

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2014) 38: 79 – 86 © TÜBİTAK doi:10.3906/mat-1210-35

Research Article

On direct products of S-posets satisfying flatness properties

Roghaieh KHOSRAVI*

Department of Mathematics, Fasa University, Fasa, Fars, Iran

Received: 12.10.2012 • Accepted: 14.01.2013	٠	Published Online: 09.12.2013	٠	Printed: 20.01.2014
---	---	------------------------------	---	----------------------------

Abstract: In this paper we characterize pomonoids over which various flatness properties of S-posets are preserved under direct products.

1. Introduction

A monoid S that is also a partially ordered set, in which the binary operation and the order relation are compatible, is called a pomonoid. A right S-poset A_S is a right S-act A equipped with a partial order \leq and, in addition, for all $s, t \in S$ and $a, b \in A$, if $s \leq t$ then $as \leq at$, and if $a \leq b$ then $as \leq bs$. An S-subposet of a right S-poset A is a subset of A that is closed under the S-action. The definition of ideal is the same for the act case. Moreover, $X \subseteq S$ and take $(X] = \{p \in S \mid \exists x \in X, p \leq x\}$. Finally, an S-morphism from S-poset A to S-poset C is a monotonic map that preserves S-action.

Let A be a right S-poset, B a left S-poset. The order relation on $A_S \otimes_S B$ can be described as follows: $a \otimes b \leq a' \otimes b'$ holds in $A_S \otimes_S B$ if and only if there exist $s_1, \ldots, s_n, t_1, \ldots, t_n \in S, a_1, \ldots, a_n \in A_S, b_2, \ldots, b_n \in SB$ such that

$$a \le a_1 s_1$$

$$a_1 t_1 \le a_2 s_2 \qquad s_1 b \le t_1 b_2$$

$$\vdots \qquad \vdots$$

$$a_n t_n \le a' \qquad s_n b_n \le t_n b'.$$

When B = Sb and b = b', in the above scheme we can replace all b_i by b. Moreover, $a \otimes b = a' \otimes b'$ if $a \otimes b \leq a' \otimes b'$ and $a' \otimes b' \leq a \otimes b$. More information about tensor products in S-posets can be found in [12]. A right S-poset A_S is weakly po-flat if $a \otimes s \leq a' \otimes t$ in $A_S \otimes S$ (equivalently, $as \leq a't$) implies that the same inequality holds also in $A_S \otimes s(Ss \cup St)$ for $a, a' \in A_S, s, t \in S$. A right S-poset A_S is principally weakly po-flat if $a \otimes s \leq a' \otimes s$ in $A_S \otimes sSs$ for $a, a' \in A_S, s \in S$. Weakly flat and principally weakly flat can be defined the same as the previous by replacing \leq by =.

An S-poset A_S satisfies condition (P_w) if, for all $a, b \in A$ and $s, t \in S$, $as \leq bt$ implies $a \leq a'u$, $a'v \leq b$ for some $a' \in A$, $u, v \in S$ with $us \leq vt$. A right S-poset A_S satisfies condition (P) if, for all $a, b \in A$ and $s, t \in S$, $as \leq bt$ implies a = a'u, b = a'v for some $a' \in A$, $u, v \in S$ with $us \leq vt$, and it satisfies condition (E)

^{*}Correspondence: khosravi@fasau.ac.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 20M30.

if, for all $a \in A$ and $s, t \in S$, $as \leq at$ implies a = a'u for some $a' \in A$, $u \in S$ with $us \leq ut$. A right S-poset is called strongly flat if it satisfies both conditions (P) and (E). Projectivity is defined in the standard categorical manner.

