Turk J Math
(2014) 38: $179-190$
(c) TÜBİTAK
doi:10.3906/mat-1206-40

Geometry of almost Cliffordian manifolds: classes of subordinated connections

Jaroslav HRDINA*, Petr VAŠÍK
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic

Received: 09.07.2012 • Accepted: 28.05.2013 • Published Online: 09.12.2013 • Printed: 20.01 .2014

Abstract

An almost Clifford and an almost Cliffordian manifold is a G-structure based on the definition of Clifford algebras. An almost Clifford manifold based on $\mathcal{O}:=\mathcal{C l}(s, t)$ is given by a reduction of the structure group $G L(k m, \mathbb{R})$ to $G L(m, \mathcal{O})$, where $k=2^{s+t}$ and $m \in \mathbb{N}$. An almost Cliffordian manifold is given by a reduction of the structure group to $G L(m, \mathcal{O}) G L(1, \mathcal{O})$. We prove that an almost Clifford manifold based on \mathcal{O} is such that there exists a unique subordinated connection, while the case of an almost Cliffordian manifold based on \mathcal{O} is more rich. A class of distinguished connections in this case is described explicitly.

Key words: Clifford algebra, affinor structure, G-structure, linear connection, planar curves

1. Introduction

First, let us recall some facts about G-structures and their prolongations. There are 2 definitions of G structures. The first reads that a G-structure is a principal bundle $P \rightarrow M$ with structure group G together with a soldering form θ. The second reads that it is a reduction of the frame bundle $P^{1} M$ to the Lie group G. In the latter case, the soldering form θ is induced from a canonical soldering form on the frame bundle.

Now let $\mathfrak{g} \subset \wedge^{2} \mathbb{V}$ be the Lie algebra of the Lie group G and let \mathbb{V} be a vector space. From the structure theory we know that there is a G-invariant complement \mathcal{D} of $\partial\left(\mathfrak{g} \otimes \mathbb{V}^{*}\right)$ in $\mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}$, where ∂ is the operator of alternation; see [6]. Let us recall that the torsion of a linear connection lies in the space $\mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}$.

The almost Clifford and almost Cliffordian structures are G-structures based on Clifford algebras. The 2 most important examples are an almost hypercomplex geometry and an almost quaternionic geometry, which are based on Clifford algebra $\mathcal{C l}(0,2)$. An important geometric property of almost hypercomplex structures reads that there is no nontrivial G-invariant subspace \mathcal{D} in $\mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}$, because the first prolongation $\mathfrak{g}^{(1)}$ of the Lie algebra \mathfrak{g} vanishes. For almost quaternionic structure, the situation is more complicated, because $\mathfrak{g}^{(1)}=\mathbb{V}^{*}$; see [1]. For these reasons, in the latter case, there exists a distinguished class of linear connections compatible with the structure. Our goal is to describe some of these connections for almost Cliffordian G-structures based on Clifford algebras $\mathcal{C l}(s, t)$ generally.

[^0]
HRDINA and VAŠÍK/Turk J Math

2. Clifford algebras

The pair (\mathbb{V}, Q), where \mathbb{V} is a vector space of dimension n and Q is a quadratic form, is called a quadratic vector space. To define Clifford algebras in coordinates, we start by choosing a basis $e_{i}, i=1, \ldots, n$ of \mathbb{V} and by $I_{i}, i=1, \ldots, n$ we denote the image of e_{i} under the inclusion $\mathbb{V} \hookrightarrow \mathcal{C l}(\mathbb{V}, Q)$. Then the elements I_{i} satisfy the relation

$$
I_{j} I_{k}+I_{k} I_{j}=2 B_{j k} 1
$$

where 1 is the unit in the Clifford algebra and B is a bilinear form obtained from Q by polarization. In a quadratic finite dimensional real vector space it is always possible to choose a basis e_{i} for which the matrix of the bilinear form B has the form

$$
\left(\begin{array}{ccc}
O_{r} & & \\
& E_{s} & \\
& & -E_{t}
\end{array}\right), r+s+t=n
$$

where E_{k} denotes the $k \times k$ identity matrix and O_{k} the $k \times k$ zero matrix. Let us restrict to the case $r=0$, whence B is nondegenerate. Then B defines the inner product of signature (s, t) and we call the corresponding Clifford algebra $\mathcal{C l}(s, t)$. For example, $\mathcal{C l}(0,2)$ is generated by I_{1}, I_{2}, satisfying $I_{1}^{2}=I_{2}^{2}=-E$ with $I_{1} I_{2}=-I_{2} I_{1}$, i.e. $\mathcal{C l}(0,2)$ is isomorphic to \mathbb{H}.

Following the classification of the Clifford algebra, Bott periodicity reads that $\mathcal{C l}(0, n) \cong \mathcal{C l}(0, q) \otimes \mathbb{R}(16 p)$, where $n=8 p+q, q=0, \ldots, 7$ and $\mathbb{R}(N)$ denotes the $N \times N$ matrices with coefficients in \mathbb{R}. To determine explicit matrix representations we use the periodicity conditions

$$
\begin{aligned}
\mathcal{C} l(0, n) & \cong \mathcal{C} l(n-2,0) \otimes \mathcal{C} l(0,2) \\
\mathcal{C} l(n, 0) & \cong \mathcal{C} l(0, n-2) \otimes \mathcal{C} l(2,0) \\
\mathcal{C} l(s, t) & \cong \mathcal{C} l(s-1, t-1) \otimes \mathcal{C} l(1,1)
\end{aligned}
$$

together with the explicit matrix representations of $\mathcal{C l}(0,2), \mathcal{C l}(2,0), \mathcal{C l}(1,0)$, and $\mathcal{C l}(0,1)$. For example

