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Abstract: The notion of T -noncosingularity of a module has been introduced and studied recently. In this article, a

number of new results of this property are provided. It is shown that over a commutative semilocal ring R such that

Jac(R) is a nil ideal, every T -noncosingular module is semisimple. We prove that for a perfect ring R , the class of T -

noncosingular modules is closed under direct sums if and only if R is a primary decomposable ring. Finitely generated

T -noncosingular modules over commutative rings are shown to be precisely those having zero Jacobson radical. We

also show that for a simple module S , E(S) ⊕ S is T -noncosingular if and only if S is injective. Connections of

T -noncosingular modules to their endomorphism rings are investigated.
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1. Introduction

The concept of T -noncosingularity of a module was introduced and studied recently by Tütüncü and Tribak in

2009 [20] as a dual notion of the K -nonsingularity that was introduced and studied by Rizvi-Roman [14, 15].

It was shown in [21] that every dual Baer module is T -noncosingular and that every T -noncosingular lifting

module is dual Baer. We note also that dual Rickart modules were introduced and studied by Lee et al. in

2011 [12] and it is easy to see that every dual Rickart module is T -noncosingular. These links of the T -

noncosingularity with the dual Rickart and dual Baer properties are the motivations for the investigations in

this paper. We obtain some new useful properties of this kind of module.

Throughout, R will denote an associative ring with unity, Jac(R) will denote the Jacobson radical of

R , and Z(R) will stand for the right singular ideal of R . For an R -module M , we write E(M) and Rad(M)

for the injective hull and the Jacobson radical of M , respectively. If N is a submodule of an R -module M ,

then the notation N ≪M means that N is small in M .

In Section 2 we investigate general properties of T -noncosingular modules. We provide conditions for

a T -noncosingular module to have zero Jacobson radical. Among other results, we show that every finitely

generated T -noncosingular module over a commutative ring has zero Jacobson radical. The class of commutative

rings R for which every cyclic R -module is T -noncosingular is characterized as that of von Neumann regular

rings, while the class of commutative rings R for which every finitely generated T -noncosingular R -module is

semisimple is shown to be precisely that of semilocal rings. It is also shown that over a commutative semilocal

ring R such that Jac(R) is a nil ideal, every T -noncosingular R -module is semisimple.

Section 3 is devoted to some results on direct sums of T -noncosingular modules. We show that for a
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simple module S , E(S)⊕S is T -noncosingular if and only if S is injective. We prove that for a perfect ring R ,

the class of T -noncosingular modules is closed under direct sums if and only if R is a primary decomposable

ring.

The focus of our investigations in Section 4 is on connections of a T -noncosingular module to its

endomorphism ring.

2. Some properties of T -noncosingular modules

Definition 2.1 Let M and N be 2 modules.

(1) We say that M is T -noncosingular relative to N if ∀φ ∈ HomR(M,N) , Imφ≪ N implies φ = 0 .

(2) The module M is called T -noncosingular if M is T -noncosingular relative to M (or, equivalently,

∀φ ∈ EndR(M) , Imφ≪M ⇒ φ = 0).

Many examples of T -noncosingular modules are exhibited in [21] and [20]. Before presenting another

example, we recall that a module M is called radical if M has no maximal submodules, i.e. Rad(M) =M .

Example 2.2 Let M be a simple radical module. That is, M is a nonzero radical module that has no nonzero

radical submodules (e.g., we can consider the Z-modules Z(p∞) and Q , where p is a prime number). Let φ

be a nonzero endomorphism of M . Then Imφ ∼=M/Kerφ and so Rad(Imφ) = Imφ . Therefore, Imφ =M .

Hence, M is T -noncosingular.

A ring R is called a right V-ring if every simple right R-module is injective. This is equivalent to the

condition that for any right R -module M , we have Rad(M) = 0. Recall that a module M is called K -

nonsingular if, for every 0 ̸= φ ∈ EndR(M), Kerφ is not essential in M (see [15]). The next example shows

the existence of a T -noncosingular module that is not K -nonsingular and provides a K -nonsingular module

that is not T -noncosingular.

