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Abstract: Let R be a ring and G a group. An R -module A is said to be Artinian-by-(finite rank) if TorR(A) is

Artinian and A/TorR(A) has finite R -rank. We study a module A over a group ring RG such that A/CA(H) is

Artinian-by-(finite rank) (as an R -module) for every proper subgroup H .
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1. Introduction

Let R be a ring, G a group, and A an RG -module. The modules over group rings are classic objects of

study with well-established links to various areas of algebra. The case where G is a finite group has been

studied in sufficient details for a long time. For the case where G is an infinite group, the situation is different.

Investigation of modules over polycyclic-by-finite groups was initiated in the classical works of Hall [4, 5].

Nowadays the theory of modules over polycyclic-by-finite groups is highly developed and rich in interesting

results. This was largely due to the fact that a group ring RG of a polycyclic-by-finite group G over a

Noetherian ring R is also Noetherian. The group rings over some other groups (even well-studied ones such as,

for instance, the Chernikov groups), do not always have such good properties as to be Noetherian. Therefore,

their study requires some different approaches and restrictions. For instance, the classical finiteness conditions

are largely employed and popular. The very first restrictions here were those that came from ring theory,

namely the conditions like ”to be Noetherian” and ”to be Artinian”. Noetherian and Artinian modules over

group rings are also very well investigated. Many aspects of the theory of Artinian modules over group rings

were treated in [7]. Recently the so-called finitary approach began to be employed intensively in the theory of

infinite dimensional linear groups, where it brings many interesting and promising results.

If H is a subgroup of G , then consider the centralizer CA(H) = {a ∈ A | ah = a for each element h ∈ H}
of H in A . Clearly CA(H) is an RH -submodule of A and H really acts on A/CA(H). The R -factor-module

A/CA(H) is called the cocentralizer of H in A . Then H/CH(A/CA(H)) is isomorphic to a subgroup of an

automorphism group of an R -module A/CA(H). It is not hard to see that CH(A/CA(H)) is abelian, and

therefore the structure of the automorphism group of the R -module A/CA(H) defines the structure of the

whole group H .
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Let M be a class of R -modules. We say that A is an M-finitary module over RG , if A/CA(x) ∈ M

for each element x ∈ G . If R is a field, CG(A) = ⟨1⟩ , and M is a class of all finite dimensional vector spaces

over R , then we come to the finitary linear groups. The theory of finitary linear groups is quite well developed

(see the survey in [10]). Wehrfritz began to consider the cases where M is the class of finite R -modules

[12, 14, 15, 17], where M is the class of Noetherian R -modules [13], and where M is the class of Artinian

R -modules [15, 16, 17, 18, 19]. The Artinian-finitary modules have been considered also in [8]. The notion

of a minimax module extends the notions of Noetherian and Artinian modules. An R -module A is said to be
minimax if A has a finite series of submodules, whose factors are either Noetherian or Artinian. It is not hard

to show that if R is an integral domain, then every minimax R -module A includes a Noetherian submodule

B such that A/B is Artinian. The first natural case here is the case where R = Z is the ring of all integers.

This case has very important applications in generalized soluble groups. Every Z -minimax module M has the

following important property: rZ(M) is finite and Tor(M) is an Artinian Z -module.

Let R be an integral domain and A be an R -module. An analogue of the concept of a dimension for

modules over integral domains is the concept of R -rank. One of the essential differences of R -modules and

vector spaces is that some elements of A can have a nonzero annihilator in the ring. Put

TorR(A) = {a ∈ A | AnnR(a) ̸= ⟨0⟩}.

It is not hard to see that TorR(A) is an R -submodule of A . Actually, the concept of R -rank works only for

the factor-module A/TorR(A). In particular, the finiteness of R -rank does not affect the submodule TorR(A).

We say that an R -module A is an Artinian-by-(finite rank) if TorR(A) is artinian and A/TorR(A) has finite

R -rank. In particular, if an Artinian-by-(finite rank) module A is R -torsion-free, then it could be embedded

into a finite dimensional vector space (over the field of fractions of R). If A is R -periodic, then it is Artinian.

Let G be a group, A an RG-module, and M a class of R -modules. Put

CM(G) = {H | H is a subgroup of G such that A/CA(H) ∈ M}.