$$
\mathcal{C l}(3,0) \cong \mathcal{C} l(0,1) \otimes \mathcal{C l}(2,0)
$$

where the matrix representation of $\mathcal{C l}(0,1)$ on $\mathbb{R}^{2 m}$ is given by the matrices

$$
\left(\begin{array}{cc}
E_{m} & 0 \\
0 & E_{m}
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & E_{m} \\
-E_{m} & 0
\end{array}\right)
$$

and the matrix representation of $\mathcal{C l}(2,0)$ on $\mathbb{R}^{4 m}$ is given by the matrices

$$
\begin{gathered}
E_{4 m}, I_{1}=\left(\begin{array}{cccc}
0 & -E_{m} & 0 & 0 \\
-E_{m} & 0 & 0 & 0 \\
0 & 0 & 0 & E_{m} \\
0 & 0 & E_{m} & 0
\end{array}\right), I_{2}=\left(\begin{array}{cccc}
0 & 0 & E_{m} & 0 \\
0 & 0 & 0 & E_{m} \\
E_{m} & 0 & 0 & 0 \\
0 & E_{m} & 0 & 0
\end{array}\right) \\
I_{3}=I_{1} I_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -E_{m} \\
0 & 0 & -E_{m} & 0 \\
0 & E_{m} & 0 & 0 \\
E_{m} & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

HRDINA and VAŠÍK/Turk J Math

where E_{p} is an identity matrix $p \times p$. Now, the matrix representation of $\mathcal{C l}(3,0)$ on $\mathbb{R}^{8 m}$ is given by

$$
\begin{gathered}
\left(\begin{array}{cc}
E_{4 m} & 0 \\
0 & E_{4 m}
\end{array}\right),\left(\begin{array}{cc}
I_{1} & 0 \\
0 & I_{1}
\end{array}\right),\left(\begin{array}{cc}
I_{2} & 0 \\
0 & I_{2}
\end{array}\right),\left(\begin{array}{cc}
I_{3} & 0 \\
0 & I_{3}
\end{array}\right) \\
\left(\begin{array}{cc}
0 & E_{4 m} \\
-E_{4 m} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & I_{1} \\
-I_{1} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & I_{3} \\
-I_{3} & 0
\end{array}\right) ;
\end{gathered}
$$

for an explicit description see [5].
We now focus on the algebra $\mathcal{O}:=\mathcal{C} l(s, t)$, i.e. the algebra generated by elements $I_{i}, i=1, \ldots, t$ (called complex units), and elements $J_{j}, j=1, \ldots, s$ (called product units), which are anticommuting, i.e. $I_{i}^{2}=-E$, $J_{j}^{2}=E$ and $K_{i} K_{j}=-K_{j} K_{i}, i \neq j$, where $K \in\left\{I_{i}, J_{j}\right\}$. On the other hand, this algebra is generated by elements $F_{i}, i=1, \ldots, k$ as a vector space. We chose a basis $F_{i}, i=1, \ldots, k$, such that $F_{1}=E, F_{i}=I_{i-1}$ for $i=2, \ldots, t+1, F_{j}=J_{j-t-1}$ for $j=t+2, \ldots, s+t+1$ and by all different multiples of I_{i} and J_{j} of length $2, \ldots, s+t$. Let us note that both complex and product units can be found among these multiple generators.

Lemma 2.1 Let F_{1}, \ldots, F_{k} denote the $k=2^{s+t}$ elements of the matrix representation of Clifford algebra $\mathcal{C l}(s, t)$ on \mathbb{R}^{k}. Then there exists a real vector $X \in \mathbb{R}^{k}$ such that the dimension of a linear span $\left\langle F_{i} X\right| i=$ $1, \ldots, k\rangle$ is equal to k.
Proof Let us suppose, without loss of generality, that F_{1}, \ldots, F_{k} are the elements constructed by means of Bott periodicity as above. Then, by induction, we prove that the matrix $F=\sum_{i=1}^{k} a_{i} F_{i}, a_{i} \in \mathbb{R}$, is a square matrix that has exactly one entry a_{i} in each column and each row. For $\mathcal{C l}(1,0)$ and $\mathcal{C l}(0,1)$, we have

$$
F=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{1}
\end{array}\right), F=\left(\begin{array}{cc}
a_{1} & a_{2} \\
-a_{2} & a_{1}
\end{array}\right)
$$

respectively. For the rest of the generating cases, $\mathcal{C l}(2,0), \mathcal{C l}(0,2)$, and $\mathcal{C l}(1,1)$, matrix F can be obtained in very similar way.

We now restrict to Clifford algebras of type $\mathcal{C l}(s, 0), s>2$, and show the induction step by means of the periodicity condition

$$
\mathcal{C l}(s, 0) \cong \mathcal{C l}(0, s-2) \otimes \mathcal{C} l(2,0)
$$

The rest of the cases according to the Clifford algebra identification above can be proved similarly and we leave it to the reader. Let $G_{i}, i=1, \ldots, l$ denote the l elements of the matrix representation of Clifford algebra $\mathcal{C l}(0, s-2)$ with the required property, i.e. the matrix $G=\sum_{i=1}^{l} g_{i} G_{i}$ is a square matrix with exactly one entry g_{i} in each column and each row, i.e.