Example 2.3 (1) Let R be a right V -ring that is not semisimple (e.g., we can take R =
∏∞

i=1 Fi with Fi = F

is a field for all i ≥ 1). By [20, Proposition 2.13], every R -module is T -noncosingular. On the other hand,

from [15, Corollary 2.21] it follows that R has a module M that is not K -nonsingular.

(2) Let F be a field and set R =

[
F 0
F F

]
. Then Jac(R) =

[
0 0
F 0

]
, and hence RR is not T -

noncosingular by [20, Corollary 2.7]. On the other hand, we have Z(RR) = 0 by [4, Corollary 4.3]. Applying

[15, Corollary 2.4], we conclude that RR is K -nonsingular.

In [20, Proposition 2.3] it was showed that the T -noncosingularity is inherited by direct summands.

Next, we show that the T -noncosingularity property does not always transfer from a module to each of its

submodules and factor modules.

Example 2.4 (1) Note that the Z-module Z/8Z is not T -noncosingular, while Z is T -noncosingular (see [20,

Proposition 2.10]).

(2) Consider the Z-module M = Z(2∞) ⊕ Z(2∞) . Then M has a submodule N , which is isomorphic

to Z(2∞) ⊕ Z/2Z . Then M is T -noncosingular as every factor module of M is injective, while N is not

T -noncosingular by [20, Example 2.12].
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Recall that a ring R is said to be a right H -ring if, whenever S1 and S2 are simple R -modules such

that HomR(E(S1), E(S2)) ̸= 0, then S1
∼= S2 . It is well known that every commutative Noetherian ring is an

H -ring (see, e.g., [16]). Next, we deal with the T -noncosingularity of injective hulls of simple modules. First

note that for any prime number p , the Z -module E(Z/pZ) = Z(p∞) is T -noncosingular.

Proposition 2.5 Assume that R is a ring that has a unique simple right R -module (up to isomorphism) or

R is a right H -ring. If S is a simple R-module such that E(S) is T -noncosingular, then S is injective or

Rad(E(S)) = E(S) .

Proof Suppose that S is not injective and Rad(E(S)) ̸= E(S). Then S ≪ E(S) and E(S) has a maximal

submodule N . Let S′ denote the simple R -module E(S)/N . Taking the canonical projection π : E(S) → S′

and the inclusion map α : S′ → E(S′), the homomorphism απ : E(S) → E(S′) is nonzero and Im(απ) = S′ .

By hypothesis, we get that S′ ∼= S . Hence, there exists a nonzero endomorphism φ of E(S) such that

Imφ = S ≪ E(S). This contradicts the fact that M is T -noncosingular. 2

Corollary 2.6 Let m be a maximal ideal of a commutative Artinian ring R . Then E(R/m) is T -noncosingular

if and only if R/m is injective.

Proof Note that Rad(E(R/m)) ̸= E(R/m) and R is Noetherian by [2, Theorem 15.20 and Corollary 15.21].

Hence, R is an H -ring, and the result follows from Proposition 2.5. 2

We recall that a ring R is called a right max ring if Rad(M) ̸=M for all nonzero right R -modules M .

Corollary 2.7 Let R be a right max local ring with maximal right ideal m . The following are equivalent:

(i) E(R/m) is T -noncosingular;

(ii) R/m is injective;

(iii) R is a division ring.

Proof (i) ⇒ (ii) By Proposition 2.5 and the fact that R is a right max ring.

(ii) ⇒ (iii) By hypothesis, every simple R -module is injective. Thus, R is a right V -ring and m =

Rad(R) = 0. Therefore, R is a division ring.

(iii) ⇒ (i) This is obvious. 2

Proposition 2.8 Let M be a module with Rad(M) ̸= 0 and let N be a nonzero small submodule of M . If K

is a module that is isomorphic to N , then the module M ⊕K is not T -noncosingular.

Proof By hypothesis, there exists an isomorphism φ : K → N . Let π :M ⊕K → K be the canonical projec-

tion and let µ : N →M and ρ :M →M ⊕K be the inclusion maps. Then ρµφπ is a nonzero endomorphism

of M ⊕K such that Im(ρµφπ) = N ⊕ 0 ≪M ⊕K . 2

It is easy to see that every module with zero Jacobson radical is T -noncosingular and that the converse is

not true, in general (e.g., for any prime integer p , the Z -module Z(p∞) is T -noncosingular, but Rad(Z(p∞)) =

Z(p∞)). In the next 3 results we present conditions under which the converse holds.

