Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $79-86$
(c) TÜBİTAK
doi:10.3906/mat-1210-35

On direct products of S-posets satisfying flatness properties

Roghaieh KHOSRAVI*

Department of Mathematics, Fasa University, Fasa, Fars, Iran

Received: $12.10 .2012 \quad \bullet \quad$ Accepted: 14.01.2013 • \quad Published Online: $09.12 .2013 \quad \bullet \quad$ Printed: 20.01 .2014

Abstract

In this paper we characterize pomonoids over which various flatness properties of S-posets are preserved under direct products.

1. Introduction

A monoid S that is also a partially ordered set, in which the binary operation and the order relation are compatible, is called a pomonoid. A right S-poset A_{S} is a right S-act A equipped with a partial order \leq and, in addition, for all $s, t \in S$ and $a, b \in A$, if $s \leq t$ then $a s \leq a t$, and if $a \leq b$ then $a s \leq b s$. An S-subposet of a right S-poset A is a subset of A that is closed under the S-action. The definition of ideal is the same for the act case. Moreover, $X \subseteq S$ and take $(X]=\{p \in S \mid \exists x \in X, p \leq x\}$. Finally, an S-morphism from S-poset A to S-poset C is a monotonic map that preserves S-action.

Let A be a right S-poset, B a left S-poset. The order relation on $A_{S} \otimes{ }_{S} B$ can be described as follows: $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ holds in $A_{S} \otimes_{S} B$ if and only if there exist $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in S, a_{1}, \ldots, a_{n} \in A_{S}, b_{2}, \ldots, b_{n} \in$ ${ }_{S} B$ such that

$$
\begin{array}{cc}
a \leq a_{1} s_{1} & \\
a_{1} t_{1} \leq a_{2} s_{2} & s_{1} b \leq t_{1} b_{2} \\
\vdots & \vdots \\
a_{n} t_{n} & \leq a^{\prime} \\
s_{n} b_{n} \leq t_{n} b^{\prime}
\end{array}
$$

When $B=S b$ and $b=b^{\prime}$, in the above scheme we can replace all b_{i} by b. Moreover, $a \otimes b=a^{\prime} \otimes b^{\prime}$ if $a \otimes b \leq a^{\prime} \otimes b^{\prime}$ and $a^{\prime} \otimes b^{\prime} \leq a \otimes b$. More information about tensor products in S-posets can be found in [12]. A right S-poset A_{S} is weakly po-flat if $a \otimes s \leq a^{\prime} \otimes t$ in $A_{S} \otimes S$ (equivalently, $a s \leq a^{\prime} t$) implies that the same inequality holds also in $A_{S} \otimes_{S}(S s \cup S t)$ for $a, a^{\prime} \in A_{S}, s, t \in S$. A right S-poset A_{S} is principally weakly po-flat if $a s \leq a^{\prime} s$ implies that $a \otimes s \leq a^{\prime} \otimes s$ in $A_{S} \otimes{ }_{S} S s$ for $a, a^{\prime} \in A_{S}, s \in S$. Weakly flat and principally weakly flat can be defined the same as the previous by replacing \leq by $=$.

An S-poset A_{S} satisfies condition $\left(P_{w}\right)$ if, for all $a, b \in A$ and $s, t \in S, a s \leq b t$ implies $a \leq a^{\prime} u, a^{\prime} v \leq b$ for some $a^{\prime} \in A, u, v \in S$ with $u s \leq v t$. A right S-poset A_{S} satisfies condition (P) if, for all $a, b \in A$ and $s, t \in S$, as $\leq b t$ implies $a=a^{\prime} u, b=a^{\prime} v$ for some $a^{\prime} \in A, u, v \in S$ with $u s \leq v t$, and it satisfies condition (E)

[^0]
KHOSRAVI/Turk J Math

if, for all $a \in A$ and $s, t \in S$, as $\leq a t$ implies $a=a^{\prime} u$ for some $a^{\prime} \in A, u \in S$ with $u s \leq u t$. A right S-poset is called strongly flat if it satisfies both conditions (P) and (E). Projectivity is defined in the standard categorical manner.

In [1], Bulman-Fleming characterized monoids over which direct products of projective acts are projective. Gould in [6] then solved this problem for strongly flat and conditions (P) and (E). Meanwhile, Bulman-Fleming and McDowell [4] defined a monoid to be right coherent if every direct product of flat S-acts is flat, and they obtained some results when S^{Γ} is (principally) weakly flat for a monoid S. In [2], Bulman-Fleming and Gilmour discussed when $S \times S$ has certain flatness properties. Then in [9], principally weakly left coherent monoids were characterized as monoids over which direct products of nonempty families of principally weakly flat right S-acts are principally weakly flat. The reader is referred to the monograph [8] for a complete discussion of flatness properties and definition of acts over monoids. On the other hand, the investigation of S-posets was initiated by Fakhruddin in the 1980s, and recently many papers on this topic have appeared, mostly concentrating on projectivity and various notions of flatness for S-posets, such as [5, 3, 7, 11, 10]. Following Section 1, we give some preliminaries about the S-poset S^{Γ}, where Γ is a nonempty set and tensor product. In Section 2, we investigate products of (po-)torsion free, principally weakly and weakly (po-)flat S-posets. In Section 3, conditions (P), (E), $\left(P_{w}\right)$, and strongly flatness are considered. Finally, in Section 4, products of projective S-posets are studied.