$$
G:=\left(\begin{array}{ccc}
g_{\sigma_{1}(1)} & \cdots & g_{\sigma_{1}(l)} \\
\vdots & & \vdots \\
g_{\sigma_{l}(1)} & \cdots & g_{\sigma_{l}(l)}
\end{array}\right)
$$

where σ_{i} are all permutations of $\{1, \ldots, l\}$. The matrix of $\mathcal{C l}(2,0)$ is

$$
H:=\left(\begin{array}{cccc}
a_{1} & -a_{2} & a_{3} & -a_{4} \\
-a_{2} & a_{1} & -a_{4} & a_{3} \\
a_{3} & a_{4} & a_{1} & a_{2} \\
a_{4} & a_{3} & a_{2} & a_{1}
\end{array}\right)
$$

HRDINA and VAŠÍK/Turk J Math

The matrix for the representation of Clifford algebra $\mathcal{C l}(s, 0)$ is then composed as follows:

$$
F:=\left(\begin{array}{ccc}
g_{\sigma_{1}(1)} H & \ldots & g_{\sigma_{1}(l)} H \\
\vdots & & \vdots \\
g_{\sigma_{l}(1)} H & \ldots & g_{\sigma_{l}(l)} H
\end{array}\right) .
$$

Finally, if matrix G has exactly one g_{i} in each column and each row, matrix F is a square matrix with exactly one $a_{j} g_{i}$, where $j=1, \ldots, 4, i=1, \ldots, l$ in each column and each row.

Now, let $F=\sum_{i=1}^{k} b_{i} F_{i}$ be a $k \times k$ matrix constructed as above and let e_{i} denote the standard basis of \mathbb{R}^{k}. Then the vector

$$
v_{i}:=F e_{i}^{T}
$$

is the i-th column of the matrix F and thus it is composed of k different entries b_{i}. If the dimension of $\left\langle F_{i} X \mid i=1, \ldots, k\right\rangle$ is less then k, then the vector v has to be zero and thus all b_{i} have to be zero.

Definition 2.2 Let $P^{1} M$ be a bundle of linear frames over M (the fiber bundle $P^{1} M$ is a principal bundle over M with the structure group $G L(n, \mathbb{R}))$. Reduction of the bundle $P^{1} M$ to the subgroup $G \subset G L(n, \mathbb{R})$ is called a G-structure.

Definition 2.3 If M is an $k m$-dimensional manifold, where $k=2^{s+t}$ and $m \in \mathbb{N}$, then an almost Clifford manifold is given by a reduction of the structure group $G L(k m, \mathbb{R})$ of the principal frame bundle of M to

$$
G L(m, \mathcal{O})=\left\{A \in G L(k m, \mathbb{R}) \mid A I_{i}=I_{i} A, A J_{j}=J_{j} A\right\}
$$

where \mathcal{O} is an arbitrary Clifford algebra and $I_{i}, i=1, \ldots, t, I_{i}^{2}=-E$ and $J_{j}, j=1, \ldots, s, J_{j}^{2}=E$ is the set of anticommuting affinors such that the free associative unitary algebra generated by $\left\langle I_{i}, J_{j}, E\right\rangle$ is isomorphically equivalent to \mathcal{O}.

In particular, on the elements of this reduced bundle one can define affinors in the form of F_{1}, \ldots, F_{k} globally.

3. A-planar curves and morphisms

The concept of planar curves is a generalization of a geodesic on a smooth manifold equipped with certain structure. In [7] the authors proved a set of facts about structures based on 2 different affinors. Following [3, 4], a manifold equipped with an affine connection and a set of affinors $A=\left\{F_{1}, \ldots, F_{l}\right\}$ is called an A-structure and a curve satisfying $\nabla_{\dot{c}} \dot{c} \in\left\langle F_{1}(\dot{c}), \ldots, F_{l}(\dot{c})\right\rangle$ is called an A-planar curve.

Definition 3.1 Let M be a smooth manifold such that $\operatorname{dim}(M)=m$. Let A be a smooth ℓ-dimensional $(\ell<m)$ vector subbundle in $T^{*} M \otimes T M$ such that the identity affinor $E=i d_{T M}$ restricted to $T_{x} M$ belongs to $A_{x} M \subset T_{x}^{*} M \otimes T_{x} M$ at each point $x \in M$. We say that M is equipped with an ℓ-dimensional A-structure.

It is easy to see that an almost Clifford structure is not an A-structure, because the affinors in the form of $F_{0}, \ldots, F_{\ell} \in A$ have to be defined only locally.

HRDINA and VAŠÍK/Turk J Math

Definition 3.2 The A-structure where A is isomorphically equivalent to a Clifford algebra \mathcal{O} is called an almost Cliffordian manifold.

The classical concept of F-planar curves defines the F-planar curve as the curve $c: \mathbb{R} \rightarrow M$ satisfying the condition

$$
\nabla_{\dot{c}} \dot{c} \in\langle\dot{c}, F(\dot{c})\rangle
$$

where F is an arbitrary affinor. Clearly, geodesics are F-planar curves for all affinors F, because $\nabla_{\dot{c}} \dot{c} \in\langle\dot{c}\rangle \subset$ $\langle\dot{c}, F(\dot{c})\rangle$.

Now, for any tangent vector $X \in T_{x} M$ we shall write $A_{x}(X)$ for the vector subspace

$$
A_{x}(X)=\left\{F_{i}(X) \mid F_{i} \in A_{x} M\right\} \subset T_{x} M
$$

and call it the A-hull of the vector X. Similarly, the A-hull of a vector field is a subbundle in $T M$ obtained pointwise. For example, the A-hull of an almost quaternionic structure is

$$
A_{x}(X)=\{a X+b I(X)+c J(X)+d K(X) \mid a, b, c, d \in \mathbb{R}\}
$$

Definition 3.3 Let M be a smooth manifold equipped with an A-structure and a linear connection ∇. A smooth curve $c: \mathbb{R} \rightarrow M$ is said to be A-planar if

$$
\nabla_{\dot{c}} \dot{c} \in A(\dot{c})
$$

One can easily check that the class of connections

$$
\begin{equation*}
[\nabla]_{A}=\nabla+\sum_{i=1}^{\operatorname{dim} A} \Upsilon_{i} \otimes F_{i} \tag{1}
\end{equation*}
$$

where Υ_{i} are one-forms on M, share the same class of A-planar curves, but we have to describe them more carefully for Cliffordian manifolds.

