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Abstract: In this paper we review the Spin(7) geometry in relation to solvmanifolds. Starting from a 7-dimensional

nilpotent Lie group N endowed with an invariant G2 structure, we present an example of a homogeneous conformally

parallel Spin(7) metric on an associated solvmanifold. It is thought that this paper could lead to very interesting and

exciting areas of research and new results in the direction of (locally conformally) parallel Spin(7) structures.
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1. Introduction

The concept of the holonomy group for a Riemannian manifold was first defined by Cartan in 1923 and is

known to be an efficient tool in the study of Riemannian manifolds [1]. The list of possible holonomy groups

of irreducible, simply-connected, nonsymmetric Riemannian manifolds was given by Berger in 1955 [7]. The

refinement of Berger’s list (as corrected later by Alekseevskii [3] and Gray-Brown [27]) includes the groups

SO(n) in n -dimensions, U(n), SU(n) in 2n-dimensions, Sp(n), Sp(n)Sp(1) in 4n -dimensions, and 2 special

cases, G2 holonomy in 7-dimensions and Spin(7) holonomy in 8-dimensions. Manifolds with holonomy SO(n)

constitute the generic case, all others are denoted as manifolds with “special holonomy”, and the last 2 cases

are described as manifolds with “exceptional holonomy”.

The existence problem of manifolds with exceptional holonomy was first solved by Bryant [11], complete

examples were given by Bryant and Salamon [13], and the first compact examples were found by Joyce in 1996

[30]. The study of manifolds with exceptional holonomy and the construction of explicit examples is still an

active research area in mathematics and related sciences (see also references in [18, 25, 36, 39, 38]).

In the many areas of geometries, parallel structures (e.g., locally conformal) have been studied extensively

up to now (see [1, 8, 16, 19, 22, 30, 38]). Other geometries, such as locally conformal hyperkaehler and

quaternion Kaehler, were also investigated in the literature [6, 8, 19, 25, 30]. Because of the significance of

the holonomy group structure in Riemannian geometry, the choices of G2 and Spin(7) also deserve attention

[10, 20, 22, 30, 35].

In physics, there exists a special interest in the construction of G2 and Spin(7) holonomy metrics due to

their application in supergravity compactification (for more details, see [1, 18, 25, 30, 36, 35]). Since manifolds

with special holonomy provide some geometrical structures for reducing the number of supersymmetries, they
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are natural candidates for the extra dimensions in string and M-theory [1, 23, 24, 25, 30, 36]. Incomplete

Ricci-flat metrics of holonomy G2 with a 2-step nilpotent isometry group N acting on orbits of codimension

one were investigated by Gibbons et al. in [25]. One of these Ricci-flat metrics has also been considered in

the study of special domain walls in string theory [1, 25]. These metrics (called the domain-wall metrics)

are obtained as Heisenberg limits of higher-dimensional metrics of special holonomy (see details in Section 2).

Solvmanifolds (solvable Lie groups endowed with a left-invariant metric) and solvable extensions of nilpotent

Lie groups provide examples of homogeneous Einstein manifolds [8, 16], and these are special topics for our

study. This paper is in line with efforts to better understand the geometry of various classes of manifolds whose

structure group of the tangent bundle reduces to one of the exceptional groups, G2 or Spin(7).

An 8-dimensional Riemannian manifold (M, g) is called a Spin(7) manifold if it admits a reduction of

the structure group of the tangent bundle to the Lie group Spin(7). The presence of a Spin(7) structure is

equivalent to the existence of globally defined 4-form Ω, called the Bonan form [9, 39] (or Cayley form or

fundamental 4-form). Whenever this special 4-form is covariantly constant with respect to the Levi–Civita

connection, the holonomy group is contained in Spin(7), and the corresponding manifold is called a parallel

Spin(7) manifold. The development of the theory of explicit metrics with holonomy Spin(7) (also G2 ) follows

the by now classical line of Bonan [10], Fernandez [21], Bryant [11], Salamon [13], and Joyce [30]. We shall

review and present a few relevant facts in Sections 2 and 3.