If S is a pomonoid, the Cartesian product S^{Γ} is a right and left S-poset equipped with the order and the action componentwise where Γ is a nonempty set. Moreover, $\left(s_{\gamma}\right)_{\gamma \in \Gamma} \in S^{\Gamma}$ is dented simply by (s_{γ}), and the right S-poset $S \times S$ will be denoted by $D(S)$.

Recall that an S-poset morphism $f: A_{S} \rightarrow B_{S}$ is called order-embedding if $f(a) \leq f\left(a^{\prime}\right)$ implies $a \leq a^{\prime}$, for all $a, a^{\prime} \in A$. The proof of the following lemma is routine.

Lemma 1.1 Let S be a pomonoid, Γ any nonempty set, and I a left ideal of S. Then the following are equivalent:
(i) $S^{\Gamma} \otimes I \rightarrow S^{\Gamma} \otimes S$ is order-embedding;
(ii) $S^{\Gamma} \otimes I \rightarrow I^{\Gamma}$ is order-embedding.

Proposition 1.2 Let S be a pomonoid and $s \in S$. Then the following are equivalent:
(i) $f_{s}: S^{\Gamma} \otimes S s \rightarrow(S s)^{\Gamma}$ is order-embedding for all $\Gamma \neq \emptyset$;
(ii) there exist $\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right) \in D(S)$ such that
(1) $s_{i} s \leq t_{i} s$ for all $1 \leq i \leq n$, and
(2) if $u s \leq v s$ for some $u, v \in S$, then there exist $u_{1}, \ldots, u_{n} \in S$ such that

$$
\begin{aligned}
u & \leq u_{1} s_{1} \\
u_{1} t_{1} & \leq u_{2} s_{2} \\
& \vdots \\
u_{n} t_{n} & \leq v
\end{aligned}
$$

Proof $(i) \Rightarrow(i i)$ Let $L=\{(u, v) \in D(S) \mid u s \leq v s\}$, and index L by $L=\left\{\left(u_{\gamma}, v_{\gamma}\right) \mid \gamma \in \Gamma\right\}$. Since $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) s$ in S^{Γ}, then, by $(i),\left(u_{\gamma}\right) \otimes s \leq\left(v_{\gamma}\right) \otimes s$ in $S^{\Gamma} \otimes S s$. So there exist $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in$
$S,\left(u_{\gamma}^{1}\right), \ldots,\left(u_{\gamma}^{n}\right) \in S^{\Gamma}$ such that

$$
\begin{array}{cc}
\left(u_{\gamma}\right) \leq\left(u_{\gamma}^{1}\right) s_{1} & \\
\left(u_{\gamma}^{1}\right) t_{1} \leq\left(u_{\gamma}^{2}\right) s_{2} & s_{1} s \leq t_{1} s \\
\vdots & \vdots \\
\left(u_{\gamma}^{n}\right) t_{n} \leq\left(v_{\gamma}\right) & s_{n} s \leq t_{n} s .
\end{array}
$$

So the result is easily checked.
(ii) $\Rightarrow(i)$ Let $\Gamma \neq \emptyset$, and let $\left(u_{\gamma}\right),\left(v_{\gamma}\right) \in S^{\Gamma}$ be such that $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) s$ in $(S s)^{\Gamma}$. By (ii), there exist $\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right) \in D(S)$ such that $s_{i} s \leq t_{i} s$ for all $1 \leq i \leq n$, and there exist $u_{\gamma}^{l}, \ldots, u_{\gamma}^{n} \in S$ for all $\gamma \in \Gamma$ such that

$$
\begin{aligned}
& u_{\gamma} \leq u_{\gamma}^{1} s_{1} \\
& u_{\gamma}^{1} t_{1} \leq u_{\gamma}^{2} s_{2} \\
& \vdots \\
& u_{\gamma}^{n} t_{n} \leq v_{\gamma} .
\end{aligned}
$$

Thus $\left(u_{\gamma}\right) \otimes s \leq\left(u_{\gamma}^{1}\right) s_{1} \otimes s \leq\left(u_{\gamma}^{1}\right) \otimes s_{1} s \leq\left(u_{\gamma}^{1}\right) \otimes t_{1} s \leq\left(u_{\gamma}^{1}\right) t_{1} \otimes s \leq\left(u_{\gamma}^{2}\right) s_{2} \otimes s \leq \ldots \leq\left(v_{\gamma}\right) \otimes s$ in $S^{\Gamma} \otimes S s$, as required.

