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Abstract: In this paper, we study the initial-boundary value problem for a system of nonlinear viscoelastic Petrovsky
equations. Introducing suitable perturbed energy functionals and using the potential well method we prove uniform
decay of solution energy under some restrictions on the initial data and the relaxation functions. Moreover, we establish

a growth result for certain solutions with positive initial energy.
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1. Introduction

In this paper, we investigate the following initial-boundary value problem:

lug|Puse + A%u — Augy — (g1 * A%u)(t) — Aug + Jug|P~tuy = f1(u,v), (x,t) € Q2 x[0,T),

[ve|Poge + A%0 — Avgy — (go % A%0)(t) — Avg + 0|97 vy = fo(u,v), (2,1),€ Q x [0,7T),

u(z,0) = up(z), ur(x,0) = uy (), x €, (1.1)
v(x,0) = vo(z), ve(z,0) = v1(z), x € Q,

u(z,t) = Oyu(x,t) =0, v(x,t) = dyv(x,t) =0, (x,t) € 002 x [0,T),

—_~ —

where p > 0, p,g > 1, T > 0, Q is a bounded domain of R™(n = 1,2,3) with a smooth boundary 99 so
that the divergence theorem can be applied, v denotes the outward normal derivative, g; and gs are positive
functions satisfying some conditions to be specified later, and

(gi x P)(t) = /0 gi(t — T)o(T)dr, i=1,2.

By taking

fi(u,v) = (r+1) {a|u+v\“1(u+v) +b|u|%3|v|rfu} 7
‘ (1.2)
fo(u,v) = (r+1) [a|u +o" N u+v) + b|v|%|u|%v} 7

where a > 1,b > 0, and r > 3, one can easily verify

ufi(u,v) + vfo(u,v) = (r+ 1)F(u,v), Y(u,v) € R?,
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where

F(u,v) za\u+v|r+1+2b|uv|%. (1.3)

In [6] Cavalcanti et al. studied the following nonlinear viscoelastic problem:

|ue|Pue — Au — Augy + f(fg(t —71)Au(r)dr —yAu; =0, z€Q, t>0,
u(z,0) =up(x), w(x,0)=ui(z), x€Q, (1.4)
u(z,t) =0, x € 09, t>0,

where 2 is open bounded in R™,n > 1. Under the assumptions 0 < p < % ifn>3o0rp>0if n=12
and g(t) decays exponentially, they obtained the global existence of weak solutions for v > 0 and the uniform
exponential decay rates of the energy for v > 0. In the presence of a nonlinear source term, the decay result
has been extended by [23]. In the case of v = 0 when a source term competes with the dissipation induced by

the viscoelastic term, Messaoudi and Tatar [24] studied the equation
t
|ue|Puse — Au — Augy Jr/ g(t — T)Au(r)dr = blulP"2u, =€ Q, t>0,
0

with the initial and boundary conditions (1.4)s and (1.4)3. They used the potential well method to show that
the damping induced by the viscoelastic term is enough to ensure global existence and uniform decay of solutions
provided that the initial data are in some stable set. Han and Wang [12], investigated a related problem with

linear damping

¢
|ut|Puee — Au — Augy —l—/ gt —T)Au(r)dr +u; =0, x€Q, ¢t>0.
0

Using the Faedo—Galerkin method, they showed the global existence of weak solutions and obtained uniform
exponential decay of solutions by introducing a perturbed energy functional. Recently, these results have been
extended by Wu [34] to a more general case where a source term and a nonlinear damping term are present

t
|ug|Puge — Au — Augy —|—/ gt — T)Au(r)dr + |ug[Pur = |u|"u, 2x€Q, t>0, (1.5)
0

where the initial and boundary conditions are as (1.4)s and (1.4)3. In the case of p =0, and in the absence of
a dispersive term, there is a substantial number of papers dealing with equation (1.5). For example, we may

recall the work by Cavalcanti et al. [7] in which the following equation:
t
ugr — koAu —I—/ divla(z)g(t — 7)Vu(r)ldr + b(x)h(us) + f(u) =0, x€Q, t>0,
0

has been considered. Under some conditions on the relaxation function g and for a(x) + b(z) > p > 0, they
improved the results of [8] by establishing stability for exponential decay function g and linear function h, and
polynomial stability for polynomial decay function g and nonlinear function h. For some other related papers
in connection with the existence, finite time blow-up, and asymptotic properties of solutions of nonlinear wave
equations, we refer the reader to [4, 5, 9, 10, 13, 18, 19, 20, 35, 37, 38] and references therein.
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The following initial boundary value problem:

[ue|Puge — Au — Augg + (g1 * Au)(t) — y1Aug + ag|ug|P 1wy = fr(u,v), 2 €Q, t>0,

[v¢[Pve — Av — Avgg + (g2 * Av)(t) — Y Avy + ag|vg|9™ vy = fa(u,v), € Q, t>0,

u(z,0) = uo(z), ug(x,0) = up (z), x € Q, (1.6)
v(z,0) = v(x), ve(z,0) = v (), x€Q,

u(z,t) = v(zx,t) =0, x €0, t>0,

has been investigated by many people. When p = 0 and there are no dispersion terms, in the absence of strong
damping (v; = 0), the system has been investigated by several authors and results concerning existence, decay,
and blow-up were obtained [1, 2, 15, 22, 25, 26, 28, 29, 32, 36]. In the case of g; = 0, Agre and Rammaha [1]
proved several results on local and global existence of weak solutions with the nonlinear functions f;(u,v) and
fa(u,v) as given in (1.2). The strong nonlinearities on f; and fo allowed them to prove the local existence
result only for n < 3. Involving the Nehari Manifold and under some conditions on the parameters in the same
system, the authors in [2] obtained several results on the global existence, uniform decay rates, and blow-up of
solutions in finite time when the initial energy is nonnegative. Recently, based on the potential well method and
a lemma by Nakao [28], Said-Houari [29] established global existence, and polynomial and exponential decay
rates for the energy of the same problem with different nonlinear source terms. In [36], Wu studied the following

nonlinear wave equations:

(1.7)

e — Au+ |ug [P tuy + miu = fi(u,v),
Vg — Av + |97 oy + mdv = fo(u,v),

with » = 3, in (1.2), and initial-boundary values (1.6)3 — (1.6)5. Wu discussed the blow-up properties of (1.7)
in 2 cases. In the first case, p = ¢ = 1, the main result contains the estimates of the upper bound of the blow-up
time. In the second case, 1 < p,q < 3, the nonexistence of global solutions is proved and estimates for the
blow-up time are also given. This work improved the work [15], in which similar results have been established
for (1.7) in the absence of damping terms.

In the presence of the viscoelastic terms (g; # 0), Said-Houari et al. [32] obtained global existence and
a uniform decay rate result under some restrictions on initial data and for some classes of kernels g;. They
showed that the decay rate of the energy depends on those of the relaxation functions. Their result improved the
one in [25] in which only the exponential and polynomial decay rates are obtained. In another work [26], they
obtained a global nonexistence result for the same system when the initial energy is considered to be positive.
In the weak damping case (p = 1,¢ = 1), Ma et al. [22] showed the solutions with arbitrarily positive initial

energy blow-up in finite time with the following nonlinear functions:

fa(u,0) = ayful o~

where r,s > 1. They used the concavity method, which is based on defining a positive function n(t) and

[e3

showing that 7(t)~“ is a concave function for some a > 0. In the presence of strong damping terms (7; # 0)
as well as absence of nonlinear damping terms (a; = 0), another coupled system was investigated in [14] . The
authors proved that, under suitable assumptions on the functions g;, f; and certain initial data in the stable
set, the decay rate of the solution energy is exponential. They also showed that, for certain initial data in the

unstable set, there are solutions with positive initial energy that blow-up in finite time.
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In [21], Liu studied the following system:

{|ut|ﬂutt — Au— Aug + (g1 * Au)(t) + f1(u,v) =0, (1.8)

[ve|Pvee — Av — Avgy + (g * Av)(8) + fa(u,v) =0,
where the functions f; and fo satisfy

[f1(u, )| < dmin{(|ul® + [v]2), [ul®~*[v]"},
|fa(u, v)| < dmin{(|ul® + [v]*), [ul*]v] 1},

for some constant d > 0 and
/BzZL (TL—Q)ﬁZS’IL Z:17273a4

B>1 ifn=12 1<ﬂ§% if n>3.
n

The author used the perturbed energy method to prove an exponential decay result if both ¢g; and g are
decaying exponentially and a polynomial decay result if both g; and g, are decaying polynomially. This is an
extension of the result obtained by Messaoudi and Tatar [25] for the system (1.8) with p = 0 and in the absence
of dispersive terms. Recently, motivated by the works [30, 33], Said-Houari [31] studied (1.6) with ~v; = 0. He
proved that the energy associated with the system grows as an exponential function as time goes to infinity,
provided that the initial data are large enough.
In recent years, these results have been extended to Petrovsky equations. The single Petrovsky wave
equation of the form
wge + A%+ h(uy) = f(u), zeQ, t>0, (1.9)

with the boundary and initial conditions (1.1)3 — (1.1)5, has been widely investigated. For f = —q(z)u(x,t),
equation (1.9) has been considered by Guesmia [11], where ¢ is a positive function in L*(Q2) and h is a
continuous and increasing function that satisfies h(0) = 0. When h(u;) = aug|lu[P~2 and f(u) = bulu|"~?2
where a,b > 0 and r,p > 2, Messaoudi [27] established an existence result when p > r with arbitrary initial
data. He also showed that the solution blows up if p < r and the initial energy is negative. In [3], Amroun
and Benaissa obtained the global solvability of (1.9) subject to the same boundary and initial conditions as

(1.1)3 — (1.1)5, where f(u) = bul|u|"~? and h satisfies
cals| < |h(s)| < eals|™, |s|>1, e1,e0 >0,

where
n+4
n—

1<m<oo if n=1,2,3,4 or 1<m< if n>5.