In [1], Bulman-Fleming characterized monoids over which direct products of projective acts are projective. Gould in [6] then solved this problem for strongly flat and conditions (P) and (E). Meanwhile, Bulman-Fleming and McDowell [4] defined a monoid to be right coherent if every direct product of flat *S*-acts is flat, and they obtained some results when S^{Γ} is (principally) weakly flat for a monoid *S*. In [2], Bulman-Fleming and Gilmour discussed when $S \times S$ has certain flatness properties. Then in [9], principally weakly left coherent monoids were characterized as monoids over which direct products of nonempty families of principally weakly flat right S-acts are principally weakly flat. The reader is referred to the monograph [8] for a complete discussion of flatness properties and definition of acts over monoids. On the other hand, the investigation of *S*-posets was initiated by Fakhruddin in the 1980s, and recently many papers on this topic have appeared, mostly concentrating on projectivity and various notions of flatness for *S*-posets, such as [5, 3, 7, 11, 10]. Following Section 1, we give some preliminaries about the *S*-poset S^{Γ} , where Γ is a nonempty set and tensor product. In Section 2, we investigate products of (po-)torsion free, principally weakly and weakly (po-)flat *S*-posets. In Section 3, conditions (P), (E), (P_w), and strongly flatness are considered. Finally, in Section 4, products of projective *S*-posets are studied.

If S is a pomonoid, the Cartesian product S^{Γ} is a right and left S-poset equipped with the order and the action componentwise where Γ is a nonempty set. Moreover, $(s_{\gamma})_{\gamma \in \Gamma} \in S^{\Gamma}$ is dented simply by (s_{γ}) , and the right S-poset $S \times S$ will be denoted by D(S).

Recall that an S-poset morphism $f: A_S \to B_S$ is called *order-embedding* if $f(a) \leq f(a')$ implies $a \leq a'$, for all $a, a' \in A$. The proof of the following lemma is routine.

Lemma 1.1 Let S be a pomonoid, Γ any nonempty set, and I a left ideal of S. Then the following are equivalent:

- (i) $S^{\Gamma} \otimes I \to S^{\Gamma} \otimes S$ is order-embedding;
- (ii) $S^{\Gamma} \otimes I \to I^{\Gamma}$ is order-embedding.

Proposition 1.2 Let S be a pomonoid and $s \in S$. Then the following are equivalent:

- (i) $f_s: S^{\Gamma} \otimes Ss \to (Ss)^{\Gamma}$ is order-embedding for all $\Gamma \neq \emptyset$;
- (ii) there exist $(s_1, t_1), ..., (s_n, t_n) \in D(S)$ such that
 - (1) $s_i s \leq t_i s$ for all $1 \leq i \leq n$, and
 - (2) if $us \leq vs$ for some $u, v \in S$, then there exist $u_1, ..., u_n \in S$ such that

$$u \le u_1 s_1$$
$$u_1 t_1 \le u_2 s_2$$
$$\vdots$$
$$u_n t_n \le v.$$

Proof (i) \Rightarrow (ii) Let $L = \{(u, v) \in D(S) | us \leq vs\}$, and index L by $L = \{(u_{\gamma}, v_{\gamma}) | \gamma \in \Gamma\}$. Since $(u_{\gamma})s \leq (v_{\gamma})s$ in S^{Γ} , then, by (i), $(u_{\gamma}) \otimes s \leq (v_{\gamma}) \otimes s$ in $S^{\Gamma} \otimes Ss$. So there exist $s_1, \ldots, s_n, t_1, \ldots, t_n \in C^{\Gamma}$.

 $S, (u_{\gamma}^1), \ldots, (u_{\gamma}^n) \in S^{\Gamma}$ such that

$$(u_{\gamma}) \leq (u_{\gamma}^{1})s_{1}$$
$$(u_{\gamma}^{1})t_{1} \leq (u_{\gamma}^{2})s_{2} \quad s_{1}s \leq t_{1}s$$
$$\vdots \qquad \vdots$$
$$(u_{\gamma}^{n})t_{n} \leq (v_{\gamma}) \qquad s_{n}s \leq t_{n}s.$$

So the result is easily checked.

 $(ii) \Rightarrow (i)$ Let $\Gamma \neq \emptyset$, and let $(u_{\gamma}), (v_{\gamma}) \in S^{\Gamma}$ be such that $(u_{\gamma})s \leq (v_{\gamma})s$ in $(Ss)^{\Gamma}$. By (ii), there exist $(s_1, t_1), ..., (s_n, t_n) \in D(S)$ such that $s_i s \leq t_i s$ for all $1 \leq i \leq n$, and there exist $u_{\gamma}^l, ..., u_{\gamma}^n \in S$ for all $\gamma \in \Gamma$ such that

$$u_{\gamma} \leq u_{\gamma}^{1} s_{1}$$
$$u_{\gamma}^{1} t_{1} \leq u_{\gamma}^{2} s_{2}$$
$$\vdots$$
$$u_{\gamma}^{n} t_{n} \leq v_{\gamma}.$$

Thus $(u_{\gamma}) \otimes s \leq (u_{\gamma}^1) s_1 \otimes s \leq (u_{\gamma}^1) \otimes s_1 s \leq (u_{\gamma}^1) \otimes t_1 s \leq (u_{\gamma}^1) t_1 \otimes s \leq (u_{\gamma}^2) s_2 \otimes s \leq \ldots \leq (v_{\gamma}) \otimes s$ in $S^{\Gamma} \otimes Ss$, as required.