The motivation for the present work was the paper by Chiossi and Fino [16] who, starting with a 6-

dimensional nilpotent Lie group N endowed with an invariant SU(3) structure, construct ed a homogeneous

conformally parallel G2 metric on an associated solvmanifold. Inspired by this work [16], moving up one

dimension, we study Spin(7) structures on a rank-one solvable extension of a metric 7-dimensional nilpotent Lie

algebra n endowed with an G2 structure φ and a nonsingular self-adjoint derivation D , which is diagonalizable

by a unitary basis in order to obtain the noncompact examples found in [25].

Our aim is to investigate conformally parallel Spin(7) structures on Riemannian products and present

an explicit example of a homogeneous conformally parallel Spin(7) metric on an associated solvmanifold. The

classification of these types of manifolds is an ongoing problem in 8-dimensional space.

The outline of the paper is as follows. In Section 2, we present some Ricci-flat metrics of special holonomy

in dimensions d = 4, 6, 7, 8. The exceptional holonomy group structures in dimensions d = 7 and d = 8 are

presented in Section 3. In Section 4 we study solvable extensions of nilpotent Lie algebras. Conformally parallel

Spin(7) structures on solvmanifolds, along with a classification and an example, are studied in Section 5. The

conclusions and plans for future studies are presented in Section 6.

2. Ricci-flat metrics of special holonomy in dimensions d = 4, 6, 7 and d = 8

In mathematical and physical theories, manifolds that admit metrics for which the Ricci tensor vanishes play

a special role [30, 35]. These types of metrics are called Ricci-flat in the literature [8]. Ricci-flat metrics

also appear as the fixed-points of the dynamical system called the Ricci-flow. This area is actively studied in

mathematics (e.g., finding explicit examples of Ricci-flat metrics in some special dimensions). The proof of the

Poincaré conjecture by Perelman makes use of this Ricci-flow dynamical system. The holonomy group of M

imposes algebraic constraints on the Riemannian curvature. In particular:

Theorem 2.1 [10] If M is a Riemannian manifold and Hol(M) is contained in SU(n) , Sp(n) , G2 , or

Spin(7) , then M is Ricci-flat.
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In [25], incomplete Ricci-flat metrics of special holonomy in dimensions d = 4, 6, 7 and d = 8 with a

nilpotent isometry group acting on orbits of codimension one were presented. Gibbons et al. [25] studied the

cases of the domain-wall solutions in d = 5, 6 and d = 7. Their results gave rise to Ricci-flat Heisenberg metrics

of dimensions d = 6, 7 and d = 8. Since each domain wall preserves a fraction of the supersymmetry in the

sense of Gibbons et al., it follows that the associated Ricci-flat metrics admit certain numbers of covariantly

constant spinors [25]. In other words, they are metrics with a special holonomy type, and so we see that from

Ricci-flat metrics in dimensions 6, 7, and 8, the special holonomy groups SU(3), G2 and Spin(7) arise.

In [25], it was shown that such Ricci-flat metrics are closely related to a complete homogeneous Einstein

manifold with a solvable isometry group. These Ricci-flat metrics (called the domain-wall metrics in [25]) are

obtained as Heisenberg limits of higher-dimensional metrics of special holonomy and are given by

ds24 = H(dy2 + dz22 + dz23) +H−1(dz1 +mz3dz2)
2,

ds26 = H−2[dz1 +m(z3dz2 + z5dz4)]
2 +H2dy2 +H(dz22 + . . .+ dz25),

ds26 = H2dy2 +H−1(dz1 +mz4dz3)
2 +H−1(dz2 +mz5dz3)

2 +H2dz23 +H(dz24 + dz25),
ds27 = H4dy2 +H−2[dz1 +m(z4dz3 + z6dz5)]

2 +H−2[dz2 +m(z5dz3 − z6dz4)]
2

+H2(dz23 + dz24 + dz25 + dz26),
ds27 = H3dy2 +H−1(dz1 +mz6dz5)

2 +H−1(dz2 −mz6dz4)
2

+H−1(dz3 +mz5dz4)
2 +H2(dz24 + dz25 + dz26),

ds28 = H6dy2 +H−2[dz1 +m(z5dz4 + z7dz6)]
2 +H−2[dz2 +m(z6dz4 − z7dz5)]

2

+H−2[dz3 +m(z7dz4 + z6dz5)]
2 +H3(dz24 + dz25 + dz26 + dz27),

where H = my with a nonzero real number m (see equation (5.34)); y and zi are the coordinates on the

manifolds (see [25]). Note that the lower index term in metric ds24 (e.g., 4) shows the dimension of the manifold.

