} function $\phi = \phi(s)$ on $[-b_o, b_o]$, where $b_o = \sup_{x \in M} \|\beta\|_x$, define

$$F := \alpha \phi(s), \quad s = \frac{\beta}{\alpha}.$$

By a direct computation, we obtain

$$g_{ij} = \rho a_{ij} + \rho_0 b_i b_j - \rho_1 (b_i \alpha_j + b_j \alpha_i) + s \rho_1 \alpha_i \alpha_j,$$

where $\alpha_i := a_{ij} y^j / \alpha$, and

$$\begin{split} \rho &:= \phi(\phi - s\phi'),\\ \rho_0 &:= \phi\phi'' + \phi'\phi',\\ \rho_1 &:= s(\phi\phi'' + \phi'\phi') - \phi\phi'. \end{split}$$

By further computation, one obtains

$$\det(g_{ij}) = \phi^{n+1} (\phi - s\phi')^{n-2} \left[(\phi - s\phi') + (\|\beta\|_x^2 - s^2)\phi'' \right] \det(a_{ij}).$$

Using the continuity, one can easily show that

Lemma 1 Let $b_o > 0$. $F = \alpha \phi(\beta/\alpha)$ is a Finsler metric on M for any pair $\{\alpha, \beta\}$ with $\sup_{x \in M} \|\beta\|_x \leq b_o$ if and only if $\phi = \phi(s)$ satisfies the following conditions:

$$\phi(s) > 0, \qquad (|s| \le b_o)$$
 (2.1)

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad (|s| \le b \le b_o).$$
(2.2)

Let

$$r_{ij} := \frac{1}{2} \Big(b_{i|j} + b_{j|i} \Big), \quad s_{ij} := \frac{1}{2} \Big(b_{i|j} - b_{j|i} \Big).$$

$$r_j := b^i r_{ij}, \quad s_j := b^i s_{ij}$$

Let $r_{i0} := r_{ij}y^j$, $s_{i0} := s_{ij}y^j$, $r_0 := r_jy^j$ and $s_0 := s_jy^j$. Suppose that $G^i = G^i(x,y)$ and $\bar{G}^i = \bar{G}^i(x,y)$ denote the coefficients of F and α respectively in the same coordinate system. By definition, we obtain the following identity:

$$G^i = \bar{G}^i + Py^i + Q^i, \tag{2.3}$$

where

$$P = \alpha^{-1} \Theta \left[r_{00} - 2Q\alpha s_0 \right]$$

$$Q^i = \alpha Q s^i{}_0 + \Psi \left[r_{00} - 2Q\alpha s_0 \right] b^i,$$

$$Q = \frac{\phi'}{\phi - s\phi'}$$

$$\Theta = \frac{\phi \phi' - s(\phi \phi'' + \phi' \phi')}{2\phi \left((\phi - s\phi') + (b^2 - s^2) \phi'' \right)}$$

$$\Psi = \frac{1}{2} \frac{\phi''}{(\phi - s\phi') + (b^2 - s^2) \phi''}.$$

Clearly, if β is parallel with respect to α ($r_{ij} = 0$ and $s_{ij} = 0$), then P = 0 and $Q^i = 0$. In this case, $G^i = \overline{G}^i$ are quadratic in y, and F is a Berwald metric.

Now, let $\phi = \phi(s)$ be a positive C^{∞} function on $(-b_0, b_0)$. For a number $b \in [0, b_0)$, let

$$\Phi := -(Q - sQ')\{n\Delta + 1 + sQ\} - (b^2 - s^2)(1 + sQ)Q''$$
(2.4)

where

$$\Delta := 1 + sQ + (b^2 - s^2)Q' \tag{2.5}$$

Lemma 2 ([3]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on a manifold and $b := \|\beta_x\|_{\alpha}$. Suppose that $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$ for any constant $c_1 > 0$, c_2 and c_3 . Then F is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$, if and only if one of the following holds: (a) β satisfies

$$r_{ij} = \varepsilon (b^2 a_{ij} - b_i b_j), \quad s_j = 0, \tag{2.6}$$

where $\varepsilon = \varepsilon(x)$ is a scalar function, and $\phi = \phi(s)$ satisfies

$$\Phi = -2(n+1)k\frac{\phi\Delta^2}{b^2 - s^2},$$
(2.7)

where k is a constant. In this case, $\mathbf{S} = (n+1)cF$ with $c = k\varepsilon$. (b) β satisfies

$$r_{ij} = 0, \quad s_j = 0$$
 (2.8)

In this case, $\mathbf{S} = 0$, regardless of choices of a particular ϕ .

