Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $60-78$
(c) TÜBİTAK
doi:10.3906/mat-1209-11

On 2 nonsplit extension groups associated with $H S$ and $H S: 2$

Jamshid MOORI*, Theskiso SERETLO
School of Mathematical Sciences North-West University (Mafikeng) Mmabatho, South Africa

Received: 07.09.2012 • Accepted: 29.04.2013 • Published Online: 09.12.2013 • Printed: 20.01 .2014

Abstract

The group $H S: 2$ is the full automorphism group of the Higman-Sims group $H S$. The groups $2^{4 \cdot} S_{6}$ and $2^{5} \cdot S_{6}$ are maximal subgroups of $H S$ and $H S: 2$, respectively. The group $2^{4 \cdot} S_{6}$ is of order 11520 and $2^{5} \cdot S_{6}$ is of order 23040 and each of them is of index 3850 in $H S$ and $H S: 2$, respectively. The aim of this paper is to first construct $\bar{G}=2^{5} \cdot S_{6}$ as a group of the form $2^{4} \cdot S_{6} .2$ (that is, $\bar{G}=\bar{G}_{1} \cdot 2$) and then compute the character tables of these 2 nonsplit extension groups by using the method of Fischer-Clifford theory. We will show that the projective character tables of the inertia factor groups are not required. The Fischer-Clifford matrices of \bar{G}_{1} and \bar{G} are computed. These matrices together with the partial character tables of the inertia factors are used to compute the full character tables of these 2 groups. The fusion of \bar{G}_{1} into \bar{G} is also given.

Key words: Group extensions, Higman-Sims group, automorphism group, character table, Clifford theory, inertia groups, Fischer-Clifford matrices

1. Introduction

The Higman-Sims group, $H S$, is a sporadic simple group of order $2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11=44352000$. This is a group that was discovered in 1967 by Higman and Sims [16]. It is a simple group of index 2 in the group of automorphisms of the Higman-Sims graph. Higman and Sims were attending a presentation by Marshall Hall on the Hall-Janko group, J_{2}, which is a permutation group on 100 points with the stabilizer of a point a subgroup with the other 2 orbits of length 36 and 63 . They then thought of a group of permutations on 100 points containing the Mathieu group M_{22}, which has a permutation representation on 22 and 77 points. From these 2 ideas they found $H S$, with a 1-point stabilizer isomorphic to M_{22}. Higman, in 1969 [15], independently discovered this group as a doubly transitive group acting on a certain "geometry" of 176 points. In his classical paper Conway [7] showed that $H S$ is a subgroup of each of the Conway groups $C o_{1}, C o_{2}$, and $C o_{3}$. This group is also 1 of the 7 sporadic groups found in $C o_{1}$ but not in the Mathieu groups, and this set of groups is also known as the second generation of sporadic groups. The group $H S: 2$ is of order $88704000=2^{10} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$ and it is the full automorphism group of $H S$. The aim of this paper is to compute the Fischer-Clifford matrices of \bar{G}_{1} and \bar{G}. We use these matrices and the partial character tables of each inertia factor group to compute the full character table of each group. In fact, we will show that the projective character tables of the inertia factor groups are not required. This work is taken from the dissertation of the second author [34] and the notations used are consistent with that of the $\mathbb{A T L A S}[8]$ and the $\mathbb{A T L} \mathbb{A}$ of group representations V3 [36].

[^0]The method used is based on Fischer-Clifford theory. Let $\bar{G}=N \cdot G$, where $N \triangleleft \bar{G}$ and $\bar{G} / N \cong G$ is a group extension. The character table of \bar{G} can be constructed once we have:

- the character tables (ordinary and projective) of the inertia factor groups,
- the fusions of classes of the inertia factors into classes of G,
- the Fischer-Clifford matrices of $\bar{G}=N \cdot G$.

We will see later that for the groups under discussion in this paper, the projective characters of the inertia factor groups are not involved (only ordinary characters of the inertia factor groups are needed); hence, we are only dealing with the special case of Fischer-Clifford theory, which we outline in the following text.

Let $\bar{g} \in \bar{G}$ be a lifting of $g \in G$ under the natural homomorphism $\bar{G} \longrightarrow G$ and [g] be a conjugacy class of elements of G with representative g. Let $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{t}\right\}$ be a set of representatives of the orbits of \bar{G} on $\operatorname{Irr}(N)$ such that for $1 \leq i \leq t$, we have inertia groups $\bar{H}_{i}=I_{\bar{G}}\left(\theta_{i}\right)$ with the corresponding inertia factors H_{i}. For each $[g]$ we obtain the matrix $M(g)$ given by

$$
M(g)=\left[\begin{array}{c}
M_{1}(g) \\
M_{2}(g) \\
\vdots \\
M_{t}(g)
\end{array}\right]
$$

where $M_{i}(g)$ is the submatrix corresponding to the inertia group $\bar{H} i$ and its inertia factor H_{i}. If $H_{i} \cap[g]=\emptyset$, then $M_{i}(g)$ will not exist and $M(g)$ does not contain $M_{i}(g)$. The size of the matrix $M(g)$ is $c(g) \times c(g)$, where $c(g)$ is the number of conjugacy classes of elements of \bar{G} that correspond to the coset $\bar{g} N$. Then $M(g)$ is the Fischer-Clifford matrix of \bar{G} corresponding to the coset $\bar{g} N$. The partial character table of \bar{G} on the classes $\left\{x_{1}, x_{2}, \ldots, x_{c(g)}\right\}$ is given by

$$
\left[\begin{array}{c}
C_{1}(g) M_{1}(g) \\
C_{2}(g) M_{2}(g) \\
\vdots \\
C_{t}(g) M_{t}(g)
\end{array}\right]
$$

where the Fischer-Clifford matrix $M(g)$ is divided into blocks with each block corresponding to an inertia group \bar{H}_{i} and $C_{i}(g)$ is the partial character table of H_{i} consisting of the columns corresponding to the classes that fuse into $[g]$ in G. We obtain the characters of \bar{G} by multiplying the relevant columns of the characters of H_{i} by the rows of $M(g)$.

The theory of Fischer-Clifford matrices, which is based on Clifford theory (see [6]), was developed by B. Fischer ([11], [12], and [13]). This technique has also been discussed and applied to both split and nonsplit extension in several publications, for example in [1, 2, 4, 25, 29]. One can read more on Fischer-Clifford theory and projective characters in $[10,28,27,35]$ and $[9,18,17,20,30,31,32]$, respectively. For the theory of characters one can also read [19].

1.1. The Conway groups

Leech created a lattice that gives the tightest lattice packing of spheres in 24 dimensions [21]. Conway analyzed the symmetry of this lattice in detail in [7] and discovered 3 previously unknown sporadic groups, namely the $C o_{1}, \mathrm{Co}_{2}$, and Co_{3}. Let us give a definition of the Leech lattice, which is given as Theorem 5.1 in [37].

MOORI and SERETLO/Turk J Math

Definition 1.1 The Leech lattice Λ is a 24-dimensional even integral lattice containing no vectors of norm 2,196560 vectors of norm 4,16773120 vectors of norm 6 , and 398034000 vectors of norm 8 .

We first construct the biggest Conway group $\operatorname{Aut}(\Lambda)=. O=2 . C o_{1}$ as a group of 24×24 matrices. All the vectors of norm 8 in the Leech lattice fall into congruence classes of 48 pairs of mutually perpendicular vectors called the crosses and we get 8292375 such crosses. When.O acts on these crosses, the stabilizer of a cross is a group $2^{12}: M_{24}$, which is maximal in.O. So.O is a group of order $8292375.2^{12} .\left|M_{24}\right|$. The group.$O$ is a perfect group with $Z(. O)=2$. The quotient of this group by the center is a group denoted by $.1=C o_{1}$ and is of order

$$
\left|C o_{1}\right|=4157776806543360000=2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13.23
$$

Note that the action of.O on crosses is transitive and $C o_{1}$ is a simple group.
.O also acts transitively on vectors of norm 4 having the products ± 4 or 0 . These 3 orbits of $2^{12}: M_{24}$ on vectors of norm 4 are fused into a single orbit under $2 . C o_{1}$. The stabilizer of a vector of norm 4 is denoted by Co_{2}, where

$$
\left|C o_{2}\right|=42305421312000=2^{18} \cdot 3^{6} .5^{3} \cdot 7 \cdot 11.23
$$

Lastly,.O is transitive on vectors of norm 6 . The stabilizer of a vector of norm 6 is denoted by Co_{3} and is of order

$$
\left|C o_{3}\right|=423054213122000=2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11.23
$$

From the $\mathbb{A T L A S}[8]$ we see that $C o_{3} \leq C o_{2} \leq C o_{1}$ with $C o_{2}$ and $C o_{3}$ both maximal subgroups of $C o_{1}$ and Co_{3} a maximal subgroup of Co_{2}.