For more details on the structure of these metrics and methods of construction, refer to [25].

In [6] it was shown that the scale-invariant Ricci-flat metric in dimension 4 is conformal to a complete

homogeneous metric

ds2 = z−4(dτ + xdy)2 + z−2(dx2 + dy2 + dz2) (2.1)

on a 4-dimensional solvable Lie group, and the metric (2.1) is the only nontrivial complete homogeneous hyper-

Hermitian metric in dimension 4. The scale-invariant Ricci-flat metric in dimension 4 coincides also with the
natural metric on the cotangent bundle T ∗H of the upper half plane H induced from a special Kaehler metric

on H [37].

In [16], it was proven that the previous scale-invariant Ricci-flat metrics in dimensions d = 6 and d = 7

are conformal to complete homogeneous metrics on a solvable Lie group and that the associated complete

homogeneous Einstein manifold is exactly the same solvable Lie group with a homogeneous Einstein metric.

The solvable Lie group is the isometry group of the Einstein metric, and it is a rank-one solvable extension of

the nilpotent Lie group, which is the isometry group of the Ricci-flat metric.

All the examples of solvable Lie groups that we will consider will be standard solvmanifolds, i.e. a

solvable Lie group S endowed with a left-invariant metric such that the orthogonal complement a = (s1)⊥ of

the commutator s1 = [s, s] of the Lie algebra s of S is abelian. We recall that, given a metric nilpotent Lie

algebra n with a inner product < , > , a metric solvable Lie algebra (s = n⊕a, < , >′) is called a metric solvable

extension of (n, < , >) if the restrictions of the Lie bracket of s and of the inner product < , >′ to n coincide

with the Lie bracket and < , > of n , respectively. The dimension of a is called the algebraic rank of s (see also

Section 4).
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In the present paper, we study conformally parallel Spin(7) structures, which are characterized by the

fact that the Riemannian metric g can be transformed to a metric with holonomy subgroup of Spin(7) by a

transformation

g 7→ g̃ = e2fg, (2.2)

for some function f ∈ C∞(M). In light of some prior studies [16, 40], one can investigate some special Spin(7)

structures on a rank-one solvable extension of a metric 7-dimensional nilpotent Lie algebra n endowed with a

G2 structure φ and a nonsingular self-adjoint derivation D , which is diagonalizable by a unitary basis, in order

to obtain an incomplete Ricci-flat metric of exceptional holonomy as given in [25]. It is shown in Section 4 that

an extension is given by a metric Lie algebra s = n⊕ RH with bracket

[H,U ] = DU, [U, V ] = [U, V ]n×n, (2.3)

where U, V ∈ n and H ⊥ n, ∥H∥ = 1. The subscript denotes the Lie bracket on n , and the inner product

extends that of n . There is a natural Spin(7) structure on the manifold M = Y ×R and sometimes it is called

a cone structure on Y [15, 35] (where the t -coordinate of R is considered to be the the time direction on M ),

corresponding to the 4-form

Ω = φ ∧ dt+ ∗φ ∈ Λ4T ∗M (2.4)

where the Hodge dual map of φ (i.e. ∗φ) is considered on 7-dimensional manifold Y (that is, φ and ∗φ are

the G2 forms on Y [30]), and t is a coordinate on R .

Detailed information related to these special dimensions (i.e. d = 7 and d = 8) will be given in the

following section.

3. Exceptional structures in special dimensions d = 7 and d = 8

In this section we present the basics of G2 and Spin(7) geometries with their related properties [11, 15, 22,

29, 30, 35], and also the 4 classes of Spin(7) manifolds with respect to the Lee 1-form [15, 17, 21, 29, 38].