2. Po-torsion free, principally weakly (po-)flat and weakly po-flat

In this section we consider direct products of (po-)torsion free, principally weakly, and weakly (po-)flat S-posets. Specifically, when S^{Γ} is principally weakly and weakly (po-)flat is studied. First, we begin our investigation with the weakest of the flatness properties. An element c of a pomonoid S will be called right po-cancelable if, for all $s, t \in S, s c \leq t c$ implies $s \leq t$. A right S-poset A_{S} is called po-torsion (torsion) free if, for $a, a^{\prime} \in A$ and a right po-cancelable (cancelable) element c of S, from $a c \leq a^{\prime} c\left(a c=a^{\prime} c\right)$ it follows that $a \leq a^{\prime}\left(a=a^{\prime}\right)$. The proof of the following result is immediately evident.

Proposition 2.1 For any pomonoid S direct products of po-torsion (torsion) free S-posets are again potorsion (torsion) free.

Recall that a pomonoid S is called a left $P S F$ pomonoid if all principal left ideals of a pomonoid S are strongly flat. Let S be a pomonoid. An element $u \in S$ is called right semi-po-cancelable if for $s, t \in S, s u \leq t u$ implies that there exists $r \in S$ such that $r u=u$, sr $\leq t r$. In [11], it is shown that a pomonoid S is left PSF pomonoid if and only if every element of S is right semi-po-cancelable.

Lemma 2.2 ([11]) Over a left PSF pomonoid S a right S-poset A_{S} is principally weakly po-flat if and only if for any $a, a^{\prime} \in A_{S}, s \in S$, if as $\leq a^{\prime} s$, then there exists $r \in S$ such that $r s=s$ and ar $\leq a^{\prime} r$.

Proposition 2.3 If S is a left PSF pomonoid, then the S-poset S^{n} is principally weakly po-flat for each $n \in \mathbb{N}$.

KHOSRAVI/Turk J Math

Proof Suppose that $\left(x_{1}, \ldots, x_{n}\right) s \leq\left(y_{1}, \ldots, y_{n}\right) s$. Since $x_{1} s \leq y_{1} s$ and S is left PSF pomonoid, there is $r_{1} \in S$ such that $r_{1} s=s$ and $x_{1} r_{1} \leq y_{1} r_{1}$. By the equality $x_{2} r_{1} s \leq y_{2} r_{1} s$ we get $r_{2} \in S$ such that $r_{2} s=s$ and $x_{2} r_{1} r_{2} \leq y_{2} r_{1} r_{2}$. Continuing this process, we obtain $r_{1}, \ldots, r_{n} \in S$ with $r_{i} s=s$ and $x_{i} r_{1} \ldots r_{i} \leq y_{i} r_{1} \ldots r_{i}$ for each $1 \leq i \leq n$. Put $r=r_{1} \ldots r_{n}$. Thus $\left(x_{1}, \ldots, x_{n}\right) r \leq\left(y_{1}, \ldots, y_{n}\right) r$ and $r s=s$. Applying Lemma 2.2, we obtain our assertion.

Since principally weakly po-flat implies principally weakly flat, over a left $P S F$ pomonoid S, S^{n} is also principally weakly flat.

Using Lemma 1.1 and Proposition 1.2, we get the following proposition.

Proposition 2.4 The following are equivalent for a pomonoid S :
(i) S_{S}^{Γ} is principally weakly po-flat for each nonempty set Γ;
(ii) For any $s \in S$, the mapping $f_{s}: S^{\Gamma} \otimes S s \longrightarrow(S s)^{\Gamma}$ is order-embedding for each nonempty set Γ;
(iii) For any $s \in S$ there exist $\left(s_{1}, t_{1}\right), \ldots,\left(s_{n}, t_{n}\right) \in D(S)$ such that
(1) $s_{i} s \leq t_{i} t$ for all $1 \leq i \leq n$, and
(2) if us $\leq v s(u, v \in S)$, then there exist $u_{1}, \ldots, u_{n} \in S$ such
that

$$
\begin{aligned}
u & \leq u_{1} s_{1} \\
u_{1} t_{1} & \leq u_{2} s_{2} \\
& \vdots \\
u_{n} t_{n} & \leq v
\end{aligned}
$$

In [11], it is shown that a right S-poset A_{S} is weakly po-flat if and only if it is principally weakly po-flat and satisfies condition (W) :

If $a s \leq a^{\prime} t$ for $a, a^{\prime} \in A_{S}, s, t \in S$, then there exist $a^{\prime \prime} \in A_{S}, p \in S s$ and $q \in S t$ such that $p \leq q, a s \leq a^{\prime \prime} p, a^{\prime \prime} q \leq a^{\prime} t$.