If A is an M-finitary module, then CM(G) contains every cyclic subgroup (moreover, every finitely generated

subgroup whenever M satisfies some natural restrictions). It is clear that the structure of G depends significantly

on which important subfamilies of the family Λ(G) of all proper subgroups of G include CM(G). The first

natural question that arises here is the following: What is the structure of a group G in which Λ(G) = CM(G)

(in other words, the cocentralizer of every proper subgroup of G belongs to M)? In the current article, we

consider the case when R = Z and M is the class of all Artinian-by-(finite rank) modules. This examination

is conducted for the groups belonging to the very wide class of the locally generalized radical groups.

Recall that a group G is called a generalized radical if G has an ascending series whose factors are locally

nilpotent or locally finite.

The main result of our paper is the following:

Theorem Let G be a locally generalized radical group and A a ZG-module. If the factor-module A/CA(H) is

Artinian-by-(finite rank) for every proper subgroup H of G , then either A/CA(G) is Artinian-by-(finite rank)

or G/CG(A) is a cyclic or quasicyclic p-group for some prime p .

Corollary M Let G be a locally generalized radical group and A a ZG-module. If a factor-module A/CA(H)

is minimax for every proper subgroup H of G , then either A/CA(G) is minimax or G/CG(A) is a cyclic or

quasicyclic p-group for some prime p .
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Corollary N Let G be a locally generalized radical group and A a ZG-module. If a factor-module A/CA(H)

is finitely generated for every proper subgroup H of G , then either A/CA(G) is finitely generated or G/CG(A)

is a cyclic or quasicyclic p-group for some prime p .

Corollary A Let G be a locally generalized radical group and A a ZG-module. If a factor-module A/CA(H)

is Artinian for every proper subgroup H of G , then either A/CA(G) is Artinian or G/CG(A) is a cyclic or

quasicyclic p-group for some prime p .

We also will show that for every quasicyclic group one can find a ZG -module A such that CG(A) = ⟨1⟩
but the factor-module A/CA(H) is Artinian-by-(finite rank) for every proper subgroup H of G .

2. Some preparatory results

Lemma 1 Let R be a ring, G a group, and A an RG ğmodule. If L and H are subgroups of G , whose

cocentralizers are Artinian-by-(finite rank) modules, then A/CA(⟨H,L⟩) is also Artinian-by-(finite rank).

Proof The equation CA(⟨H,L⟩) = CA(H) ∩ CA(L) together with Remak’s Theorem imply an embedding

A/CA(⟨H,L⟩) ↪→ A/CA(H)⊕A/CA(L). Let U/CA(H) = Tor(A/CA(H)) and V/CA(L) = Tor(A/CA(L)).

Then Tor(A/CA(H)⊕A/CA(L)) = U/CA(H)⊕ V/CA(L) is an Artinian R -module and

(A/CA(H)⊕A/CA(L))/Tor(A/CA(H)⊕A/CA(L)) ∼= A/U ⊕A/V

is an R -torsion-free module of finite R -rank. Thus, A/CA(H) ⊕ A/CA(L) is an Artinian-by-(finite rank)

R -module. Therefore, its submodule A/CA(⟨H,L⟩) is also Artinian-by-(finite rank).

A group G is said to be F-perfect if G does not include proper subgroups of finite index.

Let G be a generalized radical group. Then either G has an ascendant locally nilpotent subgroup or

it has an ascendant locally finite subgroup. In the first case, the locally nilpotent radical Lnr(G) of G is

nonidentity. In the second case, it is not hard to see that G includes a nontrivial normal locally finite subgroup.

Clearly, in every group G , the subgroup Lfr(G) generated by all normal locally finite subgroups is the largest

normal locally finite subgroup (the locally finite radical). Thus, every generalized radical group has an ascending

series of normal subgroups with locally nilpotent or locally finite factors.

Observe also that a periodic generalized radical group is locally finite, and hence a periodic locally

generalized radical group is also locally finite.

Let q be a prime and A is an additive abelian q -group. For each positive integer n we define the nth

layer Ωn(A) by the following rule: Ωn(A) = {a ∈ A | qna = 0} . Clearly, Ωn(A) is a characteristic subgroup of

A .

Futhermore, by Drλ∈ΛGλ , we denote a direct product of groups Gλ , λ ∈ Λ. 2

Lemma 2 Let G be a locally generalized radical group and A be a ZG-module. Suppose that A includes a

ZG-submodule B , which is Artinian-by-(finite rank). Then the following assertions hold:

(i) G/CG(B) is soluble-by-finite.