Suppose that Y indicates a 7-dimensional nilmanifold with an invariant G2 structure. Thus, Y is endowed

with a nondegenerate 3-form φ that induces a Riemannian metric h . The fundamental material for the G2

(also Spin(7)) geometry can be found in standard holonomy references books [30, 35]. Let us only recall that

the Riemannian geometry of Y is completely determined by the following special form (called fundamental

3-form in 7-dimension):

φ = e125 − e345 + e567 + e136 + e246 − e237 + e147. (3.5)

It has become customary to suppress wedge signs when writing differential forms, so eij... indicates ei ∧
ej ∧ . . . from now on. The results of Fernandez and Gray [22] give allow one to describe G2 geometry

exclusively in algebraic terms, by looking at the various components of dφ, d∗φ in the irreducible summands

X1,X2,X3 , and X4 of the space T ∗Y ⊗g⊥2 . Many authors have studied special classes of G2 structures; see, for

instance [5, 15, 23]. Before concentrating on a particular situation, recall that in general the exterior derivatives

can be expressed as

{
d∗φ = 4τ4 ∧ ∗φ+ τ2 ∧ φ
dφ = τ1 ∧ ∗φ+ 3τ4 ∧ φ+ ∗τ3

(3.6)
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where the various τi s represent the differential forms corresponding to the representations Xi , as in [12]. For

example, τ4 is the 1-form encoding the conformal data of the structure. With the convention of dropping all

unnecessary wedge signs, the torsion 3-form of the unique G2 connection [23] is given by

Φ = 7
6τ1φ− ∗dφ+ ∗(4τ4 φ) (3.7)

where

τ1 = 1
7g(dφ, ∗φ) (3.8)

and

τ4 = −3
4∗(∗dφ ∧ φ). (3.9)

τ4 is known as the Lee 1-form of the 7-manifold (see details in [15, 20]). Moving up one dimension, we consider

a product M of Y with R , endowed with metric g . Indicating by e8 the unit 1-form on the real line, one

obtains a basis for the cotangent spaces T ∗
pM . The manifold M inherits a nondegenerate 4-form

Ω = φ ∧ e8 + ∗φ, (3.10)

which defines a reduction to the Lie group [29]. In equation (3.15), a special note for the Hodge dual map of φ

(i.e. ∗φ) is considered on 7-dimensional manifold Y , as mentioned before in equation (2.4) [30].

3.1. The classes of Spin(7) manifolds and Lee 1-form

In Spin(7) geometry, we recall that the special 4-form Ω is self-dual ∗Ω = Ω, where ∗ is the Hodge operator

and the 8-form ∗Ω∧Ω coincides with the volume form. It is well known that the subgroup of GL(8, R), which

fixes Ω, is isomorphic to the double covering Spin(7) of SO(7) [35]. Moreover, Spin(7) is a compact simply

connected Lie group of dimension 21 [1].

The 4-form Ω corresponds to a real spinor ϕ and, therefore, Spin(7) can be identified as the isotropy

group of a nontrivial real spinor [14]. A 3-fold vector cross-product P on R8 can be defined by

< P (x ∧ y ∧ z), t >= Ω(x, y, z, t), for x, y, z, t ∈ R8. (3.11)

Then Spin(7) is also characterized by

Spin(7) = {a ∈ O(8)|P (ax ∧ ay ∧ az) = P (x ∧ y ∧ z), x, y, z ∈ R8}. (3.12)

The inner product <,> on R8 can be reconstructed from Ω [14, 21], which corresponds with the fact that

Spin(7) is a subgroup of SO(8). A Spin(7) structure on an 8-dimensional manifold M is by definition a

reduction of the structure group of the tangent bundle to Spin(7), and we shall also say that M is a Spin(7)

manifold. This can be described geometrically by saying that there is a 3-fold vector cross-product P [33]

defined on M , or equivalently there exists a nowhere vanishing differential 4-form Ω on M that can be locally

written as

Ω = e1258 + e3458 + e1368 − e2468 + e1478 + e2378 − e5678

−e1267 − e3467 + e1357 − e2457 − e1456 − e2356 + e1234. (3.13)
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This special 4-form Ω is called the Bonan (Cayley or fundamental) form of the Spin(7) manifold M

[10, 11, 39, 38]. We also recall that a Spin(7) manifold (M, g,Ω) is said to be parallel if the holonomy of the

metric Hol(g) is a subgroup of Spin(7). This is equivalent to saying that the fundamental form Ω is parallel

with respect to the Levi–Civita connection ∇LC of metric g. Moreover, Hol(g) ⊂ Spin(7) if and only if dΩ = 0

[11] and any parallel Spin(7) manifold is Ricci-flat [10] (see also Theorem 2.1).