For each $(p, q) \in D(S),\{(u, v) \in D(S) \mid \exists w \in S, u \leq w p, w q \leq v\}$ is a left S-poset and will be denoted by $\widehat{S(p, q)}$ from now on. Clearly $\widehat{S(p, q)}$ contains the cyclic S-poset $S(p, q)$. Moreover, if $S s \cap(S t] \neq \emptyset$, $\left\{\left(a s, a^{\prime} t\right) \mid a s \leq a^{\prime} t\right\}$ is denoted by $H(s, t)$.

Proposition 2.5 The diagonal S-poset $D(S)$ is weakly po-flat if and only if it is principally weakly poflat and $S s \cap(S t] \neq \emptyset$ or for each $\left(a s, a^{\prime} t\right)$ and $\left(b s, b^{\prime} t\right)$ in $H(s, t)$ there exist $(p, q) \in H(s, t)$ such that $\left(a s, a^{\prime} t\right),\left(b s, b^{\prime} t\right) \in \widehat{S(p, q)}$.
Proof We show that, for any pomonoid $S, D(S)$ satisfying condition (W) is equivalent to the second condition of this proposition. First suppose that $D(S)$ satisfies condition (W), and let $s, t \in S$, and $S s \cap$ $(S t] \neq \emptyset$. Suppose that $\left(a s, a^{\prime} t\right),\left(b s, b^{\prime} t\right) \in H(s, t)$. Then we have $(a, b) s \leq\left(a^{\prime}, b^{\prime}\right) t$. By condition (W), $(a, b) s \leq\left(a^{\prime \prime}, b^{\prime \prime}\right) p, \quad\left(a^{\prime \prime}, b^{\prime \prime}\right) q \leq\left(a^{\prime}, b^{\prime}\right) t$ for some $p \in S s, q \in S t, p \leq q$, and $\left(a^{\prime \prime}, b^{\prime \prime}\right) \in D(S)$. Therefore, as $\leq a^{\prime \prime} p, a^{\prime \prime} q \leq a^{\prime} t, b s \leq b^{\prime \prime} p, b^{\prime \prime} q \leq b^{\prime} t$, and so $\left(a s, a^{\prime} t\right),\left(b s, b^{\prime} t\right) \in \widehat{S(p, q)}$.

Now suppose that $(a, b) s \leq\left(a^{\prime}, b^{\prime}\right) t$ for $(a, b),\left(a^{\prime}, b^{\prime}\right) \in D(S), s, t \in S$. Then $S s \cap(S t] \neq \emptyset$, and since $a s \leq a^{\prime} t$ and $b s \leq b^{\prime} t$, by assumption $\left(a s, a^{\prime} t\right),\left(b s, b^{\prime} t\right) \in \widehat{S(p, q)}$ for some $(p, q \in H(s, t)$. So

KHOSRAVI/Turk J Math

$p \in S s, q \in S t, p \leq q$, and there exist $a^{\prime \prime}, b^{\prime \prime} \in S$ such that $a s \leq a^{\prime \prime} p, a^{\prime \prime} q \leq a^{\prime} t, b s \leq b^{\prime \prime} p, b^{\prime \prime} q \leq b^{\prime} t$. Then $(a, b) s \leq\left(a^{\prime \prime}, b^{\prime \prime}\right) p,\left(a^{\prime \prime}, b^{\prime \prime}\right) q \leq\left(a^{\prime}, b^{\prime}\right) t$ and so $D(S)$ satisfies condition (W).

Definition 2.6 Let S be a pomonoid. A finitely generated left S-poset ${ }_{S} B$ is called finitely definable (FD) if the S-morphism $S^{\Gamma} \otimes B \rightarrow B^{\Gamma}$ is order-embedding for all nonempty sets Γ.

Theorem 2.7 The following are equivalent for a pomonoid S :

(i) S^{Γ} is weakly po-flat right S-poset for each $\Gamma \neq \emptyset$;
(ii) every finitely generated left ideal of S is FD;
(iii) $S s$ is $F D$ for each $s \in S$, and
for every $s, t \in S$, if $S s \cap(S t] \neq \emptyset$, then $H(s, t) \subseteq \widehat{S(p, q)}$ for some $(p, q) \in H(s, t)$.
Proof The equivalence of (i) and (ii) is clear.
$(i) \Rightarrow$ (iii) The first part is obvious. Let $s, t \in S$ such that $S s \cap(S t] \neq \emptyset$. Index the set $H(s, t)$ by $H(s, t)=\left\{\left(u_{\gamma} s, v_{\gamma} t\right) \mid \gamma \in \Gamma\right\}$. Since $S^{\Gamma} \otimes(S s \cup S t) \rightarrow(S s \cup S t)^{\Gamma}$ is order-embedding and $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) t$, then $\left(u_{\gamma}\right) \otimes s \leq\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes(S s \cup S t)$. So there exist $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in S,\left(u_{\gamma}^{1}\right), \ldots,\left(u_{\gamma}^{n}\right) \in S^{\Gamma}, b_{2}, \ldots, b_{n} \in$ $S s \cup S t$ such that