2. Po-torsion free, principally weakly (po-)flat and weakly po-flat

In this section we consider direct products of (po-)torsion free, principally weakly, and weakly (po-)flat S-posets. Specifically, when S^{Γ} is principally weakly and weakly (po-)flat is studied. First, we begin our investigation with the weakest of the flatness properties. An element c of a pomonoid S will be called *right po-cancelable* if, for all $s, t \in S$, $sc \leq tc$ implies $s \leq t$. A right S-poset A_S is called po-torsion (torsion) free if, for $a, a' \in A$ and a right po-cancelable (cancelable) element c of S, from $ac \leq a'c$ (ac = a'c) it follows that $a \leq a'$ (a = a'). The proof of the following result is immediately evident.

Proposition 2.1 For any pomonoid S direct products of po-torsion (torsion) free S-posets are again potorsion (torsion) free.

Recall that a pomonoid S is called a left PSF pomonoid if all principal left ideals of a pomonoid S are strongly flat. Let S be a pomonoid. An element $u \in S$ is called *right semi-po-cancelable* if for $s, t \in S, su \leq tu$ implies that there exists $r \in S$ such that ru = u, $sr \leq tr$. In [11], it is shown that a pomonoid S is left PSFpomonoid if and only if every element of S is right semi-po-cancelable.

Lemma 2.2 ([11]) Over a left PSF pomonoid S a right S-poset A_S is principally weakly po-flat if and only if for any $a, a' \in A_S, s \in S$, if $as \leq a's$, then there exists $r \in S$ such that rs = s and $ar \leq a'r$.

Proposition 2.3 If S is a left PSF pomonoid, then the S-poset S^n is principally weakly po-flat for each $n \in \mathbb{N}$.

Proof Suppose that $(x_1, \ldots, x_n)s \leq (y_1, \ldots, y_n)s$. Since $x_1s \leq y_1s$ and S is left PSF pomonoid, there is $r_1 \in S$ such that $r_1s = s$ and $x_1r_1 \leq y_1r_1$. By the equality $x_2r_1s \leq y_2r_1s$ we get $r_2 \in S$ such that $r_2s = s$ and $x_2r_1r_2 \leq y_2r_1r_2$. Continuing this process, we obtain $r_1, \ldots, r_n \in S$ with $r_is = s$ and $x_ir_1 \ldots r_i \leq y_ir_1 \ldots r_i$ for each $1 \leq i \leq n$. Put $r = r_1 \ldots r_n$. Thus $(x_1, \ldots, x_n)r \leq (y_1, \ldots, y_n)r$ and rs = s. Applying Lemma 2.2, we obtain our assertion.

Since principally weakly po-flat implies principally weakly flat, over a left PSF pomonoid S, S^n is also principally weakly flat.

Using Lemma 1.1 and Proposition 1.2, we get the following proposition.

Proposition 2.4 The following are equivalent for a pomonoid S:

- (i) S_S^{Γ} is principally weakly po-flat for each nonempty set Γ ;
- (ii) For any $s \in S$, the mapping $f_s : S^{\Gamma} \otimes Ss \longrightarrow (Ss)^{\Gamma}$ is order-embedding for each nonempty set Γ ;
- (iii) For any $s \in S$ there exist $(s_1, t_1), \ldots, (s_n, t_n) \in D(S)$ such that

(1) $s_i s \leq t_i t$ for all $1 \leq i \leq n$, and

(2) if $us \leq vs \ (u, v \in S)$, then there exist $u_1, ..., u_n \in S$ such

that

$$u \le u_1 s_1$$
$$u_1 t_1 \le u_2 s_2$$
$$\vdots$$
$$u_n t_n \le v.$$

In [11], it is shown that a right S-poset A_S is weakly po-flat if and only if it is principally weakly po-flat and satisfies condition (W):

If $as \leq a't$ for $a, a' \in A_S$, $s, t \in S$, then there exist $a'' \in A_S$, $p \in Ss$ and $q \in St$ such that $p \leq q$, $as \leq a''p$, $a''q \leq a't$.