(ii) If G/CG(B) is periodic, then it is nilpotent-by-finite.

(iii) If G/CG(B) is F-perfect and periodic, then it is abelian. Moreover, [[B,G], G] = ⟨0⟩ .
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Proof Without loss of generality we can suppose that CG(B) = ⟨1⟩ . We recall that the additive group of

the Artinian Z -module is Chernikov, that is K = TorZ(B) includes a divisible subgroup D , which is a direct

sum of quasicyclic subgroups such that K/T is finite. The additive group of B/K is torsion-free and has

finite Z -rank. In particular, the set Π(D) is finite, let us say Π(D) = {p1, . . . , pn} . Clearly D is G -invariant.

Being Z -periodic, D is a direct sum of its primary components, that is D = D1 ⊕ . . . ⊕ Dn where Dj is a

Sylow pj -subgroup of D , 1 ≤ j ≤ n . We note that every subgroup Dj is G -invariant, 1 ≤ j ≤ n . Let

q = pj . The factor-group G/CG(Dj) is isomorphic to a subgroup of GLm(Rq) where Rq is the ring of integer

q -adic numbers and m satisfies qm = |Ω1(Dj)| . Let Fq be a field of fractions of Rq , and then G/CG(Dj) is

isomorphic to a subgroup of GLm(Fq). Note that char(Fq) = 0. Being locally generalized radical, G/CG(Dj)

does not include the noncyclic free subgroup; thus, an application of Tits’ Theorem (see, for example, [11,

Corollary 10.17]) shows that G/CG(Dj) is soluble-by-finite. If G is periodic, then G/CG(Dj) is finite (see, for

example, [11, Theorem 9.33]). It is valid for each j , 1 ≤ j ≤ n . We have CG(D) =
∩

1≤j≤n CG(Dj), and

therefore using Remak’s Theorem we obtain the embedding

G/CG(D) ↪→ Dr1≤j≤nG/CG(Dj),

which shows that G/CG(D) is also soluble-by-finite (respectively, for periodic G it is finite). Since K/D is finite,

G/CG(K/D) is finite. Finally, G/CG(B/K) is isomorphic to a subgroup of GLr(Q), where r = rZ(B/K).

Using again the fact that G/CG(A/K) does not include the noncyclic free subgroup and Tits’ Theorem or

Theorem 9.33 of [11] (for periodic G), we obtain that G/CG(B/K) is soluble-by-finite (respectively finite

whenever G is periodic). Put

Z = CG(D) ∩ CG(K/D) ∩ CG(B/K).

Then G/Z is embedded in G/CG(D)∩G/CG(K/D)∩G/CG(B/K), and in particular, G/Z is soluble-by-finite

(respectively finite). If x ∈ Z , then x acts trivially on every factor of the series ⟨0⟩ ≤ D ≤ K ≤ A . Then Z is

nilpotent [6]. It follows that G is soluble-by-finite (respectively, for periodic G , it is nilpotent-by-finite). This

completes the proof of (i) and (ii).

Now we prove (iii). Suppose now that G is an F-perfect group. Again consider the series of G -invariant

subgroups ⟨0⟩ ≤ K ≤ B . Being abelian and Chernikov, K is a union of ascending series

⟨0⟩ = K0 ≤ K1 ≤ ... ≤ Kn ≤ Kn+1 ≤ ...

of G -invariant finite subgroups Kn , n ∈ N . Then the factor-group G/CG(Kn) is finite, n ∈ N . Since G is

F-perfect, G = CG(Kn) for each n ∈ N . The equation K =
∪

n∈N Kn implies that G = CG(K). By the above,

G/CG(B/K) is soluble-by-finite, and being F-perfect, it is soluble. Then G/CG(B/K) includes normal sub-

groups U , V such that CG(B/K) ≤ U ≤ V , U/CG(B/K) is isomorphic to a subgroup of UTr(Q), and V/U

includes a free abelian subgroup of finite index [1, Theorem 2]. Since G/CG(B/K) is F - perfect, it follows that

G/CG(B/K) is torsion-free. Being periodic, G/CG(B/K) must be identity. In other words, G = CG(B/K).