According to the classification given by Fernandez [21], there are 4 classes of Spin(7) manifolds obtained

as irreducible representations of Spin(7) of the space ∇LCΩ. By using the fact given by Cabrera et al. [15], it

is considered as the 1-form of the 8-manifold defined by

7Θ = − ∗ (∗dΩ ∧ Ω) = ∗(δΩ ∧ Ω). (3.14)

It is called the Lee form (this 1-form is denoted by Θ) of a given Spin(7) structure [29]. The 4 classes of

Spin(7) manifolds in the Fernandez classification can be described in terms of the Lee form, as below [29, 38]:

W0 : dΩ = 0; W1 : Θ = 0; W2 : dΩ = Θ ∧ Ω; W4 = W1 ⊕W2. (3.15)

A Spin(7) structure of class W1 , that is, a Spin(7) structure with Lee form equal to zero, is called a

balanced Spin(7) structure. Cabrera [14] showed that the Lee form of a Spin(7) structure in the class W2

is closed; therefore, such a manifold is locally conformally equivalent to a parallel Spin(7) manifold and it is

called locally conformally parallel. If the Lee form is not exact (i.e. the structure is not globally conformally

parallel), it is called strict locally conformally parallel. We summarize these facts in the Table.

Table. Fernandez classification table of Spin(7) manifolds.

The classes of Spin(7) manifolds Conditions
Parallel case: W0 dΩ = 0,Θ = 0
Balanced case: W1 Θ = 0
Locally conformally parallel case: W2 dΩ = Θ ∧ Ω
Mixed type: W4 = W1 +W2 -

In the present paper, our main goal is to study conformally parallel Spin(7) structures on Riemannian

products. If this is the case, the class W2 in (3.15) can be considered as

dΩ = −4Ω ∧Θ, (3.16)

where Θ is a closed 1-form, which we can assume is proportional to e8 . So let us rewrite those relations as

dΩ = 4me8 ∧ Ω , (3.17)

which also serves as a definition for the real constant m . To prevent the holonomy of the metric g from reducing

to Spin(7), we implicitly assume that m does not vanish. Suppose from now that Y is a nilpotent Lie group.

This is indeed no real restriction since [41] any Riemannian manifold Y admitting a transitive nilpotent Lie

group of isometries is essentially a nilpotent Lie group N with an invariant metric.

4. The rank-one solvable extension of Lie algebra

Let us consider (N,h) as a 7-dimensional connected and simply connected nilpotent Lie group with a left-

invariant Riemannian metric, and n its Lie algebra. By using the Iwasawa decomposition theorem (presented
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UĞUZ/Turk J Math

in Definition 4.1), the simply connected spaces can be identified with solvable groups S having the characteristic

properties [31, 32]. The orthonormal basis {e1, . . . , e7} of the cotangent bundle T ∗N is intended to be nilpotent,

i.e. such that dei ∈ Λ2Vi−1 , where the spaces Vj = spanR{e1, . . . , ej−1} nested the dual Lie algebra,

0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V6 ⊂ V7 = n∗. (4.18)

The step length of n is defined as the number p of nonzero subspaces appearing in the lower central series:

n ⊇ [n, n] ⊇
[
[n, n], n

]
⊇ . . . ⊇ {0}. (4.19)

Considering this, we note that the terms for abelian and 1-step Lie algebras are the same [26]. We need the fact

[34] that a nilmanifold Γ\N and the Lie algebra of its universal cover have isomorphic cohomology theories,

H∗(n) ∼= H∗
dR(Γ\N). Let us fix a unit element H /∈ n , and suppose that there exists a nonsingular self-adjoint

derivation D of n endowing

s = n⊕ RH (4.20)

with the structure of a solvable Lie algebra. That is, we consider s as an extension of the following kind, in

light of [16].