Theorem 3.4 Let M be a smooth manifold equipped with an almost Cliffordian structure, i.e. an A-structure, where $A=\mathcal{C l}(s, t), \operatorname{dim}(M) \geq 2^{(s+t+1)}$, and let ∇ be a linear connection such that $\nabla A=0$. The class of connections $[\nabla]$ preserving A, sharing the same torsion and A-planar curves, is isomorphic to $T^{*} M$ and the isomorphism has the following form:

$$
\begin{equation*}
\Upsilon \mapsto \nabla+\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon \circ F_{i}\right) \odot F_{i} \tag{2}
\end{equation*}
$$

where $\left\langle F_{1}, \ldots, F_{k}\right\rangle=A, k=2^{s+t}$, as a vector space, $\epsilon_{i} \in\{ \pm 1\}$, and Υ is a one-form on M.
Proof First, let us consider the difference tensor

$$
P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)
$$

and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve $F_{i}, i=1, \ldots, k$, the difference tensor P is Clifford linear in the second

HRDINA and VAŠÍK/Turk J Math

variable. By symmetry it is thus Clifford bilinear and we can proceed by induction. Let $X=\dot{c}$ and the deformation $P(X, X)$ equals to $\sum_{i=1}^{k} \Upsilon_{i}(X) F_{i}(X)$ because c is A-planar with respect to ∇ and $\bar{\nabla}$. In this case, we shall verify.

First, for $s=1, t=0$,

$$
\begin{aligned}
& P(X, X)=a(X) X+b(J X) J X \\
& P(X, X)=J^{2} P(X, X)=P(J X, J X)=a(J X) J X+b(X) X
\end{aligned}
$$

The difference of the first row and the second row implies $a(X)=b(X)$ and $a(J X)=b(J X)$ because we can suppose that $X, J X$ are linearly independent. For $s=0, t=1$,

$$
\begin{aligned}
P(X, X) & =a(X) X+b(I X) I X \\
-P(X, X) & =I^{2} P(X, X)=P(I X, I X)=a(I X) I X-b(X) X
\end{aligned}
$$

The sum of the first row and the second row implies $a(X)=b(X)$ and $a(I X)=-b(I X)$ because we can suppose that $X, I X$ are linearly independent.

Let us suppose that the property holds for a Clifford algebra $\mathcal{C l}(s, t), k=2^{s+t}$, i.e.

$$
P(X, X)=\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(X)\right)\right) F_{i}(X)
$$

where $\epsilon_{i} \in\{ \pm 1\}$.
For $\mathcal{C l}(s, t+1)$ we have

$$
P(X, X)=\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(X)\right)\right) F_{i}(X)+\sum_{i=1}^{k}\left(\xi_{i}\left(F_{i} S(X)\right)\right) F_{i} S(X)
$$

and

$$
S^{2} P(X, X)=\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(S X)\right)\right) F_{i}(S X)+\sum_{i=1}^{k}\left(\xi_{i}\left(F_{i}(X)\right)\right) F_{i}(X)
$$

The sum of the first row and the second row implies

$$
\epsilon_{i} \Upsilon\left(F_{i}(X)\right)=-\xi_{i}\left(F_{i} X\right) \text { and } \epsilon_{i} \Upsilon\left(F_{i}(S X)\right)=-\xi_{i}\left(F_{i} S X\right)
$$

because we can suppose that $F_{i} X$ are linearly independent. The case of $\mathcal{C l}(s+1, t)$ is calculated in the same way.

Now, $P(X, X)=\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(X)\right)\right) F_{i}(X)$ and one shall compute

$$
\begin{aligned}
P(X, Y) & =\frac{1}{2}\left(\sum_{i=1}^{k} \epsilon_{i} \Upsilon\left(F_{i}(X+Y)\right) F_{i}(X+Y)-\sum_{i=1}^{k} \epsilon_{i} \Upsilon\left(F_{i}(X)\right) F_{i}(X)\right. \\
& \left.-\sum_{i=1}^{k} \epsilon_{i} \Upsilon\left(F_{i}(Y)\right) F_{i}(Y)\right)
\end{aligned}
$$

by polarization.

HRDINA and VAŠÍK/Turk J Math

Assuming that vectors $F_{i}(X), F_{i}(Y), i=1, \ldots, k$ are linearly independent, we compare the coefficients of X in the expansions of $P(s X, t Y)=s t P(X, Y)$ as above to get

$$
s \Upsilon(s X+t Y)-s \Upsilon(s X)=s t(\Upsilon(X+Y)-\Upsilon(X))
$$

Dividing by s and putting $t=1$ and taking the limit $s \rightarrow 0$, we conclude that $\Upsilon(X+Y)=\Upsilon(X)+\Upsilon(Y)$.
We have proven that the form Υ is linear in X and

$$
(X, Y) \rightarrow \sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(X)\right)\right) F_{i}(Y)+\sum_{i=1}^{k} \epsilon_{i}\left(\Upsilon\left(F_{i}(Y)\right)\right) F_{i}(X)
$$

is a symmetric complex bilinear map that corresponds to $P(X, Y)$ if both arguments coincide; it always agrees with P by polarization and $\bar{\nabla}$ lies in the projective equivalence class $[\nabla]$.