1.2. The Higman-Sims group

We get the Higman-Sims group $H S$ by showing that $C o_{3}$ acts transitively on the set S of 11178 vectors of norm 4 that have inner product -2 with vector v, when $v=\left(-2^{12}, 0^{12}\right)$. The monomial group $2 \times M_{12}$ fixes v and has 6 orbits on S. When $u=\left(-5,-1^{23}\right)$, the group M_{23} fixes u and has 5 orbits on S. The only way for both these sets of orbits to fuse into orbits for Co_{3} is a single orbit of length 11178. Thus, the stabilizer in Co_{3} of such a vector in S is a subgroup of index 11178. This is the Higman-Sims group $H S$ of order

$$
|H S|=44352000=2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11
$$

Moreover, if we let $w=\left(5,1,1^{22}\right)$ and $x=\left(-1,-5,-1^{22}\right)$, the stabilizer of the set $\{w, x\}$ is the monomial group $M_{22}: 2$ and we get an involution of the group, which interchanges the 2 vectors. This results in $H S$ extending to $H S: 2$, which is a full automorphism group of $H S$. A complete list of maximal subgroups of the Conway groups is provided in Table 5.3 of [37]. For further reading one can also go to [7, 21, 24, 37].

We use [36] to find two 20×20 matrices a and b with a from class $2 A, b$ from class $5 A$, and $H S=<a, b>$. Again using [36] we find two 20×20 matrices c, d from classes $2 C$ and $5 C$ of $H S: 2$, respectively, with $H S: 2=<c, d>$. From the $H S$ computed, $H S: 2$ is an automorphism group of an isomorphic copy of it.

1.3. The groups $2^{4} \cdot S_{6}$ and $2^{5} \cdot S_{6}$

The group $H S: 2$ has 3 conjugacy classes of subgroups of order 11520 . The first is a group $2^{4} \cdot S_{6}$ that sits maximally inside of $H S$. The second is a group $2^{4}: S_{6}$ that is maximal in \bar{M}_{22} and hence sits inside $H S: 2$,
but not inside $H S$. The third is a group of the form $2^{5}: A_{6}$ that is a maximal subgroup of $2^{5} \cdot S_{6}$. The group we are interested in, $2^{4} \cdot S_{6}$, is a maximal subgroup of $H S \leq H S: 2$. For further reading on $2^{4}: S_{6}$ as a maximal subgroup of \bar{M}_{22} one can read [23] and [35]. The group $2^{5} \cdot S_{6}$ is a group of order 23040 and it is a maximal subgroup of $H S: 2$. The groups $2^{4} \cdot S_{6}$ and $2^{5} \cdot S_{6}$ are unique maximal subgroups of their form in $H S$ and $H S: 2$, respectively. Using generators a and b of $H S$ and Programme G [34], we obtain elements a_{1}^{\prime} and b_{1}^{\prime} with $o\left(a_{1}^{\prime}\right)=2, o\left(b_{1}^{\prime}\right)=5$, and $\bar{G}_{1}^{\prime}=<a_{1}^{\prime}, b_{1}^{\prime}>=2^{4} \cdot S_{6}$. Similarly using generators c and d of $H S: 2$ and Programme H [34], we obtain two elements c^{\prime} and d^{\prime} with $o\left(c^{\prime}\right)=2, o\left(d^{\prime}\right)=5$ and $\overline{G^{\prime}}=<c^{\prime}, d^{\prime}>=2^{5} \cdot S_{6}$. Our aim is to construct $\bar{G}=2^{5} \cdot S_{6}$ as $\bar{G}_{1} \cdot 2$, where $\overline{G_{1}}=2^{4} \cdot S_{6}$ and $\bar{G}=\bar{G}_{1} \cdot 2 \cong 2^{5} \cdot S_{6}$ are both inside $H S: 2$. Since $\overline{G_{1}^{\prime}}$ is in $H S$ we seek for its isomorphic copy $\overline{G_{1}}$ in $H S: 2$. The extension of \bar{G}_{1} is $\bar{G}_{1} \cdot 2=\bar{G}$ and $\bar{G} \cong \overline{G^{\prime}}$.

Having obtained $\overline{G^{\prime}}$, using GAP [14], we get 3 of its subgroups of order 11520. By methods of coset analysis [34], we determine that each of these 3 subgroups is of the form $2^{4} . S_{6}$. From these 3 subgroups, only $1, \bar{G}_{1}$, is isomorphic to $\overline{G_{1}^{\prime}}$ in $H S$. The group \bar{G}_{1} has 7 generators, of which 5 are of order 2,1 of order 5 , and 1 of order 6 . To this list of 7 generators we add 1 of the generators of $H S: 2$ of order 2 , namely c. The group generated by these 8 elements is $\bar{G}=2^{4} \cdot S_{6} \cdot 2=2^{5} \cdot S_{6}$.

The groups $2^{4} \cdot S_{6}$ and $2^{5} \cdot S_{6}$ will be discussed fully in Sections 2 and 3 , respectively.

2. The group $\bar{G}_{1}=2^{4} \cdot S_{6}$

From [36] we get two 20×20 matrices a and b over $G F(2)$ with $o(a)=2, o(b)=5, o(a b)=11$, and $H S=\langle a, b\rangle$. Again from [34] we get Programme G, where there are 2 inputs with $a=\operatorname{input}[1]$ and $b=\operatorname{input}[2]$. The program results in 2 outputs. Let $a_{1}^{\prime}=$ output $[1]$ and $b_{1}^{\prime}=\operatorname{output}[2]$. Then we have $o\left(a_{1}^{\prime}\right)=2, o\left(b_{1}^{\prime}\right)=5, o\left(a_{1}^{\prime} b_{1}^{\prime}\right)=6$, and $\left.\overline{G^{\prime}} 1=<a_{1}^{\prime}, b_{1}^{\prime}\right\rangle=2^{4} \cdot S_{6}$. Up to isomorphism, there is only 1 group of the type $2^{4} \cdot S_{6}$ that is a maximal subgroup of $H S$ and this has 21 conjugacy classes of elements, of which 2 are classes of involutions.

Going back to [36], we get two 20×20 matrices c and d with $o(c)=2, o(d)=5$, and $H S: 2=<c, d\rangle$. From [34] we again get Programme H where $c=\operatorname{input}[1]$ and $d=i n p u t[2]$. Again from the program we get 2 outputs. Let $c_{1}^{\prime}=$ output $[1]$ and $d_{1}^{\prime}=$ output $[2]$. We get that $o\left(c_{1}^{\prime}\right)=2$, o $\left(d_{1}^{\prime}\right)=10$, o $\left(c_{1}^{\prime} d_{1}^{\prime}\right)=6$, and $\overline{G^{\prime}}=\left\langle c_{1}^{\prime}, d_{1}^{\prime}\right\rangle=2^{5} \cdot S_{6}$. Programmes G and H can also be found in [36].

Using GAP [14], we get 8 normal subgroups of $\overline{G^{\prime}}$. Three of these groups (we call them $S 1, S 2, S 3$) are of order 11520 and for each group the conjugacy class $2 A$ has 15 elements; when S_{6} acts on 2^{4}, we get 2 orbits of length 1 and 15 and hence all these groups are of the form $2^{4} \cdot S_{6}$. One of them $\left(S 2=2^{4}: S_{6}\right)$, however, has 5 classes of involutions and is thus not a maximal subgroup of $H S$. The other one ($S 3$, a split extension of 2^{5} by A_{6}) has 24 conjugacy classes and again is not a maximal subgroup of $H S$. The group $S 2$, from [23] and [35], is actually a maximal subgroup of \bar{M}_{22}. This leaves us with the group $S 1=\bar{G}_{1} \cong \overline{G_{1}^{\prime}}$. See Remark 2.1 for more details on groups $S 1, S 2$, and $S 3$. The group \bar{G}_{1} has 7 generators $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, and a_{7} with a_{1} of order $2, a_{2}$ of order $5, a_{3}$ of order 6 , and the rest of order 2 . We use GAP to compute normal subgroups of \bar{G}_{1} and it has only 1 proper normal subgroup, the elementary abelian group $N_{1}=2^{4}$. Our aim is to act \bar{G}_{1} on N_{1} and to do this we use Programme C [34]; this requires us to consider N_{1} as a full row space V_{1} of dimension 4 over $G F(2)$. The action of \bar{G}_{1} on V_{1} is multiplication of V_{1} from the right. For this multiplication to be possible, this then requires us to rewrite \bar{G}_{1} from a 20×20 representation to 4×4. To do this, we act