Proposition 2.9 Let M be a module such that every nonzero submodule contains a simple submodule. If M⊕S
is T -noncosingular for every simple small submodule S ≤M , then Rad(M) = 0 .
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Proof Assume that Rad(M) ̸= 0. Then Rad(M) contains a simple submodule S . Thus, S ≪ M . From

Proposition 2.8 it follows that M ⊕ S is not T -noncosingular. This completes the proof. 2

Definition 2.10 A module M is said to be retractable if for every submodule N ≤M , Hom(M,N) ̸= 0 .

Retractable modules have been studied extensively by different authors (see, e.g., [6, 7, 8, 9, 17]).

Proposition 2.11 Let M be a retractable module. If M is T -noncosingular, then Rad(M) = 0 .

Proof Suppose that Rad(M) ̸= 0. Then M contains a nonzero submodule N such that N ≪ M . Since

M is retractable, there exists a nonzero endomorphism f : M → M with Im f ⊆ N . This contradicts the

T -noncosingularity of M . 2

A ring R is said to be right semi-Artinian if every nonzero right R -module contains a simple submodule.

Recall that if R is any ring, then a right R -module M is nonsingular if mE ̸= 0 for every nonzero element m

of M and essential right ideal E of R .

Corollary 2.12 If M is a nonzero module that satisfies one of the following conditions:

(i) M is a module over a commutative semi-Artinian ring,

(ii) M is a projective module over a commutative Noetherian ring,

(iii) M is a finitely generated module over a commutative ring,

(iv) M is a nonsingular module over a right self-injective ring,

then M is T -noncosingular if and only if Rad(M) = 0 .

Proof By Proposition 2.11 [5, Theorems 2.7 and 2.8] and [17, Proposition 1.17 and Corollary 2.12]. 2

Corollary 2.13 The following are equivalent for a commutative ring R :

(i) Every cyclic R -module is T -noncosingular;

(ii) R is a von Neumann regular ring.

Proof (i) ⇒ (ii) Let I be an ideal of R . By hypothesis, the R -module R/I is T -noncosingular. Then

Rad(R/I) = 0 by Corollary 2.12. So R is a V -ring (see [19, Theorem 22.1]). Thus, R is von Neumann regular

since R is commutative (see [19, Theorem 22.4]).

(ii) ⇒ (i) This follows from [20, Proposition 2.13] and [19, Theorem 22.4]. 2

Following [18], a module M is called noncosingular if Z(M) = ∩{N | M/N is small in its injective

hull} =M . That is, for every nonzero module N and every nonzero homomorphism f :M → N , Im f is not

a small submodule of N . This is obviously equivalent to the condition that M is T -noncosingular relative to

N for every module N . Clearly, every noncosingular module is T -noncosingular. It is easy to check that if S

is a simple module that is not injective, then S is T -noncosingular but not noncosingular. In the next result,

we give conditions under which the T -noncosingularity of a module implies its noncosingularity. The following

condition was studied in [1] as a dual notion of the retractability.

Definition 2.14 A module M is called coretractable if, for any proper submodule K of M , there exists a

nonzero homomorphism f :M →M with f(K) = 0 , that is, HomR(M/K,M) ̸= 0 .
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Proposition 2.15 Let M be a coretractable injective module. If M is T -noncosingular, then M is noncosin-

gular.

Proof Suppose that there exists a proper submodule X of M such that M/X ≪ E(M/X). Let

π : M → M/X be the canonical projection. Since M is coretractable, there exists a nonzero homomorphism

φ : M/X → M . Since M is injective, φ can be extended to a homomorphism ψ : E(M/X) → M . Taking

the inclusion map α : M/X → E(M/X), ψαπ is a nonzero endomorphism of M . Since απ(M) ≪ E(M/X),

ψαπ(M) ≪M by [13, Lemma 4.2(3)]. This contradicts the T -noncosingularity of M . Hence, M is noncosin-

gular. 2

The next proposition can be regarded as the dual of [15, Proposition 2.18]. First we prove the following

elementary known result.