4. \mathcal{D}-connections

Let $\mathbb{V}=\mathbb{R}^{n}, G \subset G L(\mathbb{V})=G L(n, \mathbb{R})$ be a Lie group with Lie algebra \mathfrak{g} and M be a smooth manifold of dimension n.

Definition 4.1 The first prolongation $\mathfrak{g}^{(1)}$ of \mathfrak{g} is a space of symmetric bilinear mappings $t: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ such that, for each fixed $v_{1} \in \mathbb{V}$, the mapping $v \in \mathbb{V} \mapsto t\left(v, v_{1}\right) \in \mathbb{V}$ is in \mathfrak{g}.

Example 4.2 A complex structure $(M, I), I^{2}=-E$, is a G-structure where $G=G L(n, \mathbb{C})$ with Lie algebra $\mathfrak{g}=\{A \in \mathfrak{g l}(2 n, \mathbb{R}) \mid A I=I A\}$. The first prolongation $\mathfrak{g}^{(1)}$ is a space of symmetric bilinear mappings

$$
\mathfrak{g}^{(1)}=\{t \mid t: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}, t(I X, Y)=\operatorname{It}(X, Y), t(Y, X)=t(X, Y)\}
$$

On the other hand, a product structure $(M, P), P^{2}=E$ is a G-structure where $G=G L(n, \mathbb{R}) \oplus G L(n, \mathbb{R})$ with Lie algebra $\mathfrak{g}=\mathfrak{g}(n, \mathbb{R}) \oplus \mathfrak{g}(n, \mathbb{R})$. The first prolongation $\mathfrak{g}^{(1)}$ is a space of symmetric bilinear mappings

$$
\mathfrak{g}^{(1)}=\left\{t \mid t: \mathbb{V}_{1} \oplus \mathbb{V}_{2} \times \mathbb{V}_{1} \oplus \mathbb{V}_{2} \rightarrow \mathbb{V}_{1} \oplus \mathbb{V}_{2}, t\left(\mathbb{V}_{i}, \mathbb{V}_{i}\right) \in \mathbb{V}_{i}, t\left(\mathbb{V}_{2}, \mathbb{V}_{1}\right)=0\right\}
$$

Lemma 4.3 Let M be a $(k m)$-dimensional Clifford manifold based on Clifford algebra $\mathcal{O}=\mathcal{C l}(s, t), k=2^{s+t}$, $s+t>1, m \in \mathbb{N}$, i.e. a manifold equipped with G-structure, where

$$
G=G L(m, \mathcal{O})=\left\{B \in G L(k m, \mathbb{R}) \mid B I_{i}=I_{i} B, B J_{j}=J_{j} B\right\}
$$

and I_{i} and J_{j} are algebra generators of \mathcal{O}. Then the first prolongation $\mathfrak{g}^{(1)}$ of Lie algebra \mathfrak{g} of Lie group G vanishes.
Proof Lie algebra \mathfrak{g} of a Lie group G is of the form

$$
\mathfrak{g}=\mathfrak{g l}(m, \mathcal{O})=\left\{B \in \mathfrak{g l}(k m, \mathbb{R}) \mid B I_{i}=I_{i} B, B J_{j}=J_{j} B\right\}
$$

where I_{i} and J_{j} are generators of \mathcal{O}, i.e. $K_{\bar{i}} K_{\bar{j}}=-K_{\bar{j}} K_{\bar{i}}$ for $K_{\bar{i}}, K_{\bar{j}} \in\left\{I_{i}, J_{j}\right\}, \bar{i} \neq \bar{j}$. For $t \in \mathfrak{g}^{(1)}$ and $K_{\bar{i}} \neq K_{\bar{j}}$ we have the equations

$$
t\left(K_{\bar{i}} X, K_{\bar{j}} X\right)=K_{\bar{i}} K_{\bar{j}} t(X, X)
$$

HRDINA and VAŠÍK/Turk J Math

$$
t\left(K_{\bar{i}} X, K_{\bar{j}} X\right)=t\left(K_{\bar{j}} X, K_{\bar{i}} X\right)=K_{\bar{j}} K_{\bar{i}} t(X, X)=-K_{\bar{i}} K_{\bar{j}} t(X, X)
$$

which lead to $t(X, X)=0$. Finally, from polarization,

$$
t(X, Y)=\frac{1}{2}(t(X+Y, X+Y)-t(X, X)-t(Y, Y))=0
$$

Let us shortly note that Example 4.2 covers Clifford manifolds for $\mathcal{O}=\mathcal{C l}(0,1)$ and $\mathcal{O}=\mathcal{C l}(1,0)$. Next, suppose that there is a G-invariant complement \mathcal{D} to $\partial\left(\mathfrak{g} \otimes \mathbb{V}^{*}\right)$ in $\mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}$:

$$
\mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}=\partial\left(\mathfrak{g} \otimes \mathbb{V}^{*}\right) \oplus \mathcal{D}
$$

where

$$
\partial: \operatorname{Hom}(\mathbb{V}, \mathfrak{g})=\mathfrak{g} \otimes \mathbb{V}^{*} \rightarrow \mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}
$$

is the Spencer operator of alternation.

Definition 4.4 Let $\pi: P \rightarrow M$ be a G-structure. A connection ω on P is called a \mathcal{D}-connection if its torsion function

$$
t^{\omega}: P \rightarrow \mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}=\partial\left(\mathfrak{g} \otimes \mathbb{V}^{*}\right) \oplus \mathcal{D}
$$

has values in \mathcal{D}.