Hence, G acts trivially on every factor of the series ⟨0⟩ ≤ K ≤ A , so that [[B,G], G] = ⟨0⟩ and we obtain that

G is abelian [6]. The result is proved. 2

Corollary Let G be a group and A a ZG-module. If the factor-module A/CA(G) is Artinian-by-(finite rank),

then every locally generalized radical subgroup of G/CG(A) is soluble-by-finite, and every periodic subgroup of

G/CG(A) is nilpotent-by-finite.
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Indeed, Lemma 2 shows that G/CG(A/CA(G)) is soluble-by-finite. Every element x ∈ CG(A/CA(G))

acts trivially in the factors of the series ⟨0⟩ ≤ CA(G) ≤ A . It follows that CG(A/CA(G)) is abelian. Suppose

now that H/CG(A) is a periodic subgroup. Since A/CA(G) is Artinian-by-(finite rank), A has a series of

H -invariant subgroups ⟨0⟩ ≤ CA(G) ≤ D ≤ K ≤ A where D/CA(G) is a divisible Chernikov subgroup,

K/D is finite, and A/K is torsion-free and has finite Z -rank. In Lemma 2 we have already proven that

G/CG(D/CA(G)), G/CG(K/D), and G/CG(A/K) are finite. Let Z = CG(D/CA(G))∩CG(K/D)∩CG(A/K).

Then G/Z is finite. If x ∈ Z , then x acts trivially on every factor of the series ⟨0⟩ ≤ CA(G) ≤ D ≤ K ≤ A .

Therefore, Z is nilpotent [6].

The next result is well known, but we were not able to find an appropriate reference, so we prove it here.

Lemma 3 Let G be an abelian group. Suppose that G ̸= KL for arbitrary proper subgroups K , L . Then G

is a cyclic or quasicyclic p-group for some prime p .

Proof If G is finite, then it is not hard to see that G is a cyclic p -group for some prime p . Therefore,

suppose that G is infinite. If G is periodic, then obviously G is a p -group for some prime p . Let B be a

basic subgroup of G ; that is, B is a pure subgroup of G such that B is a direct product of cyclic p -subgroups

and G/B is divisible. The existence of such subgroups follows from [3, Theorem 32.3]. Since G/B is divisible,

G/B = Drλ∈ΛDλ where Dλ is a quasicyclic subgroup for every λ ∈ Λ (see, for example, [3, Theorem 23.1]).

Our condition shows that G/B is a quasicyclic group. In particular, if B = ⟨1⟩ , then G is a quasicyclic group.

Assume that B ̸= ⟨1⟩ . If B is a bounded subgroup, then G = B×C for some subgroup C (see, for example, [3,

Theorem 27.5]), and we obtain a contradiction. Suppose that B is not bounded. Then B includes a subgroup

C = Drn∈N⟨cn⟩ such that B = C×U for some subgroup U and |cn| = pn , n ∈ N . Let E = ⟨c−1
n ·cpn+1 | n ∈ N⟩ .

Then the factor-group C/E is quasicyclic, so that B/EU is also quasicyclic. It follows that G/EU is a direct

product of 2 quasicyclic subgroups, which yields a contradiction. This shows that B = ⟨1⟩ , which proves our

result. 2

Corollary Let G be a soluble group. Suppose that G is not finitely generated and G ̸= ⟨K,L⟩ for arbitrary

proper subgroups K , L . Then G/[G,G] is a quasicyclic p-group for some prime p .

If G is a group, then by Tor(G) we will denote the maximal normal periodic subgroup of G . We recall

that if G is a locally nilpotent group, then Tor(G) is a (characteristic) subgroup of G and G/Tor(G) is

torsion-free.

3. Proof of main theorem

Again suppose that CG(A) = ⟨1⟩ . Suppose that G is a finitely generated group. Then we can choose a finite

subset M such that G = ⟨M⟩ , but G ̸= ⟨S⟩ for every subset S ̸= M . If |M | > 1, then M = {x} ∪ S

where x /∈ S and S ̸= ∅ . It follows that ⟨S⟩ = U ̸= G , and thus A/CA(U) is Artinian-by-(finite rank).

The factor A/CA(x) is also Artinian-by-(finite rank), and Lemma 1 shows that ⟨x,U⟩ = ⟨x, S⟩ = G has an

Artinian-by-(finite rank) cocentralizer.