Definition 4.1 [8] A simply connected solvable group S is of Iwasawa type if its metric solvable Lie algebra(
s, ⟨ , ⟩

)
satisfies the following conditions:

i. s = a⊕ n where n = [s, s] and a = n⊥ is abelian;

ii. adH is self-adjoint with respect to the scalar product ⟨ , ⟩ and nonzero, for all H ∈ a,H ̸= 0 ;

iii. for some (canonical) element H̃ ∈ a , the restriction of adH̃ to n is a positive-definite (i.e. adH̃ |n has

positive eigenvalues).

The Iwasawa decomposition of a semisimple group G as the product of compact, abelian, and nilpotent

subgroups generalizes the way in which a square real matrix can be written as a product of an orthogonal matrix

and an upper triangular matrix (a consequence of the Gram–Schmidt method) [31]. Iwasawa type extensions

are instances of standard solvmanifolds in the sense of Heber [28], and in a way they represent the basic model

of standard Einstein manifolds. The nilpotent Lie groups of concern (actually all, up to dimension 6) always

admit Einstein solvable extensions [31, 32], and all known examples of noncompact homogeneous spaces with

Einstein metrics are of this kind [32]. These extensions are completely solvable, i.e. the eigenvalues of any

inner derivation are real. The curvature of these spaces must be nonpositive, because Ricci-flat homogeneous

manifolds are flat [4].

Consider N with an invariant G2 structure. One can suppose there exists a diagonalizable operator

D ∈ Der(n) with respect to a basis that determines the rank-one extension as given in equation (4.20). This

requires that there is indeed a unitary basis consisting of eigenvectors (it is usually denoted by {ei}, i = 1 . . . 7)

for which the matrix associated to D = adH̃ is diagonal. Thus,

adH̃(ei) = ciei (4.21)
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for some real constants ci , which must be positive in order to satisfy Definition 4.1. The derivation D

is chosen to be precisely ade8 , and since the Cartan subalgebra a is now one-dimensional, the only inner

automorphism acting on n is the bracket with the vector H̃ = e8 , which is self-adjoint for the inner product,

and nondegenerate because cj ̸= 0, for all j s. Therefore, the Maurer–Cartan equations of the rank-one solvable

extension s = n⊕ Re8 assume the following form:

{
dej = d̂ej + cje

j8, 1 ⩽ j ⩽ 7
de8 = 0,

(4.22)

where the ‘hat’ indicates derivatives relative to the 7-dimensional world, i.e. d̂ = d|Λ∗R7 , and {ej} is the basis

of s dual to {ei} . In general, the Lie structure of n is defined by



d̂e1 = a1e
12 + . . . + a21e

67

d̂e2 = a22e
12 + . . . + a42e

67

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

d̂e6 = a106e
12 + . . . + a126e

67

d̂e7 = a127e
12 + . . . + a147e

67

(4.23)

where all coefficients ak are real numbers.

5. Conformally parallel Spin(7)-structures on solvmanifolds

Let M be an 8-dimensional manifold with a Spin(7)-structure. The Lie group Spin(7) is isomorphic to the

subgroup of GL(8,R), leaving invariant the 4-form

Ω = φ ∧ e8 + ∗φ.

Thus, the existence of a Spin(7)-structure is equivalent to the existence of a nondegenerate 4-form Ω on the

manifold. In [21] the covariant derivative of Ω was studied, and a classification of such manifolds into 4 classes

was obtained. If Ω is parallel with respect to the Levi–Civita connection, then the holonomy group is contained

in Spin(7) and the Spin(7)-structure is called parallel (see details in Section 3). If

dΩ = −4Ω ∧Θ

with Θ a closed 1-form, then the Spin(7)-structure is locally conformal to a parallel structure. Detailed study

on the Lee 1-form with some special type of metrics was done recently [38].

5.1. A partial classification

If we write

Ω = φ ∧ e8 + ∗φ,

then one immediately finds that

dΩ = dφ ∧ e8 + d ∗ φ. (5.24)

173
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Reflecting the splitting of the fibers of the cotangent bundle T ∗
pM = R7 ⊕ Re8 , the relations (4.22) give the

exterior derivatives of the real forms:

dφ = d̂φ+ (c1 + c2 + c5)e
1258 − (c3 + c4 + c5)e

3458 + (c5 + c6 + c7)e
5678

+ (c1 + c3 + c6)e
1368 + (c2 + c4 + c6)e

2468 − (c2 + c3 + c7)e
2378

+ (c1 + c4 + c7)e
1478,

and

d ∗ φ = d̂ ∗ φ+ (c3 + c4 + c6 + c7)e
34678 − (c1 + c2 + c6 + c7)e

12678

+ (c1 + c2 + c3 + c4)e
12348 + (c2 + c4 + c5 + c7)e

24578

+ (c1 + c3 + c5 + c7)e
13578 − (c1 + c4 + c5 + c6)e

14568

+ (c2 + c3 + c5 + c6)e
23568.