For each $(p,q) \in D(S)$, $\{(u,v) \in D(S) | \exists w \in S, u \leq wp, wq \leq v\}$ is a left S-poset and will be denoted by $\widehat{S(p,q)}$ from now on. Clearly $\widehat{S(p,q)}$ contains the cyclic S-poset S(p,q). Moreover, if $Ss \cap (St] \neq \emptyset$, $\{(as, a't) | as \leq a't\}$ is denoted by H(s,t).

Proposition 2.5 The diagonal S-poset D(S) is weakly po-flat if and only if it is principally weakly po-flat and $Ss \cap (St] \neq \emptyset$ or for each (as, a't) and (bs, b't) in H(s, t) there exist $(p,q) \in H(s,t)$ such that $(as, a't), (bs, b't) \in \widehat{S(p,q)}$.

Proof We show that, for any pomonoid S, D(S) satisfying condition (W) is equivalent to the second condition of this proposition. First suppose that D(S) satisfies condition (W), and let $s, t \in S$, and $Ss \cap (St] \neq \emptyset$. Suppose that (as, a't), $(bs, b't) \in H(s, t)$. Then we have $(a, b)s \leq (a', b')t$. By condition (W), $(a, b)s \leq (a'', b'')p$, $(a'', b'')q \leq (a', b')t$ for some $p \in Ss, q \in St, p \leq q$, and $(a'', b'') \in D(S)$. Therefore, $as \leq a''p$, $a''q \leq a't$, $bs \leq b''p$, $b''q \leq b't$, and so (as, a't), $(bs, b't) \in \widehat{S(p,q)}$.

Now suppose that $(a,b)s \leq (a',b')t$ for $(a,b), (a',b') \in D(S), s,t \in S$. Then $Ss \cap (St] \neq \emptyset$, and since $as \leq a't$ and $bs \leq b't$, by assumption $(as,a't), (bs,b't) \in \widehat{S(p,q)}$ for some $(p,q \in H(s,t))$. So $p \in Ss, q \in St, p \leq q$, and there exist $a'', b'' \in S$ such that $as \leq a''p, a''q \leq a't, bs \leq b''p, b''q \leq b't$. Then $(a,b)s \leq (a'',b'')p, (a'',b'')q \leq (a',b')t$ and so D(S) satisfies condition (W).

Definition 2.6 Let S be a pomonoid. A finitely generated left S-poset _SB is called *finitely definable (FD)* if the S-morphism $S^{\Gamma} \otimes B \to B^{\Gamma}$ is order-embedding for all nonempty sets Γ .

Theorem 2.7 The following are equivalent for a pomonoid S:

- (i) S^{Γ} is weakly po-flat right S-poset for each $\Gamma \neq \emptyset$;
- (ii) every finitely generated left ideal of S is FD;
- (iii) Ss is FD for each $s \in S$, and

for every $s, t \in S$, if $Ss \cap (St] \neq \emptyset$, then $H(s,t) \subseteq \widehat{S(p,q)}$ for some $(p,q) \in H(s,t)$.

Proof The equivalence of (i) and (ii) is clear.

 $(i) \Rightarrow (iii)$ The first part is obvious. Let $s, t \in S$ such that $Ss \cap (St] \neq \emptyset$. Index the set H(s, t) by $H(s,t) = \{(u_{\gamma}s, v_{\gamma}t) | \ \gamma \in \Gamma\}$. Since $S^{\Gamma} \otimes (Ss \cup St) \rightarrow (Ss \cup St)^{\Gamma}$ is order-embedding and $(u_{\gamma})s \leq (v_{\gamma})t$, then $(u_{\gamma}) \otimes s \leq (v_{\gamma}) \otimes t$ in $S^{\Gamma} \otimes (Ss \cup St)$. So there exist $s_1, \ldots, s_n, t_1, \ldots, t_n \in S$, $(u_{\gamma}^1), \ldots, (u_{\gamma}^n) \in S^{\Gamma}, b_2, \ldots, b_n \in Ss \cup St$ such that

$$(u_{\gamma}) \leq (u_{\gamma}^{1})s_{1}$$
$$(u_{\gamma}^{1})t_{1} \leq (u_{\gamma}^{2})s_{2} \qquad s_{1}s \leq t_{1}b_{2}$$
$$\vdots \qquad \vdots$$
$$(u_{\gamma}^{n})t_{n} \leq (v_{\gamma}) \qquad s_{n}b_{n} \leq t_{n}t.$$