$$
\begin{array}{cc}
\left(u_{\gamma}\right) \leq\left(u_{\gamma}^{1}\right) s_{1} & \\
\left(u_{\gamma}^{1}\right) t_{1} \leq\left(u_{\gamma}^{2}\right) s_{2} & s_{1} s \leq t_{1} b_{2} \\
\vdots & \vdots \\
\left(u_{\gamma}^{n}\right) t_{n} \leq\left(v_{\gamma}\right) & s_{n} b_{n} \leq t_{n} t .
\end{array}
$$

Let k be the smallest integer such that $b_{k} \in S t$. So $b_{k-1} \in S s$ and $s_{k-1} b_{k-1} \leq t_{k-1} b_{k}$. Take $p=s_{k-1} b_{k-1}$ and $q=t_{k-1} b_{k}$. Thus $\left(u_{\gamma}\right) s \leq\left(u_{\gamma}^{1}\right) s_{1} s \leq\left(u_{\gamma}^{1}\right) t_{1} b_{2} \leq\left(u_{\gamma}^{2}\right) s_{2} b_{2} \leq \ldots \leq\left(u_{\gamma}^{k-1}\right) s_{k-1} b_{k-1} \leq$ $\left(u_{\gamma}^{k-1}\right) t_{k-1} b_{k} \leq \ldots \leq\left(v_{\gamma}\right) t$. Then $\left(u_{\gamma}\right) s \leq\left(u_{\gamma}^{k-1}\right) p,\left(u_{\gamma}^{k-1}\right) q \leq\left(v_{\gamma}\right) t$, and so $H(s, t) \subseteq \widehat{S(p, q)}$.
(iii) $\Rightarrow(i i)$ Let I be a left ideal of S, and $\left(u_{\gamma}\right) s \leq\left(v_{\gamma}\right) t$ for some $\left(u_{\gamma}\right),\left(v_{\gamma}\right) \in S^{\Gamma}, s, t \in I$. By (iii), $H(s, t) \subseteq \widehat{S(p, q)}$ for some $(p, q) \in H(s, t)$. Thus there exists $w_{\gamma} \in S$ such that $u_{\gamma} s \leq w_{\gamma} p, w_{\gamma} q \leq v_{\gamma} t$ for each $\gamma \in \Gamma$. Take $p=c s, q=d t$ for some $c, d \in S$. Since Ss and St are FD and $\left(u_{\gamma}\right) s \leq\left(w_{\gamma} c\right) s,\left(w_{\gamma} d\right) t \leq\left(v_{\gamma}\right) t$, we have $\left(u_{\gamma}\right) \otimes s \leq\left(w_{\gamma} c\right) \otimes s,\left(w_{\gamma} d\right) \otimes t \leq\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes S s$ and $S^{\Gamma} \otimes S t$, respectively. Therefore, $\left(u_{\gamma}\right) \otimes s \leq\left(w_{\gamma} c\right) \otimes s=\left(w_{\gamma}\right) \otimes c s \leq\left(w_{\gamma}\right) \otimes d t=\left(w_{\gamma} d\right) \otimes t \leq\left(v_{\gamma}\right) \otimes t$ in $S^{\Gamma} \otimes(S s \cup S t)$, as required.

3. Conditions (\mathbf{P}) and $\left(P_{w}\right)$, and strongly flat

In this section a characterization of pomonoids over which direct products of S-posets satisfying conditions (P), (E), and (P_{w}) again satisfy that condition is given. First, we focus our attention on finite direct products of S-posets satisfying conditions (P), (E), and (P_{w}).

In [7] the ordered version of locally cyclic acts is called a weakly locally cyclic S-poset as an S poset A such that every finitely generated S-subposet of A is contained in a cyclic S-poset. Moreover, a

KHOSRAVI/Turk J Math

principal left ideal of S that is also weakly locally cyclic is called weakly locally principal left ideal. The set $L(a, b):=\{(u, v) \in D(S) \mid u a \leq v b\}$ is a left S-subposet of $D(S)$, and the set $(l(a, b):=\{u \in S \mid u a \leq u b\})$ is a left ideal of S.