Suppose that M = {y} ; that is, G = ⟨y⟩ is a cyclic group. If y has infinite order, then ⟨y⟩ = ⟨yp⟩⟨yq⟩
where p , q are primes, p ̸= q , and Lemma 1 again implies that A/CA(G) is Artinian-by-(finite rank). Finally,

if y has finite order, but this order is not a prime power, then ⟨y⟩ is a product of 2 proper subgroups, and

Lemma 1 implies that A/CA(G) is Artinian-by-(finite rank).

Assume now that G is not finitely generated and A/CA(G) is not Artinian-by-(finite rank). Suppose
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that G includes a proper subgroup of finite index. Then G includes a proper normal subgroup H of finite

index. We can choose a finitely generated subgroup F such that G = HF . Since G is not finitely generated,

F ̸= G . It follows that cocentralizers of both subgroups H and F are Artinian-by-(finite rank). Lemma 1 shows

that FH = G has an Artinian-by-(finite rank) cocentralizer, and we obtain a contradiction. This contradiction

shows that G is an F-perfect group.

If H is a proper subgroup of G , then Corollary to Lemma 2 shows that H is soluble-by-finite. In

particular, G is locally (soluble-by-finite). By Theorem A of [2], G includes a normal locally soluble subgroup

L such that G/L is a finite or locally finite simple group. Since G is an F -perfect group, then in the first

case G = L , i.e. G is locally soluble. Consider the second case. Put C = CA(L). In a natural way, we can

consider C as a Z(G/L)-module. CG/L(C) is a normal subgroup of G/L . Since G/L is a simple group, then

either CG/L(C) is the identity subgroup or CG/L(C) = G/L . In the second case, C ≤ CA(G) and A/CA(G)

is Artinian-by-(finite rank). This contradiction shows that CG/L(C) =< 1 > . Let H/L be an arbitrary

proper subgroup of G/L . Then H is a proper subgroup of G , and therefore A/CA(H) is Artinian-by-(finite

rank). It follows that C/(C ∩ CA(H)) is also Artinian-by-(finite rank). Clearly CC(H/L) ≤ C ∩ CA(H), so

that C/CC(H/L) is Artinian-by-(finite rank). Since H/L is periodic, it is nilpotent-by-finite by Corollary to

Lemma 2. In other words, every proper subgroup of G/L is nilpotent-by-finite. Using now Theorem A of [9],

we obtain that either G/L is soluble-by-finite or a p -group for some prime p . In any case, G/L cannot be

an infinite simple group. This contradiction shows that G is locally soluble. Being an infinite locally soluble

group, G has a nonidentity proper normal subgroup. The Corollary to Lemma 2 shows that this subgroup is

soluble. It follows that G includes a nonidentity normal abelian subgroup. In turn, it follows that the locally

nilpotent radical R1 of G is nonidentity. Suppose that G ̸= R1 . Being F-perfect, G/R1 is infinite. Using the

above arguments, we obtain that the locally nilpotent radical R2/R1 of G/R1 is nonidentity. If G ̸= R2 , then

the locally nilpotent radical R3/R2 of G/R2 is nonidentity, and so on. Using ordinary induction, we obtain

that G is a radical group. Suppose that the upper radical series of G is infinite and consider its term Rω ,

where ω is the first infinite ordinal. By its choice, Rω is not soluble. Then the Corollary to Lemma 2 shows

that Rω = G .

Since Rn is a proper subgroup of G , A/CA(Rn) is Artinian-by-(finite rank), n ∈ N . Rn is normal in

G , and therefore CA(Rn) is a ZG -submodule. Lemma 3 shows that G/CG(A/CA(Rn)) is abelian. Suppose

that there exists a positive integer m such that G ̸= CG(A/CA(Rm)), and then [G,G] is a proper subgroup

of G . An application of the Corollary to Lemma 2 shows that [G,G] is soluble, and thus even G is soluble.

This contradiction proves the equality G = CG(A/CA(Rn)). In other words, [A,G] ≤ CA(Rn). Since it is valid

for each n ∈ N , [A,G] ≤
∩

n∈N CA(Rn). The equation G =
∪

n∈N Rn implies that CA(G) =
∩

n∈N CA(Rn).