MOORI and SERETLO/Turk J Math

\bar{G}_{1} on N_{1} by acting the 7 generators $a_{i}, i=1, \cdots, 7$ of \bar{G}_{1} on the 4 generators $\lambda_{i}, i=1, \cdots, 4$ of N_{1}. Writing this action as maps we get:

$$
\begin{gathered}
a_{1}: \lambda_{1} \rightarrow \lambda_{2}, \lambda_{2} \rightarrow \lambda_{1}, \lambda_{3} \rightarrow \lambda_{1} \lambda_{3} \lambda_{4}, \lambda_{4} \rightarrow \lambda_{1} \lambda_{2} \lambda_{4} \\
a_{2}: \lambda_{1} \rightarrow \lambda_{2}, \lambda_{2} \rightarrow \lambda_{4}, \lambda_{3} \rightarrow \lambda_{1} \lambda_{2}, \lambda_{4} \rightarrow \lambda_{2} \lambda_{3} \lambda_{4} \\
a_{3}: \lambda_{1} \rightarrow \lambda_{2} \lambda_{3} \lambda_{4}, \lambda_{2} \rightarrow \lambda_{4}, \lambda_{3} \rightarrow \lambda_{1} \lambda_{2} \lambda_{3}, \lambda_{4} \rightarrow \lambda_{2}
\end{gathered}
$$

For the rest, that is a_{4} to a_{7}, we get:

$$
a_{i}: \lambda_{1} \rightarrow \lambda_{1}, \quad \lambda_{2} \rightarrow \lambda_{2}, \quad \lambda_{3} \rightarrow \lambda_{3}, \quad \lambda_{4} \rightarrow \lambda_{4}
$$

Writing this in matrix form we get:

$$
\alpha_{1}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right) ; \quad \alpha_{2}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) ; \alpha_{3}=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

For the rest, α_{4} to α_{7}, we get:

$$
\alpha_{i}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Let $G_{1}=<\alpha_{1}, \alpha_{2}, \alpha_{3}>\cong S_{6}$; that is, the action of \bar{G}_{1} on N_{1} is isomorphic to S_{6}.

Remark 2.1 Note that $N_{1}=2^{4}$ is generated by 4 commuting involutions from the class $2 A$ of HS. From $\mathbb{A T L A S}$ we can see that $S 1=\bar{G}_{1}=N_{H S}\left(N_{1}\right), S 2=N_{\bar{M}_{22}}\left(N_{1}\right)$, and $N_{H S: 2}\left(N_{1}\right)=2^{5} \cdot S_{6}=\bar{G}$. As observed, $S 1, S 2, S 3$ are nonisomorphic maximal subgroups of \bar{G} and that $S 2$ and $S 3$ do not sit inside $H S$. Our computations show that

$$
\begin{aligned}
S 1 & =2^{4 \cdot} S_{6}=\bar{G} \cap H S \leq_{\max } H S \leq_{\max } H S: 2 \\
S 2 & =2^{4}: S_{6}=\bar{G} \cap \bar{M}_{22} \leq_{\max } \bar{M}_{22} \leq_{\max } H S: 2 \\
S 3 & =2^{4 \cdot}\left(A_{6} \times 2\right) \cong 2^{5}: A_{6} \leq_{\max } \bar{G} \leq_{\max } H S: 2 \\
S 1 \cap S 2 & =S 2 \cap S 3=S 1 \cap S 3=N_{M_{22}}\left(N_{1}\right)=2^{4}: A_{6} \leq_{\max } M_{22} \leq_{\max } H S .
\end{aligned}
$$

We compute the character table of $S 1=\bar{G}_{1}$ in Section 2.2 (Table 4) by using Fischer-Clifford theory. The character tables of $S 2$ and $S 3$ are given in Table 1 and Table 2 of [34], respectively. It is also interesting to note that the character tables of $S 1$ and $S 2$ have the same number of conjugacy classes. A pictorial view of Remark 2.1 is given in the Figure, where $A=2^{4} . A_{6}$.

Lemma 2.2 $\bar{G}=S 1 \cup S 2 \cup S 3$.

MOORI and SERETLO/Turk J Math

Figure. S1, S2, and S3.

Proof First we see that $\bar{G} \supseteq S 1 \cup S 2 \cup S 3$, but we also have

$$
S 1 \cup S 2 \cup S 3=(S 1-A) \cup(S 2-A) \cup(S 3-A) \cup A
$$

Hence:

$$
\begin{aligned}
|S 1 \cup S 2 \cup S 3| & =|S 1-A|+|S 2-A|+|S 3-A|+|A| \\
& =3 \times\left(16 \times 6!-16 \times \frac{6!}{2}\right)+\left(16 \times \frac{6!}{2}\right) \\
& =3 \times 16 \times 6!-2 \times 16 \times \frac{6!}{2} \\
& =2 \times 16 \times 6! \\
& =\left|2^{5} \cdot S_{6}\right|
\end{aligned}
$$

Thus, $2^{5} \cdot S_{6}=S 1 \cup S 2 \cup S 3$.

Theorem 2.3 HS:2 has only 3 conjugacy classes of subgroups of type $2^{4} . A_{6} .2$. In particular, $S 1$ and $S 2$ are of type $2^{4} . A_{6} \cdot 2_{1}$ and $S 3$ is of type $2^{4} .\left(A_{6} \times 2\right)$.

Proof From the $\mathbb{A T L A S}$ we can see that if $H \leq H S: 2$ is of type $2^{4} . A_{6} .2$, then H must sit in one of the maximal subgroups of $H S: 2$ of type $H S, \bar{M}_{22}$ or $2^{5} \cdot S_{6}$. Also, since $N_{H S: 2}(S 1) \supseteq N_{\bar{G}}(S 1)=\bar{G}$ and \bar{G} is maximal but not normal in $H S: 2$, we have $N_{H S: 2}(S 1)=\bar{G}$. Hence, $\left[H S: 2: N_{H S: 2}(S 1)\right]=[H S: 2: \bar{G}]=3850$. Similarly, since $N_{H S: 2}(S 2)=N_{H S: 2}(S 3)=\bar{G}$, we have $\left[H S: 2: N_{H S: 2}(S 2)\right]=\left[H S: 2: N_{H S: 2}(S 3)\right]=3850$. Hence, we have 3 conjugacy classes for the subgroups of type $2^{4} . A_{6} .2$ in $H S: 2$. Thus, the total number of subgroups of type $2^{4} . A_{6} .2$ in $H S: 2$ is $3 \times 3850=11550$.

2.1. Conjugacy classes and inertia factors of \bar{G}_{1}

Using GAP [14], we compute the conjugacy classes of $2^{4 \cdot} S_{6}$. The action of \bar{G}_{1} on N_{1} is viewed as the action of G_{1} on V_{1}. If G_{1} acts on N_{1}, we get 2 orbits of length 1 and 15 . From the $\mathbb{A T L} \mathbb{A} \mathbb{S}$ [8], by checking on the
indices of maximal subgroups of S_{6}, we can see that there are 2 inertia factor groups, namely S_{6} and $S_{4} \times 2$. The full inertia groups are of the form $\overline{H_{i}}=2^{4} . H_{i}$ of indices 1 and 15 in $2^{4} \cdot S_{6}$, respectively. We note that $H_{1} \cong S_{6}$ and $H_{2} \cong S_{4} \times 2$. The character tables of H_{1} and H_{2} are easy to compute. The fusion of $S_{4} \times 2$ into S_{6} is given in Table 1. This technique has been used by various authors and several MSc and PhD students of the first author, such as Ali [1, 2], Mpono [28, 25], Rodrigues [33], and Whitely [35].

Table 1. The fusion of $S_{4} \times 2$ into S_{6}.

We computed the conjugacy classes of $2^{4} \cdot S_{6}$ by using GAP [14] and then fused them into $H S$. Having the length of each coset, we use the fusion map to convert the conjugacy classes of $2^{4} \cdot S_{6}$ into the form that is required for the computation of Fischer-Clifford matrices (that is, into a form normally obtained by coset analysis). We give the conjugacy classes of $2^{4} \cdot S_{6}$ in Table 2.

2.2. Fischer-Clifford matrices and character table of \bar{G}_{1}

Most of the arguments used here and in the subsequent sections are very similar to the ones given in [26]. From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix $M(1 A)$ of \bar{G}_{1}; that is, $M(1 A)=\left[\begin{array}{rr}1 & 1 \\ 15 & -1\end{array}\right]$.