Proposition 3.1 For any pomonoid S the following are equivalent:
(i) any finite product of right S-posets satisfying condition (P) (condition (E)) satisfies condition (P) (condition (E));
(ii) the diagonal S-poset $D(S)$ satisfies condition (P) (condition (E));
(iii) for every $a, b \in S$ the set $L(a, b)(l(a, b))$ is either empty or a weakly locally cyclic left S-poset (weakly locally principal left ideal of S).
Proof $(i) \Rightarrow(i i)$ is clear. $(i i) \Rightarrow(i i i)$ Suppose that $D(S)$ satisfies condition (P), and suppose $(u, v),\left(u^{\prime}, v^{\prime}\right) \in$ $L(a, b)$, where $a, b \in S$. Since $u a \leq v b$ and $u^{\prime} a \leq v^{\prime} b$ we obtain $\left(u, u^{\prime}\right) a \leq\left(v, v^{\prime}\right) b$, by condition (P), there exist $\left(w, w^{\prime}\right) \in D(S)$ and $p, q \in S$ such that $\left(w, w^{\prime}\right) p=\left(u, u^{\prime}\right),\left(w, w^{\prime}\right) q=\left(v, v^{\prime}\right)$, and $p a \leq q b$. From this it follows that $(u, v),\left(u^{\prime}, v^{\prime}\right) \in S(p, q) \subseteq L(a, b)$ and so $L(a, b)$ is weakly locally cyclic.
$($ iii $) \Rightarrow(i)$ Suppose that A_{1}, \ldots, A_{n} are right S-posets each satisfying condition (P). Let $a_{i}, a_{i}^{\prime} \in A_{i}$ for each i, and let $u, v \in S$ and suppose $\left(a_{1}, \ldots, a_{n}\right) u \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) v$ in $A=\prod_{i=1}^{n} A_{i}$. For each i, from $a_{i} u \leq a_{i}^{\prime} v$ and condition (P) for A_{i} we obtain $a_{i}^{\prime \prime} \in A_{i}$ and $p_{i}, q_{i} \in S$ such that $a_{i}^{\prime \prime} p_{i}=a_{i}, a_{i}^{\prime \prime} q_{i}=a_{i}^{\prime}$, and $p_{i} u \leq q_{i} v$. Then $\left(p_{i}, q_{i}\right) \in L(u, v)$ for each i and so, by assumption, there exists $(p, q) \in D(S)$ such that $\left(p_{i}, q_{i}\right) \in S(p, q) \subseteq L(u, v)$. Suppose that $\left(p_{i}, q_{i}\right)=w_{i}(p, q)$ for $w_{i} \in S, 1 \leq i \leq n$. Then $\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) p,\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) q$, and $p u \leq q v$, proving that $A=\prod_{i=1}^{n} A_{i}$ satisfies condition (P).

Proposition 3.2 For any pomonoid S the following are equivalent:

(i) any finite product of right S-posets satisfying condition $\left(P_{w}\right)$ satisfies condition $\left(P_{w}\right)$;
(ii) the diagonal S-poset $D(S)$ satisfies condition $\left(P_{w}\right)$;
(iii) for every $a, b \in S$ the set $L(a, b)$ is either empty or for each 2 elements $(u, v),\left(u^{\prime}, v^{\prime}\right) \in L(a, b)$ there exists $(p, q) \in L(a, b)$ such that $(u, v),\left(u^{\prime}, v^{\prime}\right) \in \widehat{S(p, q)}$.
Proof $(i) \Rightarrow(i i)$ is clear. $(i i) \Rightarrow(i i i)$ Suppose that $D(S)$ satisfies condition $\left(P_{w}\right)$, and suppose that $(u, v),\left(u^{\prime}, v^{\prime}\right) \in L(a, b)$, where $a, b \in S$. Since $u a \leq v b$ and $u^{\prime} a \leq v^{\prime} b$ we obtain $\left(u, u^{\prime}\right) a \leq\left(v, v^{\prime}\right) b$, and condition $\left(P_{w}\right)$ gives $\left(w, w^{\prime}\right) \in D(S)$ and $p, q \in S$ such that $\left(u, u^{\prime}\right) \leq\left(w, w^{\prime}\right) p,\left(v, v^{\prime}\right) \geq\left(w, w^{\prime}\right) q$, and $p a \leq q b$. So $(p, q) \in L(a, b)$ and we are done.
$($ iii $) \Rightarrow(i)$ Suppose that A_{1}, \ldots, A_{n} are right S-posets each satisfying condition $\left(P_{w}\right)$. Suppose $a_{i}, a_{i}^{\prime} \in A_{i}$ for each i, and let $u, v \in S$ be such that $\left(a_{1}, \ldots, a_{n}\right) u \leq\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) v$ in $A=\prod_{i=1}^{n} A_{i}$. For each i, from $a_{i} u \leq a_{i}^{\prime} v$ and condition $\left(P_{w}\right)$ for A_{i} we obtain $a_{i}^{\prime \prime} \in A_{i}$ and $p_{i}, q_{i} \in S$ such that $a_{i} \leq a_{i}^{\prime \prime} p_{i}, a_{i}^{\prime} \geq a_{i}^{\prime \prime} q_{i}$, and $p_{i} u \leq q_{i} v$. Then $\left(p_{i}, q_{i}\right) \in L(u, v)$ and so, by assumption, there exists $(p, q) \in L(u, v)$ such that $\left(p_{i}, q_{i}\right) \in \widehat{S(p, q)}$ for each $1 \leq i \leq n$. So $p_{i} \leq w_{i} p, q_{i} \geq w_{i} q$ for some $w_{i} \in S, 1 \leq i \leq n$. Then $\left(a_{1}, \ldots, a_{n}\right) \leq\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) p,\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \geq\left(a_{1}^{\prime \prime} w_{1}, \ldots, a_{n}^{\prime \prime} w_{n}\right) q$, and $p u \leq q v$, proving that $A=\prod_{i=1}^{n} A_{i}$ satisfies condition $\left(P_{w}\right)$.