3. Proof of Theorem 1

We have the following formula for the spray coefficient G^i of F

$$G^{i} = G^{i}_{\alpha} + \alpha Q s^{i}_{0} + (-2Q\alpha s_{0} + r_{00})(\Theta \alpha^{-1} y^{i} + \Psi b^{i}),$$
(3.9)

where $s_{j}^{i} := a^{ih}s_{hj}, \ s_{0}^{i} := s_{i}y^{i}, \ r_{00} = r_{ij}y^{i}y^{j}$ and

$$\Theta = \frac{Q - sQ'}{2\Delta}, \quad \Psi = \frac{Q'}{2\Delta}.$$

By a direct computation, we can obtain a formula for the mean Cartan torsion of (α, β) - metrics as follows:

$$I_i = -\frac{\Phi(\phi - s\phi')}{2\Delta\phi\alpha^2}(\alpha b_i - sy_i).$$
(3.10)

According to Deickeğs theorem, a Finsler metric is Riemannian if and only if $\mathbf{I} = 0$. Clearly, an (α, β) -metric $F = \alpha \phi(s)$ is Riemannian if and only if $\Phi = 0$.

In [5], Li and Shen obtained the mean Landsberg curvature of an (α, β) -metric $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ as follows

$$J_{i} = -\frac{1}{\alpha^{2}\Delta(b^{2} - s^{2})} \Big[\frac{\Phi}{\Delta} + (n+1)(Q - sQ') \Big] (r_{0} + s_{0})h_{i} \\ -\frac{h_{i}}{2\alpha^{3}\Delta(b^{2} - s^{2})} (\Psi_{1} + s\frac{\Phi}{\Delta})(r_{00} - 2\alpha Qs_{0}) \\ -\frac{\Phi}{2\alpha^{3}\Delta^{2}} \Big[-\alpha Q's_{0}h_{i} + \alpha Q(\alpha^{2}s_{i} - y_{i}s_{0}) + \alpha^{2}\Delta s_{i0} \\ + \alpha^{2}(r_{i0} - 2\alpha Qs_{0}) - (r_{00} - 2\alpha Qs_{0})y_{i} \Big].$$
(3.11)

where $h_i := \alpha b_i - sy_i$ and

$$\Psi_1 := \sqrt{b^2 - s^2} \Delta^{\frac{1}{2}} \left[\frac{\sqrt{b^2 - s^2}}{\Delta^{\frac{3}{2}}} \right]'.$$

They also obtained

$$\bar{J} := J_i b^i = -\frac{\Delta}{2\alpha^2} \Big[\Psi_1(r_{00} - 2\alpha Q s_0) + \alpha \Psi_2(r_0 + s_0) \Big],$$
(3.12)

where

$$\Psi_2 := 2(n+1)(Q - sQ') + 3\frac{\Phi}{\Delta}.$$

Lemma 3 Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on manifold M. Suppose that $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$ for any constant $c_1 > 0$, c_2 . If F has vanishing S-curvature and a weakly Landsberg metric then F is a Berwald metric.

Proof By (2.8) and (3.11) we have

$$J_i = -\frac{\Phi s_{i0}}{2\alpha\Delta}.\tag{3.13}$$

From (3.13) we conclude if F is weakly Landsberg then $s_0^i = 0$ and because of $r_{00} = 0$, F is a Berwald metric. \Box **Proof of Theorem 1** Let F be a relatively isotropic mean Landsberg curvature metric with vanishing S-curvature. The following holds:

$$J_k + cFI_k = 0. (3.14)$$

By (2.8) and (3.12) we have $b_i J^i = 0$. Multiplying (3.14) by b^k yields

$$cF(b^k I_k) = 0.$$
 (3.15)

If $c \neq 0$ from (3.15) we have $b^k I_k = 0$ and so by (3.10) we conclude

$$\frac{\Phi(\phi - s\phi')}{2\Delta\phi\alpha^3}(b^2\alpha^2 - \beta^2) = 0 \tag{3.16}$$

From (3.16) we conclude $\Phi = 0$ or $\phi - s\phi' = 0$. Then by (3.10) we have I = 0 and F is a Riemannian metric. By assumption F is a non-Riemannian metric and so c = 0. From (3.14), we conclude F is a weakly Landsberg metric. Then, by Lemma 3, F is a Berwald metric. The proof of Theorem 1 is complete.