Lemma 2.16 Let N be a small submodule of a module M . If L is a submodule of M such that (L+N)/N ≪
M/N , then L≪M .

Proof Let X be a submodule of M such that L+X =M . Then, [(L+N)/N ] + [(X +N)/N ] =M/N . By

hypothesis, we have (X +N)/N =M/N . Therefore, X =M as N ≪M . So, L≪M . 2

Proposition 2.17 Let M be a module that has a projective cover f : P →M . If P is T -noncosingular, then

so is M .

Proof By hypothesis, f : P → M is an epimorphism with Q = Ker f ≪ P . Thus, P/Q ∼= M . To prove

the T -noncosingularity of M , let φ ∈ End(P/Q) such that Imφ ≪ P/Q . Consider the natural epimorphism

π : P → P/Q . Since P is projective, there exists a homomorphism ψ : P → P such that φπ = πψ . Therefore,

πψ(P ) = φ(P/Q) ≪ P/Q . So ψ(P ) ≪ P by Lemma 2.16. But P is T -noncosingular. Then ψ = 0, and hence

φπ = 0. This implies that φ = 0. Thus, M is T -noncosingular. 2

Proposition 2.18 The following are equivalent for a ring R :

(i) RR is T -noncosingular;

(ii) Every projective R-module is T -noncosingular;

(iii) Every R -module having a projective cover is T -noncosingular.

Proof (i) ⇒ (ii) By [20, Corollary 2.7], Jac(R) = 0. Let P be a projective R -module. Hence Rad(P ) =

P (Jac(R)) = 0 by [2, Proposition 17.10]. So, P is T -noncosingular.

(ii) ⇒ (iii) This follows from Proposition 2.17.

(iii) ⇒ (i) This is obvious. 2

Definition 2.19 (1) A module M has D1 property (or is called lifting) if for every submodule N ≤M , there

exists a direct summand K of M with K ⊆ N and N/K ≪ M/K . M has D3 property if for any direct

summands K , L of M with M = K + L , K ∩ L is a direct summand of M .

(2) A module M satisfying D1 and D3 is called quasi-discrete.
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Definition 2.20 A module M is said to have the strong summand sum property, SSSP, if the sum of any

family of direct summands is a direct summand of M . M is said to have the summand intersection property,

SIP, if the intersection of any 2 direct summands is a direct summand of M .

In the next result, we provide an application of T -noncosingularity to quasi-discrete modules. It can be

regarded as the dual of [15, Proposition 4.1].

Proposition 2.21 Let M be a quasi-discrete module. If M is T -noncosingular, then M has SSSP and

SIP .

Proof Since M is T -noncosingular lifting, M has SSSP by [21, Theorems 2.1 and 2.14]. To prove SIP ,

let K1 and K2 be 2 direct summands of M . Then K = K1 +K2 is a direct summand of M . Since M has

(D3), K has (D3) by [13, Lemma 4.7]. Therefore, K1 ∩K2 is a direct summand of K . Hence, K1 ∩K2 is a

direct summand of M . 2

Recall that a ring R is said to be semilocal if the factor ring R/Jac(R) is semisimple.

We conclude this section by describing the structure of some classes of T -noncosingular modules over

commutative semilocal rings. First we prove the following lemma.

Lemma 2.22 Let I be a nil ideal of a commutative ring R . If M is T -noncosingular, then MI = 0 .

Proof Let a ∈ I and consider the endomorphism φa of M defined by φa(x) = xa for all x ∈M . Clearly, we

have Imφa =Ma . Let X be a submodule of M such that M =Ma+X . By induction, we have M =Man+X

for every integer n ≥ 1. Then X =M since the ideal I is nil. It follows that Ma≪M . Thus, Ma = 0 as M

is T -noncosingular. 2

Theorem 2.23 Let R be a commutative semilocal ring such that Jac(R) is a nil ideal of R . Then an R -module

M is T -noncosingular if and only if M is semisimple.