KHOSRAVI/Turk J Math

Now, we are going to discuss direct products of any arbitrary nonempty family of S-posets satisfying conditions $(\mathrm{P}),(\mathrm{E})$, and $\left(P_{w}\right)$.

Theorem 3.3 The following are equivalent for a pomonoid S :
(i) the direct product of every nonempty family of right S-posets satisfying condition (P) (condition $(E))$ satisfies condition (P) (condition (E));
(ii) $\left(S^{\Gamma}\right)_{S}$ satisfies condition (P) (condition $\left.(E)\right)$ for every nonempty set Γ;
(iii) for every $a, b \in S$ the set $L(a ; b)(l(a, b))$ is either empty or a cyclic left S-poset (principal left ideal of S).

Proof $(i) \Rightarrow(i i)$ is clear. (ii) \Rightarrow (iii) Suppose that $a, b \in S$ and $L(a, b) \neq \emptyset$. Index the set $L(a, b)$ by $L(a, b)=\left\{\left(u_{\gamma}, v_{\gamma}\right) \mid \gamma \in \Gamma\right\}$. Let \vec{u}, \vec{v} be the elements of S^{Γ} whose γ th components are u_{γ}, v_{γ} respectively. Then $\vec{u} a \leq \vec{v} b$ in S^{Γ} and as S^{Γ} satisfies condition (P) by assumption, we have that $u a \leq v b, \vec{u}=\vec{z} p$ and $\vec{v}=\vec{z} q$ for some $p, q \in S$ and $\vec{z} \in S^{\Gamma}$. Thus $(p, q) \in L(a, b)$ so that $(p, q)=\left(u_{j}, v_{j}\right)$ for some $j \in \Gamma$. If $\gamma \in \Gamma$, then $\left(u_{i} \gamma, v_{\gamma}\right)=z_{\gamma}(p, q)=z_{\gamma}\left(u_{j}, v_{j}\right)$ where z_{γ} is the γ th component of \vec{z}. This gives that $L(a, b)$ is cyclic. A similar argument applies for condition (E).
(iii) $\Rightarrow(i)$ Let $A=\prod_{i \in I} A_{i}$ be a product of right S-posets satisfying condition (P). Suppose that $\vec{x} a \leq \vec{y} b$ where $a, b \in S$ and $\vec{x}=\left(x_{i}\right), \vec{y}=\left(y_{i}\right) \in A$. For each $i \in I, x_{i} a \leq y_{i} b$ and so as A_{i} satisfies condition (P) there are elements $u_{i}, v_{i} \in S$ and $z_{i} \in A_{i}$ with $u_{i} a \leq v_{i} b, x_{i}=z_{i} u_{i}, y_{i}=z_{i} v_{i}$. So $\left(u_{i}, v_{i}\right) \in L(a, b) \neq \emptyset$ and by assumption it is cyclic, say $L(a, b)=S(p, q)$. Thus for each $i \in I,\left(u_{i}, v_{i}\right)=r_{i}(p, q)$ for some $r_{i} \in S$. We now have $p a \leq q b$ and $x_{i}=z_{i} r_{i} p, y_{i}=z_{i} r_{i} q$ for each $i \in I$. If $\vec{w}=\left(z_{i} r_{i}\right)_{i \in I} \in A$, then $\vec{x}=\vec{w} p$ and $\vec{y}=\vec{w} q$. With a similar argument for equalities of the form $\vec{x} a \leq \vec{x} b$ condition (E) implies.