Hence, [A,G] ≤ CA(G). Thus, G acts trivially on both factors CA(G) and A/CA(G), which follows that G is

abelian [6]. Contradiction. This contradiction proves that G is soluble.

Let D = [G,G] . Then by the Corollary to Lemma 3 G/D is a quasicyclic p -group for some prime p . It

follows that G has an ascending series of normal subgroups

D = K0 ≤ K1 ≤ ... ≤ Kn ≤ Kn+1 ≤ ...

such that Kn/D is a cyclic group of order pn , n ∈ N , and G =
∪

n∈N Kn . Every subgroup Kn is proper and

normal in G , and therefore CA(Kn) is a ZG -submodule and A/CA(Kn) is Artinian-by-(finite rank). Lemma 2

shows that [[A,G], G] ≤ CA(Kn). It is valid for each n ∈ N , and therefore [[A,G], G] ≤
∩

n∈N CA(Kn). The
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equation G =
∪

n∈N Kn implies that CA(G) =
∩

n∈N CA(Rn). Hence, [[A,G], G] ≤ CA(G). It follows that G

acts trivially on factors CA(G), [A,G]/CA(G) and A/[A,G] . It follows that G is nilpotent of class at most 2

[6].

If G is abelian, then Lemma 3 shows that G is a cyclic or quasicyclic p ğgroup for some prime p . Suppose

that G is nonabelian. Let T = Tor(G). If we suppose that T ̸= G , then G/T is a non-identity torsion-free

nilpotent group. In particular, G/T has a nonidentity torsion-free abelian factor group, which contradicts the

Corollary to Lemma 3. This contradiction shows that G is a periodic group. Moreover, G is a p -group. Since

G is nilpotent of class 2, then [G,G] ≤ ζ(G). In particular, G/ζ(G) is a quasicyclic group. In this case, [G,G]

is a Chernikov subgroup (see, for example, [7, Theorem 23.1]). It follows that the whole group G is Chernikov.

Being F -perfect, G is abelian, which completes the proof.

We will construct the following example showing that for every quasicyclic p-group G there exists a

ZG ğmodule A such that every proper subgroup of G has an Artinian-by-(finite rank) cocentralizer, but the

cocentralizer of the whole group G is not Artinian-by-(finite rank).

Let p be a prime and G a quasicyclic p -group; that is, G = ⟨gn | n ∈ N⟩ , where gp1 = 1, gp2 = g1 , ...,

gpn+1 = gn . Let Aj = ⟨aj⟩ be an additively written infinite cyclic group, j ∈ N , and B = ⟨bn | n ∈ N⟩
an additively written quasicyclic p -group; that is, pb1 = 0, pb2 = b1 , ..., pbn+1 = bn , n ∈ N . Put

A =
⊕

j∈N Aj ⊕B . Let γ1 be an automorphism of A , satisfying the following conditions:

γ1(a1) = a1 + b1, γ1(aj) = aj , whenever j > 1, γ1(bn) = bn for all n ∈ N.

Then γp
1 = ε is an identity automorphism of A . Consider the automorphism γ2 of A , defined by the

following rule:

γ2(a1) = a1 + b2, γ2(a2) = a2 + b1, γ2(aj) = aj , whenever j > 2, γ2(bn) = bn for all n ∈ N.

Then γp
2 = γ1 . In a similar way, if k is a positive integer, then define the automorphism γk of A by the

following rule:

γk(a1) = a1 + bk, γk(a2) = a2 + bk−1, ..., γk(ak) = ak + b1, γk(aj) = aj , whenever j > k,

γk(bn) = bn for all n ∈ N.

It is not hard to prove that γp
1 = ε , γp

2 = γ1 , ..., γ
p
k+1 = γk , k ∈ N . In other words, Γ = ⟨γk | k ∈ N⟩

is a quasicyclic p -group. Let f be an isomorphism of G on Γ such that f(gk) = γk , k ∈ N . Define the

action of G on A by the rule agk = γk(a), k ∈ N . In a natural way, A becomes a ZG -module. Furthermore,

CA(gk) =
⊕

j>k Aj ⊕ B , so that A/CA(gk) = A1 ⊕ ... ⊕ Ak , and in particular, A/CA(gk) is a free Z -module

and its Z -rank is k , k ∈ N . At the same time, CA(G) = B , and therefore A/CA(G) has infinite Z -rank, and

hence is not Artinian-by-(finite rank).
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