Having computed $M(1 A)$, we want to determine the type of partial character tables we are going to use for our computations. We will show that the ordinary character table of H_{2} is required. We follow the methods used in $[1,2]$ and we use the character table of $H S$. Let $\operatorname{Irr}(H S)=\left\{\Psi_{i}: 1 \leq i \leq 24\right\}$, where the notation is the same at that used in the $\mathbb{A T L A S}$ [8]. From the list we take the values of Ψ_{2} and Ψ_{3} on $1 A$ and $2 A$. We get:

$[x]_{H S}$	1 A	2 A
Ψ_{2}	22	6
Ψ_{3}	77	13

Let γ_{1} and γ_{2} be the rows of the Fischer-Clifford matrix $M(1 A)$. Since

$$
<\left(\psi_{2}\right)_{N}, 1_{N}>=\frac{1}{16}(22+15 \times 6)=\frac{112}{16}=7
$$

we get the following decomposition: $22=7+15 k$. Thus, $k=1$ and hence $\left(\Psi_{2}\right)_{N}=7 \gamma_{1}+\gamma_{2}$. Let $\left[x_{1}, \cdots, x_{t}\right]$ be the transpose of the partial entries for the projective characters of $H_{2} \cong S_{4} \times 2$ on $1 A \in S_{6}$. Then

Table 2. Conjugacy classes of $2^{4} \cdot S_{6}$.

$[g]_{S_{6}}$	$[x]_{2^{4} \cdot S_{6}}$	$C_{2^{4} \cdot S_{6}}(x)$	$\longrightarrow H S$
1A	1 A	11520	1 A
	2 A	768	2 A
	2 B	96	2 B
2 A	4 A	384	4 A
	4 B	128	4 B
	2 C	64	2 A
2 B	4 C	64	4 B
	4 D	32	4 B
2C	2 D	192	2 A
	4 E	64	4 B
3A	3 A	192	3 A
	6 A	24	6 B
3B	3 B	18	3 A
4A	4 F	16	4 B
	8 A	16	8 A
4B	4 G	16	4 C
	8 B	16	8 A
5A	5 A	5	CC
6A	6 B	12	6 A
	12 A	12	12 A
6B	6 C	6	6 B

$C_{2}(1 A) M_{2}(1 A)$ is a $t \times 2$ matrix; from the first entry of the first column we get $15 x_{1}=15$. Hence, $x_{1}=1$ and this shows that the partial character table of H_{2} that we need comes from the ordinary character table of H_{2}. Thus, we use the ordinary character table of $S_{4} \times 2$.

To compute the Fischer-Clifford matrices, we use their general properties (which can also be found in [1], [28], and [35]) and the fusion of $S_{4} \times 2$ into S_{6}, the centralizer orders of $2^{4 \cdot} S_{6}$, the fusion of \bar{G} into $H S$, together with restriction of $H S$ to \bar{G} that forces the signs of the Fischer-Clifford matrices. We give these in Table 3. Note the change of sign in $M(2 A)$.

Table 3. The Fischer-Clifford matrices of $2^{4} \cdot S_{6}$.

$M(1 A)=\left[\begin{array}{rr}1 & 1 \\ 15 & -1\end{array}\right]$	$M(2 A)=\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & -6 & 2\end{array}\right]$
$M(2 B)=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0\end{array}\right]$	$M(2 C)=\left[\begin{array}{rr}1 & 1 \\ 3 & -1\end{array}\right]$
$M(3 A)=\left[\begin{array}{rr}1 & 1 \\ 3 & -1\end{array}\right]$	$M(3 B)=[1]$
$M(4 A)=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$	$M(4 B)=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
$M(6 A)=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$	$M(5 A)=M(6 B)=[1]$

For example, we calculate the partial character table corresponding to coset $2 A \in S_{6}$. Let $C_{1}(2 A), C_{2}(2 A)$ be the partial character tables of the inertia factors for the classes that fuse to $2 A \in S_{6}$. We have $M_{1}(2 A)=$

MOORI and SERETLO/Turk J Math

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right], M_{2}(2 A)=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 0 & -6 & 2\end{array}\right]$. Then the portions of the character table of $\bar{G}=2^{4 \cdot} S_{6}$ corresponding to the coset $2 A$ are:

$$
\begin{aligned}
& C_{1}(2 A) M_{1}(2 A)=\left[\begin{array}{r}
1 \\
-1 \\
-3 \\
3 \\
-1 \\
1 \\
-3 \\
3 \\
-2 \\
2 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -1 & -1 \\
-3 & -3 & -3 \\
3 & 3 & 3 \\
-1 & -1 & -1 \\
1 & 1 & 1 \\
-3 & -3 & -3 \\
3 & 3 & 3 \\
-2 & -2 & -2 \\
2 & 2 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& C_{2}(2 A) M_{2}(2 A)=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
-2 & 0 \\
2 & 0 \\
-3 & -1 \\
3 & -1 \\
-3 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-1 & -5 & 3 \\
-1 & 1 & 1 \\
0 & -6 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & -3 \\
-1 & 7 & -1 \\
1 & -7 & 1 \\
2 & -2 & -2 \\
-2 & 2 & 2 \\
3 & 3 & -5 \\
-3 & 9 & 1 \\
3 & -9 & -1 \\
-3 & -3 & 5
\end{array}\right] .
\end{aligned}
$$

We get the character table of $2^{4} \cdot S_{6}$ in Table 4 , which can be compared to the one in GAP.
Table 4. The character table of $2^{4} \cdot S_{6}$.

	1A		2A			2B			2C		3A		3B	4A		4B		5a	6A		$\frac{6 \mathrm{~B}}{6 \mathrm{c}}$
	1a	2a	2b	4a	4b	2c	4c	4d	2d	4 e	3a	6a	3b	4f	8 a	4 g	8b	5a	6b	12a	
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	-1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	1	1	1	-1	-1	-1
χ_{3}	5	5	-3	-3	-3	1	1	1	1	1	2	2	-1	-1	-1	-1	-1	0	0	0	1
χ_{4}	5	5	3	3	3	1	1	1	-1	-1	2	2	-1	1	1	-1	-1	0	0	0	-1
χ_{5}	5	5	-1	-1	-1	1	1	1	3	3	-1	-1	2	1	1	-1	-1	0	-1	-1	0
χ_{6}	5	5	1	1	1	1	1	1	-3	-3	-1	-1	2	-1	-1	-1	-1	0	1	1	0
χ_{7}	9	9	-3	-3	-3	1	1	1	-3	-3	0	0	0	1	1	1	1	-1	0	0	0
χ_{8}	9	9	3	3	3	1	1	1	3	3	0	0	0	-1	-1	1	1	-1	0	0	0
χ_{9}	10	10	-2	-2	-2	-2	-2	-2	2	2	1	1	1	0	0	0	0	0	1	1	-1
χ_{10}	10	10	2	2	2	-2	-2	-2	-2	-2	1	1	1	0	0	0	0	0	-1	-1	1
χ_{11}	16	16	0	0	0	0	0	0	0	0	-2	-2	-2	0	0	0	0	1	0	0	0
χ_{12}	15	-1	-1	-5	3	3	-1	-1	3	-1	3	-1	0	1	-1	1	-1	0	1	-1	0
χ_{13}	15	-1	1	5	-3	3	-1	-1	-3	1	3	-1	0	-1	1	1	-1	0	-1	1	0
χ_{14}	15	-1	-1	7	-1	-1	3	-1	3	-1	3	-1	0	-1	1	-1	1	0	1	-1	0
χ_{15}	15	-1	1	-7	1	-1	3	-1	-3	1	3	-1	0	1	-1	-1	1	0	-1	1	0
χ_{16}	30	-2	2	-2	-2	2	2	-2	-6	2	-3	1	0	0	0	0	0	0	1	-1	0
χ_{17}	30	-2	-2	2	2	2	2	-2	6	-2	-3	1	0	0	0	0	0	0	-1	1	0
χ_{18}	45	-3	3	3	-5	1	-3	1	3	-1	0	0	0	1	-1	-1	1	0	0	0	0
χ_{19}	45	-3	-3	9	1	-3	1	1	-3	1	0	0	0	1	-1	1	-1	0	0	0	0
χ_{20}	45	-3	3	-9	-1	-3	1	1	3	-1	0	0	0	-1	1	1	-1	0	0	0	0
χ_{21}	45	-3	-3	-3	5	1	-3	1	-3	1	0	0	0	-1	1	-1	1	0	0	0	0

We compute the permutation characters of $H S: 2$ when acting on $S 1, S 2$, and $S 3$. For interest's sake we also include $\chi(H S \mid S 1)$ and later we also give $\chi\left(2^{5} . S_{6} \mid S i\right), i=1,2,3$.

$$
\chi(H S \mid S 1)=1 a+22 a+77 a a+154 a+175 a+693 a+770 a+825 a+1056 a=\chi\left(H S: 2 \mid 2^{5} \cdot S_{6}\right),
$$

$$
\begin{aligned}
& \chi(H S: 2 \mid S 1)=1 a+1 b+22 a+22 b+77 a a+77 b b+154 a+154 b+175 a+175 b+693 a+693 b+770 a+ \\
& 770 b+825 a+825 b+1056 a+1056 b, \\
& \chi(H S: 2 \mid S 2)=1 a+22 a a+77 a a a+154 a+175 a+231 a+693 a+770 a a+825 a a+1056 a+1925 a, \\
& \chi(H S: 2 \mid S 3)=1 a+22 a+22 b+77 a a+77 b+154 a+175 a+231 a+693 a+770 a+770 b+825 a+825 b+ \\
& 1056 a+1925 b \text {. }
\end{aligned}
$$

3. Group $\bar{G}=2^{5 \cdot} \cdot S_{6}$

Having completed the computation of the full character table of $2^{4} \cdot S_{6}$, we now turn our attention to $2^{5} \cdot S_{6}$. We compute $2^{5} \cdot S_{6}=2^{4} \cdot S_{6} .2$ by adding the generator c of $H S: 2$; that is, from \bar{G}_{1} we get $\bar{G}=<a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, $a_{7}, c>$. Since $2^{5 \cdot} S_{6}$ is the only group of its type that is a maximal subgroup of $H S: 2$, we have $\bar{G} \cong \overline{G^{\prime}}$, where $\overline{G^{\prime}}$ was computed using Programme H. Our aim is to compute the full character table of $2^{5} \cdot S_{6}$. We first want to let \bar{G} act on the elementary abelian group $N=2^{5}$. We use GAP [14] to compute $N=2^{5}$ as a normal subgroup of \bar{G}.