Theorem 4.5 [1]

1. Any G-structure $\pi: P \rightarrow M$ admits a \mathcal{D}-connection ∇.
2. Let $\omega, \bar{\omega}$, be $2 \mathcal{D}$-connections. Then the corresponding operators of covariant derivative $\nabla, \bar{\nabla}$ are related by

$$
\bar{\nabla}=\nabla+S
$$

where S is a tensor field such that for any $x \in M, S_{x}$ belongs to the first prolongation $\mathfrak{g}^{(1)}$ of the Lie algebra \mathfrak{g}.

Definition 4.6 We say that a connected linear Lie group G with Lie algebra \mathfrak{g} is of type k if its k-th prolongation vanishes, i.e. $\mathfrak{g}^{(k)}=0$ and $\mathfrak{g}^{(k-1)} \neq 0$. In this sense, any G-structure with Lie group G of type k is called a G-structure of type k .

Theorem 4.7 [1] Let $\pi: P \rightarrow M$ be a G-structure of type 1 and suppose that there is given a G-equivariant decomposition

$$
\mathbb{V} \otimes \wedge^{2} \mathbb{V}=\partial\left(\mathfrak{g} \otimes \mathbb{V}^{*}\right) \oplus \mathcal{D}
$$

Then there exists a unique connection, whose torsion tensor (calculated with respect to a coframe $p \in P$) has values in $\mathcal{D} \subset \mathbb{V} \otimes \wedge^{2} \mathbb{V}^{*}$.

Corollary 4.8 Let M be a smooth manifold equipped with a G-structure, where $G=G L(n, \mathcal{O}), \mathcal{O}=\mathcal{C l}(s, t)$, $s+t>1$, i.e. an almost Clifford manifold. Then the G-structure is of type 1 and there exists a unique \mathcal{D}-connection.

HRDINA and VAŠÍK/Turk J Math

5. An almost Cliffordian manifold

One can see that an almost Cliffordian manifold M is given as a G-structure provided that there is a reduction of the structure group of the principal frame bundle of M to

$$
G:=G L(m, \mathcal{O}) G L(1, \mathcal{O})=G L(m, \mathcal{O}) \times_{Z(G L(1, \mathcal{O}))} G L(1, \mathcal{O})
$$

where $Z(G)$ is a center of G. The action of G on $T_{x} M$ looks like

$$
Q X q, \text { where } Q \in G L(m, \mathcal{O}), q \in G L(1, \mathcal{O})
$$

where the right action of $G L(1, \mathcal{O})$ is blockwise. In this case the tensor fields in the form F_{1}, \ldots, F_{k} can be defined only locally. It is easy to see that the Lie algebra $\mathfrak{g l}(m, \mathcal{O})$ of a Lie group $G L(m, \mathcal{O})$ is of the form

$$
\mathfrak{g l}(m, \mathcal{O})=\left\{A \in \mathfrak{g l}(k m, \mathbb{R}) \mid A I_{i}=I_{i} A, A J_{j}=J_{j} A\right\}
$$

and the Lie algebra \mathfrak{g} of a Lie group $G L(m, \mathcal{O}) G L(1, \mathcal{O})$ is of the form

$$
\mathfrak{g}=\mathfrak{g l}(m, \mathcal{O}) \oplus \mathfrak{g l}(1, \mathcal{O})
$$

Let us note that the case of $\mathcal{C l}(0,3)$ was studied in a detailed way in [2].
Remark 5.1 Let \mathcal{O} be the Clifford algebra $\mathcal{C l}(0,2)$. For any one-form ξ on \mathbb{V} and any $X, Y \in \mathbb{V}$, the elements of the form

$$
\begin{aligned}
S^{\xi}(X, Y) & =-\xi(X) Y-\xi(Y) X+\xi\left(I_{1} X\right) I_{1} Y+\xi\left(I_{1} Y\right) I_{1} X+\xi\left(I_{2} X\right) I_{2} Y \\
& +\xi\left(I_{2} Y\right) I_{2} X+\xi\left(I_{1} I_{2} X\right) I_{1} I_{2} Y+\xi\left(I_{1} I_{2} Y\right) I_{1} I_{2} X
\end{aligned}
$$

belong to the first prolongation $\mathfrak{g}^{(1)}$ of the Lie algebra \mathfrak{g} of the Lie group $G L(m, \mathcal{O}) G L(1, \mathcal{O})$.
Proof We fix $X \in \mathbb{V}$ and define $S_{X}^{\xi}:=S^{\xi}(X, Y): \mathbb{V} \rightarrow \mathbb{V}$. We have to prove that $S_{X}^{\xi}\left(I_{i} Y\right)=$ $I_{i} S_{X}^{\xi}(Y)+\sum_{l=1}^{4} a_{l} F_{l}(Y)$, for $i=1,2$ and $S_{X}^{\xi}(Y)=S_{Y}^{\xi}(X)$. We compute directly for any X and for I_{1}