Theorem 3.4 The following are equivalent for a pomonoid S :

(i) the direct product of every nonempty family of right S-posets satisfying condition (P_{w}) satisfies condition (P_{w});
(ii) $\left(S^{\Gamma}\right)_{S}$ satisfies condition $\left(P_{w}\right)$ for every nonempty set Γ;
(iii) for every $a, b \in S$ the set $L(a, b)$ is either empty or there exists $(p, q) \in L(a, b)$ such that $L(a, b)=\widehat{S(p, q)}$.
Proof $(i) \Rightarrow(i i)$ is clear. $(i i) \Rightarrow(i i i)$ Let $a, b \in S$ and $L(a, b) \neq \emptyset$. Write $L(a, b)=\left\{\left(u_{\gamma}, v_{\gamma}\right) \mid \gamma \in \Gamma\right\}$. Let \vec{u}, \vec{v} be the elements of S^{Γ} whose γ th components are u_{γ}, v_{γ} respectively. Then $\vec{u} a \leq \vec{v} b$ in S^{Γ} and as S^{Γ} satisfies condition $\left(P_{w}\right)$ by assumption, we have that $p a \leq q b, \vec{u} \leq \vec{z} p$ and $\vec{z} q \leq \vec{v}$ for some $p, q \in S$ and $\vec{z} \in S^{\Gamma}$. Thus $(p, q) \in L(a, b)$ and we have $u_{\gamma} \leq z_{\gamma} p, z_{\gamma} q \leq v_{\gamma}$ where z_{γ} is the γ th component of \vec{z}. Therefore, $L(a, b)=\widehat{S(p, q)}$.
(iii) $\Rightarrow(i)$ Let $A=\prod_{i \in I} A_{i}$ be a product of right S-posets satisfying condition (P_{w}). Suppose that $X a \leq Y b$ where $a, b \in S$ and $\vec{x}=\left(x_{i}\right), \vec{y}=\left(y_{i}\right) \in A$. For each $i \in I, x_{i} a \leq y_{i} b$ and so as A_{i} satisfies condition $\left(P_{w}\right)$ there are elements $u_{i}, v_{i} \in S$ and $z_{i} \in A_{i}$ with $u_{i} a \leq v_{i} b, x_{i} \leq z_{i} u_{i}, z_{i} v_{i} \leq y_{i}$. So $\left(u_{i}, v_{i}\right) \in L(a, b) \neq \emptyset$ and by assumption there exists $(p, q) \in L(a, b)$ such that $L(a, b)=\widehat{S(p, q)}$. So for each $\left(u_{i}, v_{i}\right) \in L(a, b)$ there exists $r_{i} \in S$ with $u_{i} \leq r_{i} p$ and $r_{i} q \leq v_{i}$. Thus $p a \leq q b$ and $x_{i} \leq z_{i} r_{i} p, z_{i} r_{i} q \leq y_{i}$ for each $i \in I$. If
$\vec{w}=\left(z_{i} r_{i}\right)_{i \in I} \in A$, then $\vec{x} \leq \vec{w} p$ and $\vec{w} q \leq \vec{y}$.
In light of Theorem 3.3, the following corollary holds.

Corollary 3.5 The following are equivalent for a pomonoid S :

(i) every product S^{Γ} is strongly flat right S-poset for a nonempty set Γ;
(ii) every product $\prod_{i \in I} A_{i}$ of strongly flat right S-posets $A_{i}, i \in I$, is strongly flat;
(iii) for all $(a, b) \in D(S), L(a, b) \neq \emptyset$ or is cyclic left S-poset and $l(a, b) \neq \emptyset$ or is principal left ideal of S.

References

[1] Bulman-Fleming, S.: Products of projective S-systems. Comm. Algebra 19, 951-964 (1991).
[2] Bulman-Fleming, S., Gilmour, A.: Flatness properties of diagonal acts over monoids. Semigroup Forum 79, 298-314 (2009).
[3] Bulman-Fleming, S., Laan, V.: Lazard's theorem for S-posets. Math. Nachr. 278, 1743-1755 (2005).
[4] Bulman-Fleming, S., McDowell, K.: Coherent monoids. In: Lattices, Semigroups and Universal Algebra (Eds.: J. Almeida, G. Bordalo and P. Dwinger) 29-37, New York. Plenum Press 1990.
[5] Bulman-Fleming, S., Normak, P.: Flatness properties of S-posets. Comm. Algebra 34, 1291-1317 (2006).
[6] Gould, V.: Coherent monoids. J. Austral. Math. Soc. (Series A) 53, 166-182 (1992).
[7] Gould, V., Shaheen, L.: Perfection for pomonoids. Semigroup Forum 81, 102-127 (2010).
[8] Kilp, M., Knauer, U., Mikhalev, A.: Monoids, Acts and Categories. Berlin. Walter de Gruyter 2000.
[9] Sedaghatjoo, M., Khosravi, R., Ershad, M.: Principally weakly and weakly coherent monoids. Comm. Algebra 37, 4281-4295 (2009).
[10] Shi, X.: On flatness properties of cyclic S-posets. Semigroup Forum 77, 248-266 (2008).
[11] Shi, X.: Strongly flat and po-flat S-posets. Comm. Algebra 33, 4515-4531 (2005).
[12] Shi, X., Lui, Z., Wang, F., Bulman-Fleming, S.: Indecomposable, projective, and flat S-posets. Comm. Algebra 33, 235-251 (2005).

[^0]: *Correspondence: khosravi@fasau.ac.ir
 2010 AMS Mathematics Subject Classification: 20M30.