For the action of \bar{G} we use Programme C [34]. We consider N as a full row vector space V of dimension 5 over $G F(2)$. For us to be able to act on a 5 -dimensional vector space V it becomes necessary to rewrite \bar{G} from a 20×20 to a 5×5 representation. To do this we first take the 8 generators of \bar{G}, namely a_{1} to a_{7} and c. We let these act on generators $\gamma_{i}, 1=1, \cdots, 5$ of our elementary abelian group $N=2^{5}$.

Writing these as maps we get:

$$
\begin{gathered}
a_{1}: \gamma_{1} \rightarrow \gamma_{1}, \gamma_{2} \rightarrow \gamma_{3} \gamma_{4}, \gamma_{3} \rightarrow \gamma_{1} \gamma_{3}, \gamma_{4} \rightarrow \gamma_{1} \gamma_{2} \gamma_{3}, \gamma_{5} \rightarrow \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \\
a_{2}: \gamma_{1} \rightarrow \gamma_{2} \gamma_{3} \gamma_{4}, \gamma_{2} \rightarrow \gamma_{3}, \gamma_{3} \rightarrow \gamma_{1} \gamma_{3}, \gamma_{4} \rightarrow \gamma_{2}, \gamma_{5} \rightarrow \gamma_{2} \gamma_{5} \\
a_{3}: \gamma_{1} \rightarrow \gamma_{1} \gamma_{2}, \gamma_{2} \rightarrow \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}, \gamma_{3} \rightarrow \gamma_{4}, \gamma_{4} \rightarrow \gamma_{1} \gamma_{4}, \gamma_{5} \rightarrow \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} \\
c: \gamma_{1} \rightarrow \gamma_{3}, \gamma_{2} \rightarrow \gamma_{2}, \gamma_{3} \rightarrow \gamma_{1}, \gamma_{4} \rightarrow \gamma_{4}, \gamma_{5} \rightarrow \gamma_{5}
\end{gathered}
$$

For the rest, a_{4} to a_{7}, we get:

$$
a_{i}: \gamma_{1} \rightarrow \gamma_{1}, \gamma_{2} \rightarrow \gamma_{2}, \gamma_{3} \rightarrow \gamma_{3}, \gamma_{4} \rightarrow \gamma_{4}, \gamma_{5} \rightarrow \gamma_{5}
$$

Writing this in matrix form we get:

$$
\begin{aligned}
& \beta_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right), \quad \beta_{2}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right), \\
& \beta_{3}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right), \beta_{4}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

For the rest, β_{5} to β_{8}, we get that $\beta_{i}=I_{5}$.
Let $G=<\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}>$; then $G \cong S_{6}$, which means that the action of \bar{G} on N is isomorphic to S_{6}.

3.1. Conjugacy classes and inertia factors of \bar{G}

The action of \bar{G} on N is reflected by the action of G on V. When G acts on V we get 4 orbits of conjugacy classes of elements of N, of lengths $1,6,10$, and 15 . Let G^{t} be the set of all transpose of elements of G. The group G^{t} can also be generated by transpose matrices of each generator of G. When G^{t} acts on V, which is the equivalent of G acting on $\operatorname{Irr}(N)$, by Brauer's theorem [5] we get 4 orbits, but these are of lengths $1,1,15$, and 15 . These have corresponding point stabilizers H_{1}, H_{2}, H_{3}, and H_{4}. Let the full inertia groups be $\overline{H_{i}}=2^{5} . H_{i}, i=1,2,3,4$. From the $\mathbb{A T L A S}[8]$, the corresponding inertia factor groups are $S_{6}, S_{6}, S_{4} \times 2$, and $S_{4} \times 2$. We have $H_{1} \cong H_{2} \cong S_{6}$ and $H_{3} \cong H_{4} \cong S_{4} \times 2$. The character tables of S_{6} and that of $H S: 2$ are obtained from the $\mathbb{A T L} \mathbb{A} \mathbb{S}$ [8]. We also give the fusion of $S_{4} \times 2$ into S_{6} in Table 5 .

Table 5. The fusion of $S_{4} \times 2$ into S_{6}.

$[x]_{S_{4} \times 2}$	\longrightarrow	$\left[g_{1}\right]_{S_{6}}$
$1 A$		1 A
$2 A$		2 C
$2 B$		$2 B$
2 C		$2 B$
2 D		2 A
$2 E$		2 A
$3 A$		3 A
$4 A$		$4 A$
$4 B$		$4 B$
6 A		6 A

We computed the conjugacy classes of $2^{5} \cdot S_{6}$ by using GAP [14] and then fused them into $H S: 2$. Having the length of each coset, we use the fusion map to convert the conjugacy classes of $2^{5} \cdot S_{6}$ into the form that is required for the computation of Fischer-Clifford matrices (that is, into a form normally obtained by coset analysis). We give the conjugacy classes of $2^{5} \cdot S_{6}$ in Table 6.

3.2. Fischer-Clifford matrices and character table of \bar{G}

From the fusions and orbit lengths and centralizer orders, we compute the Fischer-Clifford matrix $M(1 A)$:

$$
M(1 A)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
15 & 5 & -3 & -1 \\
15 & -5 & 3 & -1
\end{array}\right]
$$

Having computed $M(1 A)$, we want to determine the type of partial character tables we are going to use for our computations. We follow the methods used in [34], which can also be found in [1]. We use the character table of $H S: 2=<a, b>$. Let $\operatorname{Irr}(H S: 2)=\left\{\Psi_{i}: 1 \leq i \leq 39\right\}$; the notation is the same at that used in the $\mathbb{A T L A S}[8]$. We list the values of $\Psi_{i}, \leq i \leq 6$ on $1 A, 2 A, 2 B$, and $2 C$:

$C_{\bar{G}}(x)$	23040	3840	2304	1536
$[x]_{H S: 2}$	1 A	2 A	2 B	2 C
Ψ_{2}	1	-1	-1	1
Ψ_{3}	22	0	8	6
Ψ_{4}	22	0	-8	6
Ψ_{5}	77	5	21	13
Ψ_{6}	77	-5	-21	13

MOORI and SERETLO/Turk J Math

Table 6. Conjugacy classes of $2^{5} \cdot S_{6}$.

$[g]_{S_{6}}$	$[x]_{2^{5} \cdot S_{6}}$	$\left\|C_{2^{5} \cdot S_{6}}(x)\right\|$	\longrightarrow	HS:2
1A	1A	23040		1A
	2A	3840		2D
	2B	2304		2C
	2C	1536		2A
2A	2D	768		2C
	4A	768		4A
	2E	256		2D
	4B	256		4B
	4 C	192		4A
	2 F	192		2B
2B	2G	128		2A
	2 H	128		2D
	4D	128		4D
	4 E	128		4B
	4 F	64		4 C
	4G	64		4A
2 C	2I	384		2A
	2J	384		2C
	4H	64		4B
	4I	64		4D
3A	3A	144		3A
	6 A	144		6C
	6B	48		6 E
	6C	48		6B
3B	3B	36		3A
	6D	36		6A
4A	4J	32		4A
	8A	32		8C
	4K	32		4B
	8B	32		8A
4B	4L	32		4C
	8C	32		8A
	4M	32		4D
	8D	32		8D
5A	5A	10		5C
	10A	5		10D
6A	6 E	24		6D
	6 F	24		6A
	12A	24		12A
	12B	24		12B
6B	6G	12		6 E
	6H	12		6 A