$$
\begin{aligned}
S_{X}^{\xi}\left(I_{1} Y\right) & =-\xi(X) I_{1} Y-\xi\left(I_{1} Y\right) X-\xi\left(I_{1} X\right) Y-\xi(Y) I_{1} X-\xi\left(I_{2} X\right) I_{1} I_{2} Y \\
& -\xi\left(I_{1} I_{2} Y\right) I_{2} X+\xi\left(I_{1} I_{2} X\right) I_{2} Y+\xi\left(I_{2} Y\right) I_{1} I_{2} X \\
& =-\xi\left(I_{1} Y\right) X-\xi(Y) I_{1} X-\xi\left(I_{1} I_{2} Y\right) I_{2} X \\
& +\xi\left(I_{2} Y\right) I_{1} I_{2} X+\sum_{l=1}^{4} a_{l} F_{l}(Y)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
I_{1} S_{X}^{\xi}(Y) & =-\xi(X) I_{1} Y-\xi(Y) I_{1} X-\xi\left(I_{1} X\right) Y-\xi\left(I_{1} Y\right) X+\xi\left(I_{2} X\right) I_{1} I_{2} Y \\
& +\xi\left(I_{2} Y\right) I_{1} I_{2} X-\xi\left(I_{1} I_{2} X\right) I_{2} Y-\xi\left(I_{1} I_{2} Y\right) I_{2} X \\
& =-\xi(Y) I_{1} X-\xi\left(I_{1} Y\right) X+\xi\left(I_{2} Y\right) I_{1} I_{2} X \\
& -\xi\left(I_{1} I_{2} Y\right) I_{2} X+\sum_{l=1}^{4} a_{l} F_{l}(Y)
\end{aligned}
$$

HRDINA and VAŠÍK/Turk J Math

and

$$
\begin{aligned}
S_{X}^{\xi}\left(I_{1} Y\right)-I_{1} S_{X}^{\xi}(Y) & = \\
& =-\xi\left(I_{1} Y\right) X-\xi(Y) I_{1} X-\xi\left(I_{1} I_{2} Y\right) I_{2} X+\xi\left(I_{2} Y\right) I_{1} I_{2} X \\
& -\left(-\xi(Y) I_{1} X-\xi\left(I_{1} Y\right) X+\xi\left(I_{2} Y\right) I_{1} I_{2} X-\xi\left(I_{1} I_{2} Y\right) I_{2} X\right) \\
& +\sum_{l=1}^{4} \bar{a}_{l} F_{l}(Y)=\sum_{l=1}^{4} \bar{a}_{l} F_{l}(Y)
\end{aligned}
$$

By the same process for I_{2} we obtain

$$
\begin{aligned}
S_{X}^{\xi}\left(I_{2} Y\right)-I_{2} S_{X}^{\xi}(Y) & = \\
& =-\xi\left(I_{2} Y\right) X+\xi\left(I_{1} I_{2} Y\right) I_{1} X-\xi(Y) I_{2} X-\xi\left(I_{1} Y\right) I_{1} I_{2} X \\
& -\left(-\xi(Y) I_{2} X-\xi\left(I_{1} Y\right) I_{1} I_{2} X-\xi\left(I_{2} Y\right) X+\xi\left(I_{1} I_{2} Y\right) I_{1} X\right) \\
& +\sum_{l=1}^{4} \bar{a}_{l} F_{l}(Y)=\sum_{l=1}^{4} \bar{a}_{l} F_{l}(Y)
\end{aligned}
$$

Finally, we have to prove the symmetry, but this is obvious.

Lemma 5.2 Let $\mathcal{C l}(s, t)$ be the Clifford algebra, $n=s+t$, and let us denote by F_{i} the affinors obtained from the generators of $\mathcal{C l}(s, t)$. Then there exist $\varepsilon_{i} \in\{ \pm 1\}, i=1, \ldots, n$ such that for $A \in V^{*}$, the tensor $S^{A} \in V \times V \rightarrow V$ defined by

$$
\begin{equation*}
S^{A}(X, Y)=\sum_{i=1}^{n} \varepsilon_{i} A\left(F_{i} X\right) F_{i} Y, X, Y \in V \tag{3}
\end{equation*}
$$

satisfies the identity

$$
\begin{equation*}
S^{A}\left(I_{j} X, Y\right)-I_{j} S^{A}(X, Y)=0 \tag{4}
\end{equation*}
$$

for all algebra generators I_{j} of $\mathcal{C l}(s, t)$.
Proof Let us consider the gradation of the Clifford algebra $\mathcal{C l}(s, t)=\mathcal{C} l^{0} \oplus \mathcal{C} l^{1} \oplus \ldots \oplus \mathcal{C} l^{n}$ with respect to the generators of $\mathcal{C l}(s, t)$. Then we can define gradually: for $E \in \mathcal{C} l^{0}$ we choose $\varepsilon=1$. If the identity (4) should be satisfied for the terms in (3), then it must hold that

$$
\varepsilon_{0} A\left(I_{j} X\right) Y=\varepsilon_{i} A\left(I_{j} X\right) I_{j} I_{j} Y \text { for all } I_{j}
$$

i.e.

$$
\varepsilon_{i}=\left\{\begin{aligned}
1 & \text { for } I_{j}^{2}=1 \\
-1 & \text { for } I_{j}^{2}=-1
\end{aligned}\right.
$$

For $F_{i} \in \mathcal{C} l^{v}$ the following equality holds:

$$
\varepsilon_{i} A\left(F_{i} I_{j} X\right) F_{i} Y=\varepsilon_{k} A\left(F_{k} X\right) I_{j} F_{k} Y
$$

HRDINA and VAŠÍK/Turk J Math

and thus $F_{i}=I_{j} F_{k}$. Note that F_{k} can be an element of both $\mathcal{C} l^{v+1}$ and $\mathcal{C} l^{v-1}$. WLOG we choose I_{j} such that $F_{k} \in \mathcal{C} l^{v+1}$. Now 2 possibilities can appear: either

$$
\begin{equation*}
F_{i} I_{j}=F_{k} \tag{5}
\end{equation*}
$$

which leads to $I_{j} F_{k} I_{j}=F_{k}$ and thus $\varepsilon_{k}=\varepsilon_{i}$, or