4. Proof of Theorem 2

Lemma 4 ([9]) For the Berwald connection, the following Bianchi identities hold:

$$R^{i}_{\ jkl|m} + R^{i}_{\ jlm|k} + R^{i}_{\ jmk|l} = B^{i}_{\ jku}R^{u}_{\ lm} + B^{i}_{\ jlu}R^{u}_{\ km} + B^{i}_{\ klu}R^{u}_{\ jm}$$
(4.17)

$$B^{i}_{jml|k} - B^{i}_{jkm|l} = R^{i}_{jkl,m}$$
(4.18)

$$B^{i}_{\ jkl,m} = B^{i}_{\ jkm,l}.$$
(4.19)

Lemma 5 Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on manifold M. Suppose that $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$ for any constant $c_1 > 0$, c_2 If F has vanishing S-curvature then we have

$$b_m B^m_{\ jkl} = 0 (4.20)$$

Proof By (2.8), we have $s_0 = 0$. By assumption F has vanishing S curvature. By (2.8) and (3.9) we have

$$G^i = G^i_\alpha + \alpha Q s^i_0. \tag{4.21}$$

Multiplying (4.21) by b_i yields $b_i G^i = b_i G^i_{\alpha}$. Thus $b_m B^m_{jkl} = 0$.

Proof of Theorem 2 According to Lemma 5, we have

$$b_{m|s}B_{jkl}^m + b_m B_{jkl|s}^m = 0. ag{4.22}$$

By assumption F is an R-quadratic metric. Thus (4.18) implies that

$$B^i_{jkl|m} - B^i_{jkm|l} = 0. (4.23)$$

Multiplying (4.23) by b_i yields

$$b_i B_{jkl|m}^i = b_i B_{jkm|l}^i. (4.24)$$

From (4.22) and (4.24) we conclude

$$b_{i|m}B^{i}_{jkl} = b_{i|l}B^{i}_{jkm}.$$
(4.25)

Since $r_{ij} = 0$, then by multiplying (4.25) by y^l we obtain

$$s_{i0}B^i_{jkm} = 0. (4.26)$$

By (4.21) we get $B^i_{jkl} = [\alpha Q s^i_0]_{y^j y^k y^l}$. From (4.26) we have

$$[\alpha Q]_{y^j y^k y^l} s_{i0} s_0^i + [\alpha Q]_{y^j y^k} s_{i0} s_l^i + [\alpha Q]_{y^j y^l} s_{i0} s_k^i + [\alpha Q]_{y^k y^l} s_{i0} s_j^i = 0.$$

$$(4.27)$$

By (2.8), we have $s^i = s_i = 0$. Then multiplying (4.27) by $b^j b^k b^l$ yields

$$\left[b^{j}b^{k}b^{l}[\alpha Q]_{y^{j}y^{k}y^{l}}\right]s_{i0}s_{0}^{i} = 0.$$
(4.28)

Then by (4.28), we conclude that β is a closed 1-form and then F reduces to a Berwald metric. The proof of Theorem 2 is complete.

5. Proof of Theorem 3

In this section, we are going to prove Theorem 3. First, we remark the following.

Lemma 6 ([16]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \ge 3$, where $\phi'(0) \ne 0$ and $\beta \ne 0$. Then F is locally dually flat if and only if α, β , and ϕ satisfy

$$s_{l0} = \frac{1}{3}(\beta\theta_l - \theta b_l),$$

$$r_{00} = \frac{2}{3}\theta\beta + \left[\tau + \frac{2}{3}(b^2\tau - \theta_l b^l)\right]\alpha^2 + \frac{1}{3}(3k_2 - 2 - 3k_3b^2)\tau\beta^2,$$

$$G_{\alpha}^l = \frac{1}{3}[2\theta + (3k_1 - 2)\tau\beta]y^l + \frac{1}{3}(\theta^l - \tau b^l)\alpha^2 + \frac{1}{2}k_3\tau\beta^2b^l,$$

$$\tau[s(k_2 - k_3s^2)(\phi\phi' - s\phi'^2 - s\phi\phi'') - (\phi'^2 + \phi\phi'') + k_1\phi(\phi - s\phi')] = 0$$

where $\tau := \tau(x)$ is a scalar function, $\theta := \theta_i(x)y^i$ is a 1-form on M, $\theta^l = a^{lm}\theta_m$, and

$$k_1 := \Pi(0), \qquad k_2 := \frac{\Pi'(0)}{Q(0)},$$

$$k_3 := \frac{1}{6Q(0)^2} [3Q''(0)\Pi'(0) - 6\Pi'(0)^2 - Q(0)\Pi'''(0)],$$

$$\Pi := \frac{\phi'^2 + \phi\phi''}{\phi(\phi - s\phi')}.$$

By Lemma 6, we can get the following.