Proof Let M be a T -noncosingular module. Since R is semilocal, we have Rad(M) = MJac(R) and

M/Rad(M) is semisimple by [2, Corollary 15.18]. Therefore, Rad(M) = 0 by Lemma 2.22. Thus, M is

semisimple. The converse is immediate. 2

Corollary 2.24 Let R be a commutative perfect ring. Then an R -module M is T -noncosingular if and only

if M is semisimple.

Proof By Theorem 2.23 and [2, Theorem 28.4]. 2

Theorem 2.25 The following statements are equivalent for a commutative ring R :

(i) Every T -noncosingular R -module M with Rad(M) ≪M is semisimple;

(ii) Every finitely generated T -noncosingular module is semisimple;

(iii) R is semilocal.

Proof (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) Since Rad(R/Jac(R)) = 0, the R -module R/Jac(R) is T -noncosingular. The result follows

by (ii).
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(iii) ⇒ (i) Let M be a T -noncosingular R -module with Rad(M) ≪ M . Since R is semilocal,

M/Rad(M) is semisimple and Rad(M) = MJac(R) by [2, Corollary 15.18]. If a ∈ Jac(R) and φa is the

endomorphism of M defined by φa(x) = xa for all x ∈M , then we have Imφa =Ma ⊆MJac(R) ≪M . But

by T -noncosingularity, Ma = 0. Thus, Rad(M) = 0. This implies that M is semisimple. 2

3. Direct sums of T -noncosingular modules

It is shown in [20, Example 2.12] that, in general, a direct sum of 2 T -noncosingular modules is not T -

noncosingular. In this section we prove that for a simple module S , E(S)⊕S is T -noncosingular if and only if

S is injective (Proposition 3.4). The class of perfect rings for which arbitrary direct sums of T -noncosingular

modules are T -noncosingular is shown to be exactly that of the primary decomposable rings (Theorem 3.7).

We begin with the next proposition, which is a direct consequence of [20, Corollary 2.7 and Proposition

2.11].

Proposition 3.1 (i) If M is a T -noncosingular module, then every direct sum of copies of M is a T -

noncosingular module.

(ii) If R is a ring with Jac(R) = 0 , then every free R -module is T -noncosingular.

Next, we provide a characterization for an arbitrary direct sum of T -noncosingular modules to be T -

noncosingular when each module is fully invariant in the direct sum.

Proposition 3.2 Let M = ⊕i∈IMi be the direct sum of fully invariant submodules Mi . Then M is T -

noncosingular if and only if Mi is T -noncosingular for all i ∈ I .

Proof The necessity follows from [20, Proposition 2.3]. Conversely, we need only to show that Mi is a T -

noncosingular module relative to Mj for all i, j ∈ I with i ̸= j (see [20, Proposition 2.11]). Let f : Mi → Mj

(i ̸= j) be a homomorphism. Let πi :M →Mi be the projection map and αj :Mj →M be the inclusion map.

Then g = αjfπi ∈ EndR(M) and g(M) ⊆ Mj . Since Mi is fully invariant in M , we have g(Mi) ⊆ Mi . So,

g(Mi) ⊆Mi ∩Mj = 0. Hence, f = 0. Consequently, M is T -noncosingular. 2

Proposition 3.3 Let M = N⊕(⊕i∈ISi) such that Si (i ∈ I ) are simple modules. The following are equivalent:

(i) M is T -noncosingular;

(ii) (a) N is T -noncosingular, and

(b) For every simple small submodule S of N , S ̸∼= Si for all i ∈ I .

Proof (i) ⇒ (ii) By [20, Proposition 2.3], N and N ⊕ Si are T -noncosingular modules for all i ∈ I .

Proposition 2.8 now shows that condition (b) holds.

(ii) ⇒ (i) By (b), each Si is T -noncosingular relative to N . Applying [20, Proposition 2.11], we obtain

that M is T -noncosingular. 2

Let R be a Dedekind domain that is not a field and P be a nonzero prime ideal of R . Let R(P∞)

denote the P -primary component of the torsion R -module K/R , where K is the quotient field of R . In [20,

Example 2.12] it is proven that the R -module R(P∞)⊕R/P is not T -noncosingular. That is, E(R/P )⊕R/P
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is not T -noncosingular. In the next result we provide a necessary and sufficient condition for E(S)⊕ S to be

T -noncosingular, where S is a simple module.