Let $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ be the rows of the Fischer-Clifford matrix $M(1 A)$. First we get

$$
\begin{gathered}
<\left(\Psi_{2}\right)_{N}, 1_{N}>=\frac{1}{32}(1-6-10+15)=0 \\
<\left(\Psi_{3}\right)_{N}, 1_{N}>=\frac{1}{32}(22 \times 1+6 \times 0+10 \times 8+15 \times 6)=\frac{1}{32}(22+80+90)=6 \\
<\left(\Psi_{4}\right)_{N}, 1_{N}>=\frac{1}{32}(22 \times 1+6 \times 0+10 \times(-8)+15 \times 6)=\frac{1}{32}(22-80+90)=1
\end{gathered}
$$

$$
<\left(\Psi_{5}\right)_{N}, 1_{N}>=\frac{1}{32}(77 \times 1+6 \times 5+10 \times 21+15 \times 13)=\frac{1}{32}(77+30+210+195)=16
$$

Restricting the character Ψ_{3} to N, since $<\left(\Psi_{3}\right)_{N}, 1_{N}>=6$, we get the following equations, where a, b, c represent coefficients of $\gamma_{2}, \gamma_{3}, \gamma_{4}$, respectively.

$$
\begin{aligned}
22 & =6+a+15 b+15 c \\
0 & =6-a+5 b-5 c \\
8 & =6-a-3 b+3 c \\
6 & =6+a-b-c
\end{aligned}
$$

Solving we get: $a=1, b=0$, and $c=1$. So we have the following decomposition:

$$
\left(\Psi_{3}\right)_{N}=6 \gamma_{1}+\gamma_{2}+\gamma_{4}
$$

By considering the coefficients of γ_{2} and γ_{4} in the above decomposition, we deduce that we have irreducible characters χ_{2} and $\chi_{4} \in \operatorname{Irr}(\bar{G})$ with $\operatorname{deg}\left(\chi_{2}\right)=1$ and $\operatorname{deg}\left(\chi_{4}\right)=15$. Since $\operatorname{deg}\left(\chi_{2}\right)=1$, we only need to use the ordinary character table of H_{2}. For $\operatorname{deg}\left(\chi_{4}\right)=15$, if $\left[x_{1}, x_{2}, \cdots, x_{t}\right]$ is the transpose of the partial entries for the projective characters of H_{4} on $1 A$, then $C_{4}(1 A) M_{4}(1 A)$ is a $t \times 4$ matrix with first set entry $15 x_{1}=15$, and hence $x_{1}=1$. This shows that the partial character table of H_{4} that we used contains a character of degree 1. Thus, the partial character table comes from an ordinary character table of H_{4}. Similarly, one can show that $<\left(\Psi_{3}\right)_{N}, \gamma_{2}>=6$. This gives us $\left(\Psi_{3}\right)_{N}=\gamma_{1}+6 \gamma_{2}+\gamma_{3}$. So again, H_{1} and H_{3} have partial character tables that each contain a character of degree 1. Therefore, the partial character tables of H_{1} and H_{3} are from ordinary character tables of S_{6} and $S_{4} \times 2$, respectively.

Using fusions, centralizer orders of \bar{G}, and properties of Fischer-Clifford matrices, we complete Table 7 of Fischer-Clifford matrices. The fusion of \bar{G} into $H S: 2$ together with the restriction of characters of $H S: 2$ to \bar{G} forces the signs of the Fischer-Clifford matrices and the order of the elements of the conjugacy classes of \bar{G}.

To compute the character table of \bar{G}, as an example consider the following. Let $C_{1}(2 A), C_{2}(2 A)$, $C_{3}(2 A), C_{4}(2 A)$ be the partial character tables of the inertia factors for the classes that fuse to $2 A \in S_{6}$. Then the portions of the character table of $\bar{G}=2^{5} \cdot S_{6}$ corresponding to the coset $2 A$ are:

$$
C_{1}(2 A) M_{1}(2 A)=\left[\begin{array}{r}
1 \\
-1 \\
-3 \\
3 \\
-1 \\
1 \\
-3 \\
3 \\
-2 \\
2 \\
0
\end{array}\right]\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 \\
-3 & -3 & -3 & -3 & -3 & -3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
-1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
-3 & -3 & -3 & -3 & -3 & -3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
-2 & -2 & -2 & -2 & -2 & -2 \\
2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

MOORI and SERETLO/Turk J Math

Table 7. The Fischer-Clifford matrices of $2^{5} \cdot S_{6}$.

$M(1 A)=$	$\left[\begin{array}{crrr}1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 15 & 5 & -3 & -1 \\ 15 & -5 & 3 & -1\end{array}\right]$	$M(2 A)=\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 & -1 & 1 \\ -6 & 6 & 2 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ -6 & -6 & 2 & 2 & 0 & 0 \\ 1 & -1 & 1 & -1 & -1 & 1\end{array}\right]$
$M(2 B)=$	$\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ -2 & 2 & 2 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ -2 & -2 & 2 & 2 & 0 & 0 \\ 1 & -1 & 1 & -1 & -1 & 1\end{array}\right]$	$M(2 C)=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 3 & 3 & -1 & -1 \\ -3 & 3 & 1 & -1\end{array}\right]$
$M(3 A)=$	$\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 3 & -3 & 1 & -1 \\ 3 & 3 & -1 & -1\end{array}$	$M(3 B)=M(5 A)=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
$M(4 A)=$	$\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1\end{array}\right]$	$M(4 B)=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1\end{array}\right]$
$M(6 A)=$	1rrr	$M(6 B)=\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$

$$
\begin{aligned}
& C_{2}(2 A) M_{2}(2 A)=\left[\begin{array}{r}
1 \\
-1 \\
-3 \\
3 \\
-1 \\
1 \\
-3 \\
3 \\
-2 \\
2 \\
0
\end{array}\right]\left[\begin{array}{lllllllll}
-1 & 1 & -1 & 1 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrrrr}
-1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 & 1 \\
-1 \\
3 & -3 & 3 & -3 & 3 \\
-3 & 3 & -3 & 3 & -3 \\
\hline & 3 \\
1 & -1 & 1 & -1 & 1 \\
-1 & 1 & -1 & 1 & -1 \\
3 & -3 & 3 & -3 & 3 \\
-3 & 3 & -3 & 3 & -3 \\
2 & -2 & 2 & -2 & 2 \\
\hline & -2 \\
-2 & 2 & -2 & 2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& C_{3}(2 A) M_{3}(2 A)=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
-2 & 0 \\
2 & 0 \\
-3 & -1 \\
3 & -1 \\
-3 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
-6 & 6 & 2 & -2 & 0 & 0 \\
1 & 1 & 1 & 1 & -1 & -1
\end{array}\right]=\left[\begin{array}{rrrrrr}
-5 & 7 & 3 & -1 & -1 & -1 \\
5 & -7 & -3 & 1 & 1 & 1 \\
7 & -5 & -1 & 3 & -1 & -1 \\
-7 & 5 & 1 & -3 & 1 & 1 \\
-2 & -2 & -2 & -2 & 2 & 2 \\
-2 & -2 & -2 & -2 & 2 & 2 \\
3 & -9 & -5 & -1 & 3 & 3 \\
9 & -3 & 1 & 5 & -3 & -3 \\
-9 & 3 & -1 & -5 & 3 & -3 \\
-3 & 9 & 5 & 1 & -3 & -3
\end{array}\right] \\
& C_{4}(2 A) M_{4}(2 A)=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1 \\
1 & -1 \\
-1 & 1 \\
-2 & 0 \\
2 & 0 \\
-3 & -1 \\
3 & -1 \\
-3 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
-6 & -6 & 2 & 2 & 0 & 0 \\
1 & -1 & 1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrrrrr}
-5 & -7 & 3 & -1 & 1 & -1 \\
5 & 7 & -3 & -1 & 1 & -1 \\
7 & 5 & -1 & -3 & -1 & 1 \\
-7 & -5 & 1 & 3 & 1 & -1 \\
-2 & 2 & -2 & 2 & 2 & 2 \\
2 & -2 & 2 & -2 & -2 & 2 \\
3 & 9 & -5 & 1 & 3 & -3 \\
9 & 3 & 1 & -5 & -3 & 3 \\
-9 & -3 & -1 & 5 & 3 & -3 \\
-3 & -9 & 5 & -1 & -3 & 3
\end{array}\right] .
\end{aligned}
$$

We give the fusion of \bar{G}_{1} into \bar{G} in Table 8 and the character table of \bar{G} in Table 9. Note that $\chi\left(2^{5 \cdot} \cdot S_{6} \mid S 1\right)=\chi_{1}+\chi_{2}, \chi\left(2^{5 \cdot} \cdot S_{6} \mid S 2\right)=\chi_{1}+\chi_{12}$ and $\chi\left(2^{5 \cdot} \cdot S_{6} \mid S 3\right)=\chi_{1}+\chi_{13}$.

MOORI and SERETLO/Turk J Math

Table 8. The fusion of $2^{4 \cdot} S_{6}$ into $2^{5 \cdot} S_{6}$.