When, in general, Spin(7)-manifolds M are constructed starting from 7 dimensions, many of their features are

determined by the underlying G2 structure, and the following proposition (using equation (3.17)) allows us to

discover a geometrical constraint.

Proposition 5.1 Let M = Y × R be an 8-dimensional manifold. When (M,Ω) is conformal to a Spin(7)-

holonomy manifold, Y has a cocalibrated G2 structure.

Proof That d̂ ∗ φ = 0 is clear if one considers the terms in (5.24) that belong to (e8)⊥ . On the other hand,

the proof is easier to see when one notices the connection between equations (3.13) and (5.1) and the formulas

for dφ and d ∗ φ that immediately follow (5.1). 2

Moreover, the components of (3.17) in the direction of e8 read

d̂φ = −(4m+ c3 + c4 + c6 + c7)e
3467 + (4m+ c1 + c2 + c6 + c7)e

1267

−(4m+ c1 + c2 + c3 + c4)e
1234 − (4m+ c2 + c4 + c5 + c7)e

2457

−(4m+ c1 + c3 + c5 + c7)e
1357 + (4m+ c1 + c4 + c5 + c6)e

1456

−(4m+ c2 + c3 + c5 + c6)e
2356.

(5.25)

Remark 5.2 Note that a nearly parallel G2 manifold is characterized by dφ = λ ∗ φ with constant λ [22].

Proposition 5.3 Let (M,Ω) be a conformal parallel Spin(7)-holonomy manifold as in Proposition 5.1. Then

Y has a nearly parallel G2 structure if and only if all ci s are equal and different from −m .

Proof If Y has a nearly parallel G2 structure, then the coefficients of the exterior forms in equation (5.25)

are all equal and different from zero. This implies the one-way proof that ci s are equal and different from −m .

The other way is clear. 2

In order to construct an explicit example of a conformally parallel Spin(7) structure on a solvmanifold,

the point is to find all possible coefficients ak, k = 1, . . . , 147 such that d2(ej) = 0 and (3.17) are satisfied for

some nonvanishing m . The following section gives this construction explicitly.
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UĞUZ/Turk J Math

5.2. An example of conformally parallel Spin(7)-structures on solvmanifolds

Consider the family of 3-step solvable Lie algebras sc1,c2 with structure equations

dei = c1e
i ∧ e8, i = 1, . . . , 4,

de5 = 2c1e
5 ∧ e8 + c2e

1 ∧ e2 + c2e
3 ∧ e4,

de6 = 2c1e
6 ∧ e8 + c2e

1 ∧ e3 − c2e
2 ∧ e4, (5.26)

de7 = 2c1e
7 ∧ e8 + c2e

1 ∧ e4 + c2e
2 ∧ e3,

de8 = 0,

with c1, c2 nonzero real numbers. For any c1, c2 ̸= 0, the Lie algebras sc1,c2 are isomorphic to the Lie algebra

dEi = Ei ∧ E8, i = 1, . . . , 4,

dE5 = 2E5 ∧ E8 + E1 ∧ E2 + E3 ∧ E4

dE6 = 2E6 ∧ E8 + E1 ∧ E3 − E2 ∧ E4, (5.27)

dE7 = 2E7 ∧ E8 + E1 ∧ E4 + E2 ∧ E3,

dE8 = 0,

by the isomorphism

Ei = c2e
i, i = 1, . . . , 7,

E8 = c1e
8. (5.28)

The 4-form

Ω = e1258 + e3458 + e1368 − e2468 + e1478 + e2378 − e5678 − e1267 − e3467

+e1357 − e2457 − e1456 − e2356 + e1234

is such that

dΩ = (6c2 − 4c1)e
12348 + (c2 − 6c1)(e

13578 − e24578 − e14568 − e12678 − e23568 − e34678).