Proposition 3.4 Let S be a simple module. Then the module M = E(S)⊕ S is T -noncosingular if and only

if S is injective.

Proof The sufficiency is obvious. Conversely, suppose that S is not injective. Then S ≪ E(S). Thus, M is

not T -noncosingular by Proposition 2.8. 2

By combining [20, Proposition 2.13] and Proposition 3.4, we get the following result.

Corollary 3.5 The following are equivalent for a ring R :

(i) Every R-module is T -noncosingular;

(ii) For every simple R-module S , the module E(S)⊕ S is T -noncosingular;

(iii) The ring R is a right V -ring.

Next, we present other examples that show that the property of T -noncosingularity does not go to direct

sums of T -noncosingular modules.

Example 3.6 (1) Let R be a right hereditary ring that is not a right V -ring. Therefore, R has a simple

R-module S that is not injective (e.g., we can take a Dedekind domain R that is not a field and S any simple

R-module). Then E(S) and S are both T -noncosingular R-modules by [20, Example 2.1]. However, the

R-module M = E(S)⊕ S is not T -noncosingular by Proposition 3.4.

(2) Let R be an almost DVR with maximal ideal m and quotient field Q (i.e. R is a commutative

local Noetherian domain of Krull dimension 1 and the integral closure R′ of R in Q is a finitely generated

R-module and is a discrete valuation ring). Note that E(R/m) is a simple radical R -module by [11, Proposition

4]. Therefore, E(R/m) is a T -noncosingular R-module (see Example 2.2). Further, the R-module R/m is

T -noncosingular. On the other hand, the R -module E(R/m)⊕ R/m is not T -noncosingular, since otherwise

R will be a V -ring and m = 0 by Corollary 3.5.

Recall that a ring R is called left (resp. right) perfect if it is semilocal and every nonzero left R -module

contains a maximal (resp. simple) submodule. A ring R is said to be perfect if it is right and left perfect. A

perfect ring is said to be primary if the ring R/Jac(R) is simple Artinian. A perfect ring is called primary

decomposable if it is isomorphic to a finite product of primary rings. A module M is called supplemented if,

for every submodule N of M , there exists a submodule K ≤ M such that M = N + K and N ∩ K ≪ K

(see, e.g., [3], [13], and [22]). It is easy to check that if M is a module with zero Jacobson radical, then M is

supplemented if and only if M is semisimple.

In the next result, we characterize the class of perfect rings R for which arbitrary direct sums of T -

noncosingular R -modules are T -noncosingular.

Theorem 3.7 The following assertions are equivalent for a perfect ring R :

(i) Every T -noncosingular R -module is semisimple;

(ii) Every direct sum of T -noncosingular R -modules is T -noncosingular;

(iii) R is primary decomposable.
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Proof (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) Let M be a module such that S = EndR(M) is a division ring. Clearly, M is an

indecomposable T -noncosingular module. Since R is perfect, every R -module contains a simple submodule.

Noting that M ⊕ S is T -noncosingular for every simple R -module S , we conclude from Proposition 2.9 that

Rad(M) = 0. Since R is perfect, M is supplemented by [13, Theorem 4.41]. Thus, M is semisimple, but M

is indecomposable. Then M is simple. So R is primary decomposable by [10, Theorem 1.2].

(iii) ⇒ (i) By hypothesis, R = R1 ⊕ · · · ⊕ Rn is a direct sum of perfect primary rings Ri (1 ≤ i ≤ n).

We can write 1R = e1 + e2 + · · ·+ en , where 1R is the identity element of R and for each i , ei ∈ Ri . Then for

each i, ei is the identity element of the ring Ri . Let M be an R -module. Then M =Me1⊕Me2⊕· · ·⊕Men .