Corollary 1 ([16]) Let $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be an (α, β) -metric on a manifold M of dimension $n \ge 3$ with the same assumption as Lemma 6. Let ϕ satisfy

$$s(k_2 - k_3 s^2)(\phi \phi' - s \phi' - s \phi \phi'') - (\phi'^2 + \phi \phi'') + k_1 \phi(\phi - s \phi') \neq 0$$

Then F is locally dually flat on M if and only if

$$s_{l0} = \frac{1}{3}(\beta\theta_l - \theta b_l), \tag{5.29}$$

$$r_{00} = \frac{2}{3} \left[\theta \beta - (\theta_l b^l) \alpha^2 \right], \qquad (5.30)$$

$$G^{l}_{\alpha} = \frac{1}{3} \left[2\theta y^{l} + \theta^{l} \alpha^{2} \right].$$
(5.31)

where k_i $(1 \le i \le 3)$ are the same as those of Theorem 6.

In [16], Xia proved the following.

Lemma 7 ([16]) Let $F := \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \geq 3$. Suppose that $\phi(s)$ is an analytic function with $\phi'(0) = \phi''(0) = 0$ or $\phi(s)$ is a polynomial of s with $\phi'(0) = 0$ and $\beta = b_i(x)y^i \neq 0$. Then F is locally dually flat if and only if α and β satisfy (5.29), (5.30) and (5.31), where $\theta = \theta_i(x)y^i$ is a 1-form on M and $\theta^l := a^{lm}\theta_m$.

Proof of Theorem 3 To prove Theorem 3, we consider some cases.

Case (1): $\phi'(0) = \phi''(0) = 0$ or $\phi(s)$ is a polynomial of s with $\phi'(0) = 0$. In this case, by Lemma 7 we have

$$s_{l0} = \frac{1}{3} (\beta \theta_l - \theta b_l), \qquad (5.32)$$

$$r_{00} = \frac{2}{3} \left[\theta \beta - (\theta_l b^l) \alpha^2 \right], \qquad (5.33)$$

$$G^{l}_{\alpha} = \frac{1}{3} \left[2\theta y^{l} + \theta^{l} \alpha^{2} \right].$$
(5.34)

Since $s_0 = 0$ then (5.32) reduces to the following:

$$\theta = \frac{b^l \theta_l}{b^2} \beta. \tag{5.35}$$

Plugging (5.35) into (5.33) implies that

$$r_{00} = \frac{(b^l \theta_l)}{b^2} [\beta^2 - b^2 \alpha^2].$$
(5.36)

By (2.8), we have $r_{00} = 0$. By (5.36), we get $b^l \theta_l = 0$ and by (5.35) we have $\theta = 0$. Then $G^l_{\alpha} = 0$ and $s^l_0 = 0$. So $G^l = 0$ and F is a locally Minkowski metric.

Case(2): $\phi'(0) \neq 0$ such that

$$s(k_2 - k_3 s^2)(\phi \phi' - s \phi' - s \phi \phi'') - (\phi'^2 + \phi \phi'') + k_1 \phi(\phi - s \phi') \neq 0$$

According to Corollary 1, the proof of this case is similar to the proof of case (1).