The metric

g =
8∑

i=1

(ei)2 (5.29)

has Ricci tensor Ric(g) with respect to the orthonormal basis (e1, . . . , e8) given by

Ric(ei, ei) = −10c21 −
3

2
c22, i = 1, . . . , 4,

Ric(el, el) = −20c21 + c22, l = 5, 6, 7, (5.30)

Ric(e8, e8) = −16c21.

Thus, g is Einstein if and only if c22 = 4c21 , with, in this case, the Ricci tensor given by

Ric(g) = −16c21g. (5.31)
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The metric g is conformal to a metric with holonomy Spin(7) if c2 = − 2
5c1 . One can find global coordinates

(x1, . . . , x7, t) on the simply connected Lie group Sc1,c2 such that

ei = e−c1tdxi, i = 1, . . . , 4,

e5 = e−2c1t(c2dx5 + c2x1dx2 + c2x3dx4),

e6 = e−2c1t(c2dx6 + c2x1dx3 − c2x2dx4), (5.32)

e7 = e−2c1t(c2dx7 + c2x1dx4 + c2x2dx3),

e8 = dt.

The Riemannian metric (with c22 = 4c21 )

g1 = e−2c1t
(
(dx1)

2 + (dx2)
2 + (dx3)

2 + (dx4)
2
)
+ 4c21e

−4c1t(dx5 + x1dx2 + x3dx4)
2

+4c21e
−4c1t(dx6 + x1dx3 − x2dx4)

2 + 4c21e
−4c1t(dx7 + x1dx4 + x2dx3)

2 + dt2

is the Einstein metric considered in [25, Section 7.1] for

k = −c1, z1 = x5, z2 = −x6, z3 = x7, z4 = x4, z5 = x3, z6 = x2, z7 = x1. (5.33)

For c2 = − 2
5c1 , the metric g is conformal parallel and the conformal metric with holonomy Spin(7) is

given by

e
16
5 c1tg = e

6
5 c1t

(
(dx1)

2 + (dx2)
2 + (dx3)

2 + (dx4)
2
)
+ e

16
5 c1tdt2

+ 4
25c

2
1e

− 4
5 c1t(dx5 + x1dx2 + x3dx4)

2 + 4
25c

2
1e

− 4
5 c1t(dx6 + x1dx3 − x2dx4)

2

+ 4
25c

2
1e

− 4
5 c1t(dx7 + x1dx4 + x2dx3)

2.

This metric is a nonhomogeneous metric on the 3-step solvable Lie group Sc1,− 2
5 c1

and is locally isometric to

the scale-invariant metric with holonomy Spin(7)

ds28 = H6dy2 +H−2[dz1 +m(z5dz4 + z7dz6)]
2 +H−2[dz2 +m(z6dz4 − z7dz5)]

2

+ H−2[dz3 +m(z7dz4 + z6dz5)]
2 +H3(dz24 + dz25 + dz26 + dz27)

constructed in [25, Section 4.3.1] on the product M = Y 7×R , where Y 7 is the total space of a principal

T 4 -bundle over T 3 . Indeed, one has:

z1 = 2
5x5, z2 = −2

5
x6,

z3 = 2
5x7, z4 = x4,

z5 = x3, z6 = x2, (5.34)

z7 = x1, y =
2c1
5

e
2
5 c1t,

m = 2
5c1, H = my.
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6. Conclusions

In light of [16], we studied Spin(7) structures on a rank-one solvable extension of a metric 7-dimensional

nilpotent Lie algebra n endowed with an G2 structure φ and a nonsingular self-adjoint derivation D , which is

diagonalizable by a unitary basis, in order to obtain the noncompact examples found in [25]. The classification

of these types of manifolds is an ongoing problem, also being treated by the authors of [16]. Finally, we

mentioned different directions on G2 and Spin(7) manifolds related to the geometric structures on these

spaces. Starting from certain classes of G2 -manifolds Y , conformally parallel Spin(7) metrics on Riemannian

products associated to these manifolds with some special geometric properties should be studied [2, 5, 33]. All

of them give also new research areas related to these exceptional geometries in dimensions d = 7 and d = 8.
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