Also, Mei can be regarded as an Ri -module as well as an R -module, and its submodules are the same in both

cases, because xei(r1 + r2 + · · ·+ rn) = xeiri , where x ∈M and rj ∈ Rj for each j , 1 ≤ j ≤ n . Now assume

that R has a T -noncosingular module M that is not semisimple. Without loss of generality we can assume

that M1 = Me1 is not semisimple. Note that EndR1(M1) = EndR(M1). So (M1)R1
is T -noncosingular by

[20, Proposition 2.3]. Since R1 is a perfect ring, (M1)R1
is supplemented by [13, Theorem 4.41]. Therefore,

RadR1(M1) ̸= 0. Hence, RadR1(M1) contains a simple submodule S1 . Moreover, (M1)R1
contains a maximal

submodule K1 since R1 is perfect. Consider the natural epimorphism π : M1 → M1/K1 and the inclusion

map α : S1 → M1 . Since R1 is primary, R1 has a unique isomorphism class of simple modules. So, there

exists an isomorphism θ :M1/K1 → S1 . It follows that φ = αθπ is a nonzero endomorphism of M1 such that

φ(M1) = S1 ≪M1 . This shows that (M1)R1 is not T -noncosingular, a contradiction. 2

Corollary 3.8 If R is a finite product of local perfect rings (e.g., R is commutative perfect), then every T -

noncosingular module is semisimple.

Proof This is a direct consequence of Theorem 3.7. 2

4. The endomorphism ring of a T -noncosingular module

We conclude this paper by investigating the connection of the T -noncosingularity of a module to its endomor-

phism ring. Recall that a ring R is called reduced if it has no nonzero nilpotent elements.

Proposition 4.1 Let M be a quasi-discrete module with S = EndR(M) . If M is T -noncosingular, then

S = S1 × S2 such that S1 is von Neumann regular and S2 is reduced.

Proof Let ∇(M) = {φ ∈ S | Imφ≪M} . By [13, Proposition 5.7], S/∇(M) = S1 × S2 such that S1 is von

Neumann regular and S2 is reduced. However, since M is T -noncosingular, ∇(M) = 0. 2

Proposition 4.2 Let P be a quasi-projective module with S = EndR(P ) . The following are equivalent:

(i) P is T -noncosingular;

(ii) Jac(S) = 0 ;

(iii) SS is T -noncosingular.

Proof This follows from [20, Corollary 2.7] and the fact that φ ∈ Jac(S) if and only if Imφ ≪ P (see, e.g.,

[22, 22.2]). 2
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Proposition 4.2 is not true, in general, as the next example shows.

Example 4.3 Consider the Z-module M = Z(p∞) , where p is a prime number. It is well known that

S = EndZ(M) is a local ring that is not a division ring. Then Jac(S) ̸= 0 , while M is T -noncosingular.

Definition 4.4 A module M has D2 property (or is called direct projective) if, for any direct summand K of

M and submodule N of M with M/N ∼= K , N is a direct summand of M .

Proposition 4.5 Let M be a direct projective module with S = EndR(M) . If Jac(S) = 0 , then M is

T -noncosingular.

Proof By [22, 41.19(1)]. 2

Proposition 4.6 Let R be a commutative ring. If R is T -noncosingular, then R is K -nonsingular.

Proof By [15, Proposition 2.7], it suffices to show that R is nonsingular. Since R is T -noncosingular, we

have Jac(R) = 0 by [20, Corollary 2.7]. So, R is a semiprime ring. Therefore, Z(R) = 0 by [4, Proposition

1.27(b)]. 2

The converse of Proposition 4.6 is not true, in general, as shown below.

Example 4.7 Let R be a discrete valuation ring with maximal ideal m . It is clear that Z(R) = 0 , while

Jac(R) = m . So R is K -nonsingular, but R is not T -noncosingular by [20, Corollary 2.7] and [15, Proposition

2.7].

Following [22, p. 261], a module M is called semi-injective if for any monomorphism f : N →M , where

N is a factor module of M , and for any homomorphism g : N → M , there exists h : M → M such that

hf = g . Note that every quasi-injective module is semi-injective.

In the next result, we provide a condition under which Proposition 4.6 holds true for modules.

Proposition 4.8 Let M be a coretractable module and let S = EndR(M) . If M is T -noncosingular, then

SS is K -nonsingular. The converse holds when M is semi-injective.

Proof This follows from [1, Corollary 4.8] and [15, Proposition 2.7]. 2
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