Case(3): $\phi'(0) \neq 0$ such that

$$s(k_2 - k_3 s^2)(\phi \phi' - s \phi' - s \phi \phi'') - (\phi'^2 + \phi \phi'') + k_1 \phi(\phi - s \phi') = 0$$

According to Lemma 6, we have

$$s_{l0} = \frac{1}{3} (\beta \theta_l - \theta b_l),$$
 (5.37)

$$r_{00} = \frac{2}{3}\theta\beta + \left[\tau + \frac{2}{3}(b^2\tau - \theta_l b^l)\right]\alpha^2 + \frac{1}{3}(3k_2 - 2 - 3k_3b^2)\tau\beta^2,$$
(5.38)

$$G_{\alpha}^{l} = \frac{1}{3} [2\theta + (3k_{1} - 2)\tau\beta]y^{l} + \frac{1}{3}(\theta^{l} - \tau b^{l})\alpha^{2} + \frac{1}{2}k_{3}\tau\beta^{2}b^{l}.$$
(5.39)

By (2.8) we have $s_0 = 0$. Thus (5.37) implies that

$$\theta = \frac{(b^l \theta_l)}{b^2} \beta. \tag{5.40}$$

Plugging (5.40) into (5.38) we obtain

$$r_{00} = \frac{2}{3} \frac{(b^l \theta_l)}{b^2} \beta^2 + \left[\tau + \frac{2}{3} (b^2 \tau - \theta_l b^l)\right] \alpha^2 + \frac{1}{3} (3k_2 - 2 - 3k_3 b^2) \tau \beta^2.$$
(5.41)

By (2.8), since $r_{00} = 0$ then (5.41) reduces to the following:

$$\frac{2}{3}\frac{(b^l\theta_l)}{b^2}\beta^2 + \left[\tau + \frac{2}{3}(b^2\tau - \theta_l b^l)\right]\alpha^2 + \frac{1}{3}(3k_2 - 2 - 3k_3b^2)\tau\beta^2 = 0.$$
(5.42)

Differentiating (5.42) with respect to y^m yields

$$\frac{4}{3}\frac{(b^l\theta_l)}{b^2}\beta b_m + 2\left[\tau + \frac{2}{3}(b^2\tau - \theta_l b^l)\right]y_m + \frac{2}{3}(3k_2 - 2 - 3k_3b^2)\tau\beta b_m = 0.$$
(5.43)

By multiplying (5.43) by b^m we get

$$2\left[(k_2 - k_3 b^2)b^2 + 1\right]\tau\beta = 0.$$
(5.44)

By assumption, we have $(k_2 - k_3 b^2)b^2 + 1 \neq 0$. Then $\tau = 0$. Plugging $\tau = 0$ into (5.37), (5.38), and (5.39) yields (5.29), (5.30), and (5.31). Thus the proof of Theorem in this case is similar to the first case. This completes the proof.

TAYABI et al./Turk J Math

References

- Bácsó, S., Matsumoto, M.: Finsler spaces with h-curvature tensor H dependent on position alone, Publ. Math. Debrecen. 55, 199–210 (1999).
- [2] Bao, D., Shen, Z.: Finsler metrics of constant positive curvature on the Lie group S^3 , J. London. Math. Soc. 66, 453–467 (2002).
- [3] Cheng, X., Shen, Z.: A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169, 317–340 (2009).
- [4] Cheng, X., Shen, Z., Zhou, Y.: On a class of locally dually flat Finsler metrics, Int. J. Math. 21(11), 1–13 (2010).
- [5] Li, B., Shen, Z.: On a class of weakly Landsberg metrics, Sci. China, Series A: Math. 50, 75–85 (2007).
- [6] Najafi, B., Shen, Z., Tayebi, A.: Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131, 87–97 (2008).
- [7] Peyghan, E., Tayebi, A.: Generalized Berwald metrics, Turkish. J. Math. 36, 475–484 (2012).
- [8] Shen, Z.: Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27, 73–94 (2006).
- [9] Shen, Z.: Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
- [10] Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128, 306–328 (1997).
- [11] Shen, Z.: On R-quadratic Finsler spaces, Publ. Math. Debrecen, 58, 263–274 (2001).
- [12] Tayebi, A., Najafi, B.: Shen's processes on Finslerian connection theory, Bull. Iran. Math. Soc. 36, 2198–2204 (2010).
- [13] Tayebi, A., Rafie. Rad, M.: S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51, 2198–2204 (2008).
- [14] Tayebi, A., Peyghan, E., Sadeghi, H.: On locally dually flat (α, β) -metrics with isotropic S-curvature, Indian J. Pure. Appl. Math. 43(5), 521–534 (2012).
- [15] Tayebi, A., Sadeghi, H., Peyghan, E.: On a class of locally dually flat (α, β) -metrics, Math. Slovaca. In Press (2013).
- [16] Xia, Q.: On locally dually flat (α, β) -metrics, Diff. Geom. Appl. 29(2), 233–243 (2011).