$$
\begin{equation*}
F_{i} I_{j}=-F_{k}, \tag{6}
\end{equation*}
$$

which leads to $I_{j} F_{k} I_{j}=-F_{k}$ and thus $\varepsilon_{k}=-\varepsilon_{i}$.
This concludes the definition of ε_{i} such that the identity (4) holds. To prove the consistency, we have to show that the value of ε_{k} does not depend on I_{j}, i.e. for the generators I such that $I^{2}=1$ and J such that $J^{2}=-1$, the resulting coefficient ε_{k} obtained after 2 consequent steps of the algorithm with the alternate use of both I and J, does not depend on the order. Thus let us consider the following cases:
(a) $F_{i}=I F_{k}$, which results in the possibilities $I F_{k} I=F_{k}$, see (5), which leads to $\varepsilon_{k}=\varepsilon_{i}$, or $I F_{k} I=-F_{k}$, see (6), which leads to $\varepsilon_{k}=-\varepsilon_{i}$.
(b) $F_{j}=J F_{k}$, which similarly leads to either $J F_{k} J=F_{k}$ implying $\varepsilon_{k}=\varepsilon_{j}$, or $J F_{k} J=-F_{k}$ implying $\varepsilon_{k}=-\varepsilon_{j}$.

Applying the processes (a) and (b) alternately, we obtain:

$$
J I F_{k} J=\left\{\begin{aligned}
-I F_{k} & \Rightarrow \varepsilon_{l}=-\varepsilon_{i} \\
I F_{k} & \Rightarrow \varepsilon_{l}=\varepsilon_{i}
\end{aligned}\right.
$$

for $F_{l}=J I F_{k}$ and

$$
I J F_{k} I=\left\{\begin{aligned}
-J F_{k} & \Rightarrow \varepsilon_{l}=-\varepsilon_{j} \\
J F_{k} & \Rightarrow \varepsilon_{l}=\varepsilon_{j}
\end{aligned}\right.
$$

for $F_{l}=I J F_{k}$. Obviously, the corresponding cases give the same result of ε_{k}.

Theorem 5.3 Let \mathcal{O} be the Clifford algebra $\mathcal{C l}(s, t)$. For any one-form ξ on \mathbb{V} and any $X, Y \in \mathbb{V}$, the elements of the form

$$
S_{X}^{\xi}(Y)=\sum_{i=1}^{k} \epsilon_{i}\left(\xi\left(F_{i} X\right) F_{i} Y+\xi\left(F_{i} Y\right) F_{i} X\right), k=2^{s+t}
$$

where the coefficients ϵ_{i} depend on the type of \mathcal{O}, belong to the first prolongation $\mathfrak{g}^{(1)}$ of the Lie algebra \mathfrak{g} of the Lie group $G L(m, \mathcal{O}) G L(1, \mathcal{O})$.
Proof One can easily see that S^{ξ} is symmetric and we have to prove the second condition, i.e. $S_{X}^{\xi} I_{i} Y-$ $I_{i} S_{X}^{\xi} Y \in \mathcal{O}(Y)$, i.e.

$$
\begin{aligned}
S_{X}^{\xi} I_{i} Y-I_{i} S_{X}^{\xi} Y & =\sum_{j=1}^{k} \bar{\epsilon}_{j} \xi\left(F_{j} X\right) F_{j} Y+\sum_{j=1}^{k} \bar{\epsilon}_{j} \xi\left(F_{j} Y\right) F_{j} X \\
& -\sum_{j=1}^{k} \bar{\epsilon}_{j} I_{i} \xi\left(F_{j} X\right) F_{j} Y-\sum_{j=1}^{k} \bar{\epsilon}_{j} I_{i} \xi\left(F_{j} Y\right) F_{j} T X
\end{aligned}
$$

From Lemma 5.2 we have

$$
S_{X}^{\xi} I_{i} Y-I_{i} S_{X}^{\xi} Y=\sum_{j=1}^{k} \bar{\epsilon}_{j} \xi\left(F_{j} X\right) F_{j} Y-\sum_{j=1}^{k} \bar{\epsilon}_{j} I_{i} \xi\left(F_{j} Y\right) F_{j} T X=\sum_{j=0}^{k} \psi_{i} F_{j} Y
$$

Corollary 5.4 Let M be an almost Cliffordian manifold based on Clifford algebra $\mathcal{O}=\mathcal{C l}(s, t)$, where $\operatorname{dim}(M) \geq 2^{(s+t+1)}$, i.e. a smooth manifold equipped with G-structure, where $G=G L(n, \mathcal{O}) G L(1, \mathcal{O})$ or equivalently an A-structure where $A=\mathcal{O}$. Then the class of \mathcal{D}-connections preserving A and sharing the same A-planar curves is isomorphic to $\left(\mathbb{R}^{k m}\right)^{*}$.

Acknowledgment

The authors were supported by a grant no. FSI-S-11-3.

References

[1] Alekseevsky, D. V., Marchiafava, S.: Quaternionic structures on a manifold and subordinated structures. Annali di Mat. Pura a Appl. 171, 205-273 (1996).
[2] Burdujan, I.: On almost Cliffordian manifolds. Italian J. Pure Appl. Math. 13, 129-144 (2003).
[3] Hrdina, J.: Notes on connections attached to A-structures. Diff. Geom. Appl. 29, Suppl. 1, 91-97 (2011).
[4] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry. Glob. Anal. Geom. 29, 349-360 (2006).
[5] Hrdina, J., Vašík, P.: Generalized geodesics on some almost Cliffordian geometries. Balkan J. Geom. Appl., Vol. 17, 41-48 (2012).
[6] Kobayashi, S.: Transformation Groups in Differential Geometry. Springer 1972.
[7] Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27, 63-70 (1983).

[^0]: *Correspondence: hrdina@fme.vutbr.cz
 1991 AMS Mathematics Subject Classification: 53C10, 53C15.