Let k be the smallest integer such that $b_k \in St$. So $b_{k-1} \in Ss$ and $s_{k-1}b_{k-1} \leq t_{k-1}b_k$. Take $p = s_{k-1}b_{k-1}$ and $q = t_{k-1}b_k$. Thus $(u_{\gamma})s \leq (u_{\gamma}^1)s_1s \leq (u_{\gamma}^1)t_1b_2 \leq (u_{\gamma}^2)s_2b_2 \leq \ldots \leq (u_{\gamma}^{k-1})s_{k-1}b_{k-1} \leq (u_{\gamma}^{k-1})t_{k-1}b_k \leq \ldots \leq (v_{\gamma})t$. Then $(u_{\gamma})s \leq (u_{\gamma}^{k-1})p$, $(u_{\gamma}^{k-1})q \leq (v_{\gamma})t$, and so $H(s,t) \subseteq \widehat{S(p,q)}$.

 $(iii) \Rightarrow (ii)$ Let I be a left ideal of S, and $(u_{\gamma})s \leq (v_{\gamma})t$ for some $(u_{\gamma}), (v_{\gamma}) \in S^{\Gamma}$, $s, t \in I$. By (iii), $H(s,t) \subseteq \widehat{S(p,q)}$ for some $(p,q) \in H(s,t)$. Thus there exists $w_{\gamma} \in S$ such that $u_{\gamma}s \leq w_{\gamma}p, w_{\gamma}q \leq v_{\gamma}t$ for each $\gamma \in \Gamma$. Take p = cs, q = dt for some $c, d \in S$. Since Ss and St are FD and $(u_{\gamma})s \leq (w_{\gamma}c)s, (w_{\gamma}d)t \leq (v_{\gamma})t$, we have $(u_{\gamma}) \otimes s \leq (w_{\gamma}c) \otimes s, (w_{\gamma}d) \otimes t \leq (v_{\gamma}) \otimes t$ in $S^{\Gamma} \otimes Ss$ and $S^{\Gamma} \otimes St$, respectively. Therefore, $(u_{\gamma}) \otimes s \leq (w_{\gamma}c) \otimes s = (w_{\gamma}) \otimes cs \leq (w_{\gamma}) \otimes dt = (w_{\gamma}d) \otimes t \leq (v_{\gamma}) \otimes t$ in $S^{\Gamma} \otimes (Ss \cup St)$, as required. \Box

3. Conditions (P) and (P_w) , and strongly flat

In this section a characterization of pomonoids over which direct products of S-posets satisfying conditions (P), (E), and (P_w) again satisfy that condition is given. First, we focus our attention on finite direct products of S-posets satisfying conditions (P), (E), and (P_w) .

In [7] the ordered version of locally cyclic acts is called a *weakly locally cyclic* S-poset as an S-poset A such that every finitely generated S-subposet of A is contained in a cyclic S-poset. Moreover, a

principal left ideal of S that is also weakly locally cyclic is called *weakly locally principal left ideal*. The set $L(a,b) := \{(u,v) \in D(S) | ua \le vb\}$ is a left S-subposet of D(S), and the set $(l(a,b) := \{u \in S | ua \le ub\})$ is a left ideal of S.

Proposition 3.1 For any pomonoid S the following are equivalent:

(i) any finite product of right S-posets satisfying condition (P) (condition (E)) satisfies condition (P) (condition (E));

(ii) the diagonal S-poset D(S) satisfies condition (P) (condition (E));

(iii) for every $a, b \in S$ the set L(a, b) (l(a, b)) is either empty or a weakly locally cyclic left S-poset (weakly locally principal left ideal of S).