$[x]_{2^{4} \cdot S_{6}}$	\longrightarrow	$\left[g_{1}\right]_{2^{5} \cdot S_{6}}$	$[x]_{2^{4} \cdot S_{6}}$	\longrightarrow
$1 A$	$1 A$	$4 E$	$\left[g_{1}\right]_{2^{5} \cdot S_{6}}$	
$2 A$	$2 C$	$4 F$	$4 H$	
$2 B$	$2 F$	$4 G$	$4 K$	
$2 C$	$2 G$	$5 A$	$4 L$	
$2 D$	$2 I$	$6 A$	$5 A$	
$3 A$	$3 A$	$6 B$	$6 B$	
$3 B$	$3 B$	$6 C$	$6 F$	
$4 A$	$4 A$	$8 A$	$6 G$	
$4 B$	$4 B$	$8 B$	$8 C$	
$4 C$	$4 E$	$12 A$	$8 B$	
$4 D$	$4 F$		$12 A$	

Table 9. The character table of $2^{5} \cdot S_{6}$.

	1 A				2 A						$2 B$					
	1a	2a	2b	2c	2d	4a	2e	4b	4c	2f	2 g	2h	4d	4 e	4f	4 g
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{3}	5	5	5	5	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1
χ_{4}	5	5	5	5	3	3	3	3	3	3	1	1	1	1	1	1
χ_{5}	5	5	5	5	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{6}	5	5	5	5	1	1	1	1	1	1	1	1	1	1	1	1
χ_{7}	9	9	9	9	-3	-3	-3	-3	-3	-3	1	1	1	1	1	1
χ_{8}	9	9	9	9	3	3	3	3	3	3	1	1	1	1	1	1
χ_{9}	10	10	10	10	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
χ_{10}	10	10	10	10	2	2	2	2	2	2	-2	-2	-2	-2	-2	-2
χ_{11}	16	16	16	16	0	0	0	0	0	0	0	0	0	0	0	0
χ_{12}	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1
χ_{13}	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_{14}	5	-5	-5	5	3	-3	3	-3	3	-3	1	-1	1	-1	1	-1
χ_{15}	5	-5	-5	5	-3	3	-3	3	-3	3	1	-1	1	-1	1	-1
χ_{16}	5	-5	-5	5	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_{17}	5	-5	-5	5	-1	1	-1	1	-1	1	1	-1	1	-1	1	-1
χ_{18}	9	-9	-9	9	3	-3	3	-3	3	-3	1	-1	1	-1	1	-1
χ_{19}	9	-9	-9	9	-3	3	-3	3	-3	3	1	-1	1	-1	1	-1
χ_{20}	10	-10	-10	10	2	-2	2	-2	2	-2	-2	2	-2	2	-2	2
χ_{21}	10	-10	-10	10	-2	2	-2	2	-2	2	-2	2	-2	2	-2	2
χ_{22}	16	-16	-16	16	0	0	0	0	0	0	0	0	0	0	0	0
χ_{23}	15	5	-3	-1	-5	7	3	-1	-1	-1	-1	3	3	-1	-1	-1
χ_{24}	15	5	-3	-1	5	-7	-3	1	1	1	-1	3	3	-1	-1	-1
χ_{25}	15	5	-3	-1	7	-5	-1	3	-1	-1	3	-1	-1	3	-1	-1
χ_{26}	15	5	-3	-1	-7	5	1	-3	1	1	3	-1	-1	3	-1	-1
χ_{27}	30	10	-6	-2	-2	-2	-2	-2	2	2	2	2	2	2	-2	-2
χ_{28}	30	10	-6	-2	2	2	2	2	-2	-2	2	2	2	2	-2	-2
χ_{29}	45	15	-9	-3	3	-9	-5	-1	3	3	-3	1	1	-3	1	1
χ_{30}	45	15	-9	-3	9	-3	1	5	-3	-3	1	-3	-3	1	1	1
χ_{31}	45	15	-9	-3	-9	3	-1	-5	3	3	1	-3	-3	1	1	1
χ_{32}	45	15	-9	-3	-3	9	5	1	-3	-3	-3	1	1	-3	1	1
χ_{33}	15	-5	3	-1	-5	-7	3	1	-1	1	-1	-3	3	1	1	1
χ_{34}	15	-5	3	-1	5	7	-3	-1	1	-1	1	3	3	1	-1	1
χ_{35}	15	-5	3	-1	7	5	-1	-3	-1	1	3	1	-1	-3	-1	1
χ_{36}	15	-5	3	-1	-7	-5	1	3	1	-1	3	1	-1	-3	-1	1
χ_{37}	30	-10	6	-2	-2	2	-2	2	2	-2	2	-2	2	-2	-2	0
χ_{38}	30	-10	6	-2	2	-2	2	-2	-2	2	2	-2	2	-2	-2	2
χ_{39}	45	-15	9	-3	3	9	-5	1	3	-3	-3	-1	1	3	1	-1
χ_{40}	45	-15	9	-3	9	3	1	-5	-3	3	1	3	-3	-1	1	-1
χ_{41}	45	-15	9	-3	-9	-3	-1	5	3	-3	1	3	-3	-1	1	-1
χ_{42}	45	-15	9	-3	-3	-9	5	-1	-3	3	-3	-1	1	3	1	-1

Table 9. Continued.

	$2 C$				3 A				3B		4 A			
	2 i	2 j	4h	4 i	3a	6a	6b	6c	3b	6d	4j	8a	4k	8b
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1
χ_{3}	1	1	1	1	2	2	2	2	-1	-1	-1	-1	-1	-1
χ_{4}	-1	-1	-1	-1	2	2	2	2	-1	-1	1	1	1	1
χ_{5}	3	3	3	3	-1	-1	-1	-1	2	2	1	1	1	1
χ_{6}	-3	-3	-3	-3	-1	-1	-1	-1	2	2	-1	-1	-1	-1
χ_{7}	-3	-3	-3	-3	0	0	0	0	0	0	1	1	1	1
χ_{8}	3	3	3	3	0	0	0	0	0	0	-1	-1	-1	-1
χ_{9}	2	2	2	2	1	1	1	1	1	1	0	0	0	0
χ_{10}	-2	-2	-2	-2	1	1	1	1	1	1	0	0	0	0
χ_{11}	0	0	0	0	-2	-2	-2	-2	-2	-2	0	0	0	0
χ_{12}	1	-1	1	-1	1	-1	1	-1	1	-1	-1	-1	1	1
χ_{13}	-1	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	-1
χ_{14}	1	-1	1	-1	2	-2	2	-2	-1	1	1	1	-1	-1
χ_{15}	-1	1	-1	1	2	2	2	-2	-1	1	-1	-1	1	1
χ_{16}	3	-3	3	-3	-1	1	-1	1	2	-2	-1	-1	1	1
χ_{17}	-3	3	-3	3	-1	1	-1	1	2	-2	1	1	-1	-1
χ_{18}	-3	3	-3	3	0	0	0	0	0	0	-1	-1	1	1
χ_{19}	3	-3	3	-3	0	0	0	0	0	0	1	-1	-1	1
χ_{20}	2	-2	2	-2	1	-1	1	-1	1	-1	0	0	0	0
χ_{21}	-2	2	-2	2	1	-1	1	-1	1	-1	0	0	0	0
χ_{22}	0	0	0	0	-2	2	-2	2	-2	2	0	0	0	0
χ_{23}	3	3	-1	-1	3	-3	-1	1	0	0	-1	1	-1	1
χ_{24}	-3	-3	1	1	3	-3	-1	1	0	0	1	-1	1	-1
χ_{25}	3	3	-1	-1	3	-3	-1	1	0	0	1	-1	1	-1
χ_{26}	-3	-3	1	1	3	-3	-1	1	0	0	-1	1	-1	1
χ_{27}	-6	-6	2	2	-3	3	1	-1	0	0	0	0	0	0
χ_{28}	6	6	-2	-2	-3	3	1	-1	0	0	0	0	0	0
χ_{29}	3	3	-1	-1	0	0	0	0	0	0	-1	1	-1	1
χ_{30}	-3	-3	1	1	0	0	0	0	0	0	-1	1	-1	1
χ_{31}	3	3	-1	-1	0	0	0	0	0	0	1	-1	1	-1
χ_{32}	-3	-3	1	1	0	0	0	0	0	0	1	-1	1	-1
χ_{33}	-3	3	1	-1	3	3	-1	-1	0	0	1	-1	-1	1
χ_{34}	3	-3	-1	1	3	3	-1	-1	0	0	-1	1	1	-1
χ_{35}	-3	3	1	-1	3	3	-1	-1	0	0	-1	1	1	-1
χ_{36}	3	-3	-1	1	3	3	-1	-1	0	0	1	-1	-1	1
χ_{37}	6	-6	-2	2	-3	-3	1	1	0	0	0	0	0	0
χ_{38}	-6	6	2	-2	-3	-3	1	1	0	0	0	0	0	0
χ_{39}	-3	3	1	-1	0	0	0	0	0	0	1	-1	-1	1
χ_{40}	3	-3	-1	1	0	0	0	0	0	0	1	-1	-1	1
χ_{41}	-3	3	1	-1	0	0	0	0	0	0	-1	1	1	-1
χ_{42}	3	-3	-1	1	0	0	0	0	0	0	-1	1	1	-1