Proof $(i) \Rightarrow (ii)$ is clear. $(ii) \Rightarrow (iii)$ Suppose that D(S) satisfies condition (P), and suppose $(u, v), (u', v') \in L(a, b)$, where $a, b \in S$. Since $ua \leq vb$ and $u'a \leq v'b$ we obtain $(u, u')a \leq (v, v')b$, by condition (P), there exist $(w, w') \in D(S)$ and $p, q \in S$ such that (w, w')p = (u, u'), (w, w')q = (v, v'), and $pa \leq qb$. From this it follows that $(u, v), (u', v') \in S(p, q) \subseteq L(a, b)$ and so L(a, b) is weakly locally cyclic.

 $(iii) \Rightarrow (i)$ Suppose that $A_1, ..., A_n$ are right S-posets each satisfying condition (P). Let $a_i, a'_i \in A_i$ for each i, and let $u, v \in S$ and suppose $(a_1, ..., a_n)u \leq (a'_1, ..., a'_n)v$ in $A = \prod_{i=1}^n A_i$. For each i, from $a_i u \leq a'_i v$ and condition (P) for A_i we obtain $a''_i \in A_i$ and $p_i, q_i \in S$ such that $a''_i p_i = a_i$, $a''_i q_i = a'_i$, and $p_i u \leq q_i v$. Then $(p_i, q_i) \in L(u, v)$ for each i and so, by assumption, there exists $(p,q) \in D(S)$ such that $(p_i, q_i) \in S(p,q) \subseteq L(u, v)$. Suppose that $(p_i, q_i) = w_i(p,q)$ for $w_i \in S$, $1 \leq i \leq n$. Then $(a_1, ..., a_n) = (a''_1 w_1, ..., a''_n w_n)p$, $(a'_1, ..., a'_n) = (a''_1 w_1, ..., a''_n w_n)q$, and $pu \leq qv$, proving that $A = \prod_{i=1}^n A_i$ satisfies condition (P).

Proposition 3.2 For any pomonoid S the following are equivalent:

- (i) any finite product of right S-posets satisfying condition (P_w) satisfies condition (P_w) ;
- (ii) the diagonal S-poset D(S) satisfies condition (P_w) ;

(iii) for every $a, b \in S$ the set L(a, b) is either empty or for each 2 elements $(u, v), (u', v') \in L(a, b)$ there exists $(p,q) \in L(a,b)$ such that $(u,v), (u',v') \in \widehat{S(p,q)}$.

Proof $(i) \Rightarrow (ii)$ is clear. $(ii) \Rightarrow (iii)$ Suppose that D(S) satisfies condition (P_w) , and suppose that $(u, v), (u', v') \in L(a, b)$, where $a, b \in S$. Since $ua \leq vb$ and $u'a \leq v'b$ we obtain $(u, u')a \leq (v, v')b$, and condition (P_w) gives $(w, w') \in D(S)$ and $p, q \in S$ such that $(u, u') \leq (w, w')p$, $(v, v') \geq (w, w')q$, and $pa \leq qb$. So $(p,q) \in L(a,b)$ and we are done.

 $(iii) \Rightarrow (i)$ Suppose that $A_1, ..., A_n$ are right S-posets each satisfying condition (P_w) . Suppose $a_i, a'_i \in A_i$ for each i, and let $u, v \in S$ be such that $(a_1, ..., a_n)u \leq (a'_1, ..., a'_n)v$ in $A = \prod_{i=1}^n A_i$. For each i, from $a_i u \leq a'_i v$ and condition (P_w) for A_i we obtain $a''_i \in A_i$ and $p_i, q_i \in S$ such that $a_i \leq a''_i p_i, a'_i \geq a''_i q_i$, and $p_i u \leq q_i v$. Then $(p_i, q_i) \in L(u, v)$ and so, by assumption, there exists $(p, q) \in L(u, v)$ such that $(p_i, q_i) \in \widehat{S(p, q)}$ for each $1 \leq i \leq n$. So $p_i \leq w_i p$, $q_i \geq w_i q$ for some $w_i \in S$, $1 \leq i \leq n$. Then $(a_1, ..., a_n) \leq (a''_1 w_1, ..., a''_n w_n)p$, $(a'_1, ..., a'_n) \geq (a''_1 w_1, ..., a''_n w_n)q$, and $pu \leq qv$, proving that $A = \prod_{i=1}^n A_i$ satisfies condition (P_w) . Now, we are going to discuss direct products of any arbitrary nonempty family of S-posets satisfying conditions (P), (E), and (P_w) .

Theorem 3.3 The following are equivalent for a pomonoid S:

(i) the direct product of every nonempty family of right S-posets satisfying condition (P) (condition (E)) satisfies condition (P) (condition (E));

(ii) $(S^{\Gamma})_S$ satisfies condition (P) (condition (E)) for every nonempty set Γ ;

(iii) for every $a, b \in S$ the set L(a; b) (l(a, b)) is either empty or a cyclic left S-poset (principal left ideal of S).

Proof $(i) \Rightarrow (ii)$ is clear. $(ii) \Rightarrow (iii)$ Suppose that $a, b \in S$ and $L(a, b) \neq \emptyset$. Index the set L(a, b) by $L(a, b) = \{(u_{\gamma}, v_{\gamma}) | \ \gamma \in \Gamma\}$. Let $\overrightarrow{u}, \overrightarrow{v}$ be the elements of S^{Γ} whose γ th components are u_{γ}, v_{γ} respectively. Then $\overrightarrow{u}a \leq \overrightarrow{v}b$ in S^{Γ} and as S^{Γ} satisfies condition (P) by assumption, we have that $ua \leq vb$, $\overrightarrow{u} = \overrightarrow{z}p$ and $\overrightarrow{v} = \overrightarrow{z}q$ for some $p, q \in S$ and $\overrightarrow{z} \in S^{\Gamma}$. Thus $(p,q) \in L(a,b)$ so that $(p,q) = (u_j, v_j)$ for some $j \in \Gamma$. If $\gamma \in \Gamma$, then $(u_i\gamma, v_{\gamma}) = z_{\gamma}(p,q) = z_{\gamma}(u_j, v_j)$ where z_{γ} is the γ th component of \overrightarrow{z} . This gives that L(a,b) is cyclic. A similar argument applies for condition (E).

 $(iii) \Rightarrow (i)$ Let $A = \prod_{i \in I} A_i$ be a product of right S-posets satisfying condition (P). Suppose that $\overrightarrow{x}a \leq \overrightarrow{y}b$ where $a, b \in S$ and $\overrightarrow{x} = (x_i), \overrightarrow{y} = (y_i) \in A$. For each $i \in I, x_i a \leq y_i b$ and so as A_i satisfies condition (P) there are elements $u_i, v_i \in S$ and $z_i \in A_i$ with $u_i a \leq v_i b, x_i = z_i u_i, y_i = z_i v_i$. So $(u_i, v_i) \in L(a, b) \neq \emptyset$ and by assumption it is cyclic, say L(a, b) = S(p, q). Thus for each $i \in I$, $(u_i, v_i) = r_i(p, q)$ for some $r_i \in S$. We now have $pa \leq qb$ and $x_i = z_i r_i p, y_i = z_i r_i q$ for each $i \in I$. If $\overrightarrow{w} = (z_i r_i)_{i \in I} \in A$, then $\overrightarrow{x} = \overrightarrow{w}p$ and $\overrightarrow{y} = \overrightarrow{w}q$. With a similar argument for equalities of the form $\overrightarrow{x}a \leq \overrightarrow{x}b$ condition (E) implies.

Theorem 3.4 The following are equivalent for a pomonoid S:

(i) the direct product of every nonempty family of right S-posets satisfying condition (P_w) satisfies condition (P_w) ;

(ii) $(S^{\Gamma})_S$ satisfies condition (P_w) for every nonempty set Γ ;

(iii) for every $a, b \in S$ the set L(a, b) is either empty or there exists $(p,q) \in L(a,b)$ such that $L(a,b) = \widehat{S(p,q)}$.

Proof $(i) \Rightarrow (ii)$ is clear. $(ii) \Rightarrow (iii)$ Let $a, b \in S$ and $L(a, b) \neq \emptyset$. Write $L(a, b) = \{(u_{\gamma}, v_{\gamma}) | \gamma \in \Gamma\}$. Let $\overrightarrow{u}, \overrightarrow{v}$ be the elements of S^{Γ} whose γ th components are u_{γ}, v_{γ} respectively. Then $\overrightarrow{u} a \leq \overrightarrow{v} b$ in S^{Γ} and as S^{Γ} satisfies condition (P_w) by assumption, we have that $pa \leq qb$, $\overrightarrow{u} \leq \overrightarrow{z}p$ and $\overrightarrow{z}q \leq \overrightarrow{v}$ for some $p, q \in S$ and $\overrightarrow{z} \in S^{\Gamma}$. Thus $(p,q) \in L(a,b)$ and we have $u_{\gamma} \leq z_{\gamma}p, z_{\gamma}q \leq v_{\gamma}$ where z_{γ} is the γ th component of \overrightarrow{z} . Therefore, $L(a,b) = \widehat{S(p,q)}$.