MOORI and SERETLO/Turk J Math

Table 9. Continued.

| | $4 B$ | | | | $5 A$ | | 6 A | | $6 B$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 l | 8 c | 4 m | 8 d | 5 a | 10 a | 6 e | 6 f | 12 a | 12 b | 6 g | 6 h |
| χ_{1} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| χ_{2} | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 |
| χ_{3} | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| χ_{4} | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
| χ_{5} | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 |
| χ_{6} | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| χ_{7} | 1 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{8} | 1 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{9} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | -1 |
| χ_{10} | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 |
| χ_{11} | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{12} | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 |
| χ_{13} | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
| χ_{14} | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 |
| χ_{15} | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 |
| χ_{16} | -1 | -1 | 1 | 1 | 0 | 0 | -1 | 1 | -1 | 1 | 0 | 0 |
| χ_{17} | -1 | -1 | 1 | 1 | 0 | 0 | 1 | -1 | 1 | -1 | 0 | 0 |
| χ_{18} | 1 | 1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{19} | 1 | 1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{20} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 |
| χ_{21} | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 |
| χ_{22} | 0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{23} | -1 | 1 | -1 | 1 | 0 | 0 | -1 | 1 | 1 | -1 | 0 | 0 |
| χ_{24} | -1 | 1 | -1 | 1 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 |
| χ_{25} | 1 | -1 | 1 | -1 | 0 | 0 | -1 | 1 | 1 | -1 | 0 | 0 |
| χ_{26} | 1 | -1 | 1 | -1 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 |
| χ_{27} | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 0 | 0 |
| χ_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 |
| χ_{29} | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{30} | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{31} | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{32} | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{33} | 1 | -1 | -1 | 1 | 0 | 0 | 1 | 1 | -1 | -1 | 0 | 0 |
| χ_{34} | 1 | -1 | -1 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 |
| χ_{35} | -1 | 1 | 1 | -1 | 0 | 0 | 1 | 1 | -1 | -1 | 0 | 0 |
| χ_{36} | -1 | 1 | 1 | -1 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 |
| χ_{37} | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 0 | 0 |
| χ_{38} | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 |
| χ_{39} | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{40} | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{41} | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| χ_{42} | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | | | | | | | | | | | | |

Aknowledgment

The second author would like to thank North-West University for giving him time to work with Prof J Moori and Dr ZE Mpono, who introduced him to Fischer-Clifford theory. Prof F Ali and Dr T Breuer, who were most helpful with GAP, are also thanked.

MOORI and SERETLO/Turk J Math

References

[1] Ali, F.: Fischer-Clifford Theory for Split and Non-Split Group Extensions. PhD, University of Natal, Pietermaritzburg 2001.
[2] Ali, F., Moori, J.: Fischer-Clifford matrices of the non-split group extension $2^{6}: U_{4}(2)$. Quaest. Math. 31, 27-36 (2008).
[3] Ali, F., Moori, J.: The Fischer-Clifford matrices and character table of a maximal subgroup of $\mathbf{F i}_{\mathbf{2 4}}{ }^{\prime}$. Algebra Colloq. 3, 389-414 (2010).
[4] Barraclough, R.W.: Some Calculations Related to the Monster Group. PhD, University of Birmingham, Birmingham 2005.
[5] Brauer, R.: Representations of finite groups. In: Lectures on Modern Mathematics (Ed.: T. L. Saaty) 133-175, J. Wiley and Sons (1963).
[6] Clifford, A.H.: Representations induced in an invariant subgroup. Ann. Math. 38, 533-550 (1937).
[7] Conway, J.H.: A perfect group of order 8315553613086720000 and the sporadic simple groups. In: Proceedings of the National Academy of Science of the United States of America 61, 398ğ400 (1968).
[8] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford. Oxford University Press 1985.
[9] Darafsheh, M.R.: Recognition of the projective special linear group over GF(3). Acta Math. Sin. (Engl. Ser.) 26, 477-488 (2010).
[10] Darafsheh, M.R., Iranmanesh, A., Moosavi, S.: A rational property of the irreducible characters of a finite group. In: Groups St Andrews 2009 in Bath. Volume 1, 224-227. London Math. Soc. Lecture Note Ser. 387 (2011).
[11] Fischer, B.: Clifford Matrizen. Manuscript (1982).
[12] Fischer, B.: Unpublished manuscript (1985).
[13] Fischer, B.: Clifford matrices. In: Representation Theory of Finite Groups and Finite-Dimensional Lie Algebras (Eds.: G.O. Michler and C.M. Ringel), 1ğ16, Birkhäuser, Basel. (1991).
[14] GAP Group: GAP - Groups, Algorithms and Programming, Version 4.4. Aachen, St Andrews 2008. (http://www-gap.dcs.st-and.ac.uk/~gap).
[15] Higman, D.H.: On the simple group of D.H. Higman and C.C. Sims. Illinois J. Math. 13, 74-80 (1969).
[16] Higman, D.H., Sims, C.C.: A simple group of order 44352000. Mathematische Zeittschrift 105, 110ğ113 (1968).
[17] Humphreys, J.F.: Projective character tables for the finite simple groups of order less than one million. Comm. Algebra 7, 725-751 (1983).
[18] Iranmanesh, A., Faramarzi, A.: Projective representations of the group $G=<a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, b^{-1} a b=$ $a c, c^{-1} a c=a^{p+1}, c^{-1} b c=b>$. Int. Math. J. 5, 75-83 (2004).
[19] Isaacs, I.M.: Character Theory of Finite Groups. San Diego. Academic Press 1976.
[20] Karpilovsky, G.: Projective representations of finite groups. New York. Marcel Dekker 1985.
[21] Leech, J.: Notes on sphere packings. Canad. J. Math. 19, 251-257 (1967).
[22] Moori, J.: On certain groups associated with the smallest Fischer group. J. London Math. Soc. 2, 61-67 (1981).
[23] Moori, J.: On the Groups G^{+}and G of the forms $2^{10}: M_{22}$ and $2^{10}: \bar{M}_{22}$. PhD, University of Birmingham 1975.
[24] Moori, J.: Representation Theory. Lecture Notes, University of Natal, Pietermaritzburg.
[25] Moori, J., Mpono, Z.: The Fischer-Clifford matrices of the group $2^{6}: S P_{6}(2)$. Quaest. Math. 22, 257-298 (1999).
[26] Moori, J., Seretlo, T.: On a maximal subgroup of the Lyons group Ly. Submitted.
[27] Mpono, Z.E., Moori, J., Seretlo, T.T.: A group $2^{7}: S_{8}$ in $\overline{F i}_{22}$. South East Asian Bull. Math. In press.
[28] Mpono, Z.: Fischer-Clifford Theory and Character Tables of Group Extensions. PhD, University of Natal, Pietermaritzburg 1998.
[29] Pahlings, H.: The character table of $2_{+}^{1+22 \cdot} \mathrm{Co}_{2}$. J. Algebra 315, 301-325 (2007).
[30] Read, E.W.: Projective characters of the Weyl group of type F4. J. London Math. Soc. 8, 83-93 (1974).
[31] Read, E.W.: The linear and projective characters of the finite reflection groups of type H_{4}. Quart. J. Math. Oxford 25, 73-79 (1974).
[32] Read, E.W.: On projective representations of finite reflection groups of type B_{l} and D_{l}. J. London Math. Soc. 10, 129-142 (1975).
[33] Rodrigues, B.G.: On the Theory and Examples of Group Extensions. MSc, University of Natal, Pietermaritzburg 1999.
[34] Seretlo, T.T.: Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups $O_{10}^{+}(2), H S$ and Ly. PhD, University of KwaZulu-Natal, Pietermaritzburg 2012.
[35] Whitley, N.S.: Fischer Matrices and Character Tables of Group Extensions. MSc, University of Natal, Pietermaritzburg 1994.
[36] Wilson, R.A., Walsh, R.P., Tripp, J., Suleiman, I., Rogers, S, Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbot, R.: Atlas of Finite Group Representation. 2006.
[37] Wilson, R. A.: The Finite Simple Groups. Berlin. Springer Verlag 2007.

[^0]: *Correspondence: jamshid.moori@nwu.ac.za
 2010 AMS Mathematics Subject Classification: 20C15, 20C40, 20D08, 20E22, 20E28.
 Support of NRF, North-West University (Mafikeng) acknowledged.