 $(iii) \Rightarrow (i)$ Let $A = \prod_{i \in I} A_i$ be a product of right S-posets satisfying condition (P_w) . Suppose that $Xa \leq Yb$ where $a, b \in S$ and $\overrightarrow{x} = (x_i), \overrightarrow{y} = (y_i) \in A$. For each $i \in I, x_ia \leq y_ib$ and so as A_i satisfies condition (P_w) there are elements $u_i, v_i \in S$ and $z_i \in A_i$ with $u_ia \leq v_ib, x_i \leq z_iu_i, z_iv_i \leq y_i$. So $(u_i, v_i) \in L(a, b) \neq \emptyset$ and by assumption there exists $(p,q) \in L(a,b)$ such that $L(a,b) = \widehat{S(p,q)}$. So for each $(u_i, v_i) \in L(a,b)$ there exists $r_i \in S$ with $u_i \leq r_ip$ and $r_iq \leq v_i$. Thus $pa \leq qb$ and $x_i \leq z_ir_ip, z_ir_iq \leq y_i$ for each $i \in I$. If

 $\overrightarrow{w} = (z_i r_i)_{i \in I} \in A$, then $\overrightarrow{x} \leq \overrightarrow{w} p$ and $\overrightarrow{w} q \leq \overrightarrow{y}$.

In light of Theorem 3.3, the following corollary holds.

Corollary 3.5 The following are equivalent for a pomonoid S:

- (i) every product S^{Γ} is strongly flat right S-poset for a nonempty set Γ ;
- (ii) every product $\prod_{i \in I} A_i$ of strongly flat right S-posets A_i , $i \in I$, is strongly flat;
- (*iii*) for all $(a,b) \in D(S)$, $L(a,b) \neq \emptyset$ or is cyclic left S-poset and $l(a,b) \neq \emptyset$ or is principal left ideal

of S.

References

- [1] Bulman-Fleming, S.: Products of projective S-systems. Comm. Algebra 19, 951–964 (1991).
- Bulman-Fleming, S., Gilmour, A.: Flatness properties of diagonal acts over monoids. Semigroup Forum 79, 298–314 (2009).
- [3] Bulman-Fleming, S., Laan, V.: Lazard's theorem for S-posets. Math. Nachr. 278, 1743–1755 (2005).
- [4] Bulman-Fleming, S., McDowell, K.: Coherent monoids. In: Lattices, Semigroups and Universal Algebra (Eds.: J. Almeida, G. Bordalo and P. Dwinger) 29–37, New York. Plenum Press 1990.
- [5] Bulman-Fleming, S., Normak, P.: Flatness properties of S-posets. Comm. Algebra 34, 1291–1317 (2006).
- [6] Gould, V.: Coherent monoids. J. Austral. Math. Soc. (Series A) 53, 166–182 (1992).
- [7] Gould, V., Shaheen, L.: Perfection for pomonoids. Semigroup Forum 81, 102–127 (2010).
- [8] Kilp, M., Knauer, U., Mikhalev, A.: Monoids, Acts and Categories. Berlin. Walter de Gruyter 2000.
- [9] Sedaghatjoo, M., Khosravi, R., Ershad, M.: Principally weakly and weakly coherent monoids. Comm. Algebra 37, 4281–4295 (2009).
- [10] Shi, X.: On flatness properties of cyclic S-posets. Semigroup Forum 77, 248–266 (2008).
- [11] Shi, X.: Strongly flat and po-flat S-posets. Comm. Algebra 33, 4515–4531 (2005).
- [12] Shi, X., Lui, Z., Wang, F., Bulman-Fleming, S.: Indecomposable, projective, and flat S-posets. Comm. Algebra 33, 235–251 (2005).

86