The key point to their proof is the use of the stable set method combined with the Faedo—Galerkin procedure.
In the presence of strong damping, we mention also the work by Li et al. [16] in which they considered the

following Petrovsky equation:
wgr + A%u — Aug + uglug [P = ulu|" re, t>0,

with the boundary and initial conditions (1.1)3—(1.1)5. The authors obtained the global existence and uniform

decay of solutions if the initial data are in some stable set without any interaction between the damping
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|"=1. Moreover, they established the blow-up properties of the

mechanism u;|u;[P~! and the source term wul|u
local solution if » > p and the initial energy is less than the potential well depth. In [17], inspiring the work

[36], they also considered the following Petrovsky equations:

U + A A |ug [Py = fi(u,v),
v + A0 + |Ut|q_lvt = fa(u,v),

in a bounded domain Q C R™ (n = 1,2,3) with nonlinear functions fi(u,v) and fa(u,v) given in (1.2).
They proved the global existence of solutions and established the uniform decay rates by means of Nakao’s
inequality. Improving on the method of [36], they showed the blow-up of solutions and the lifespan estimates
when p = 1,¢g = 1. In the case 1 < p,q < 3, they also obtained a blow-up result when the initial energy is
negative or nonnegative at less than the mountain pass level value.

Motivated by the above studies, we consider the decay and growth propositions of the solution for problem
(1.1). We prove the global existence and uniform decay of solutions by using the potential well method and
introducing a perturbed energy function. We also prove that the energy will grow provided that the initial data
are large enough.

The outline of our paper is as follows. In section 2 we present some notations, assumptions, and lemmas
needed later and state the main results of this article. Section 3 is devoted to proving the global existence and

uniform decay of solutions: Theorem 2.2. The growth result of solutions, Theorem 2.3, is proved in Section 4.

2. Preliminaries and main results

In this section, we introduce some notations and lemmas needed in the proof of our main results. Through-
out this paper, we use the standard Lebesgue space LP((2), the Sobolev spaces HZ()) and H}(Q) with their
usual scalar products and norms. First, we give the following Sobolev—Poincaré inequality, which will be used

frequently in this paper.

Lemma 2.1 (Sobolev—Poincaré inequality). Let q be a number with 2 < q < +00; n < 3; then for u € HZ ()
there is a constant C, = C(Q,q) such that

[ullg < Cil|Aulls. (2.1)

In the sequel by ¢; or C;, we denote various positive constants, which may be different at different occurrences.

For nonlinear terms we assume

(G1) p,g>1 and
r>3 if n=1,2; r=3 if n=3,

p>01if n=1,2; p=2 if n=3.
For the relaxation functions we present the following assumptions

(G2) g; : RY — R™, i = 1,2, are nonincreasing bounded C*— functions such that
gZ(O) >0, 1—/ gZ(T)dT:lZ >0, =12
0
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(G3) There exist 2 positive nonincreasing differentiable functions &;, & such that
g:i(t) < =&(t)gi(t), =12, Vt=>0,
where
“+oo
/ &i(t)dt = +oo, i=1,2.
0
Similar to in [2, 17], we consider that

(G4) There exist constants cg, ¢y > 0 such that

o ( |u|7'+1 + |v‘r+1) < F(u,v) < ( |u|7'+1 + |,U|7'+1 ) )

Remark 2.1 The assumption (G1) is needed to guarantee the local existence of weak solutions for the initial-

boundary value problem (1.1). The condition (G2) guarantees the hyperbolicity of the system (1.1). There is

a wide class of functions satisfying (G2) and (G3). Examples can be found in [32].

Remark 2.2 It is easy to see that F(u,v) < ¢1 (|u["™ + [v["T!), for all (u,v) € R?, where ¢; = 2"a + b.

Moreover, for a fixed a,r > 1, there exists a constant ¢y > 0 such that F(u,v) > co (|u|"" + [v]"*! ) provided

b is chosen large enough.

Next, for the problem (1.1), we consider the following functionals:

10 = 1) = (1- [ t n(rar) [aufg + (1- | t snlr)ir) 1803

(g1 0 Au)(t) + (g2 0 Av)(E) — (r + 1) /Q F(u,v)dz,

s = w0y =3 (1= [ onmnar ) jsalz+ 3 (1 [ su(rrar ) 130
1
>

1 1
B(t) = g (w5 + el 2) + 5 (19wl + 190l ) + 70

defined on HZ(Q)), where
¢
(giod)(t) = /O gi(t = )llo(t) — $(T)3dr, i=1,2.

Lemma 2.2 E(t) is a nonincreasing function for t > 0 and

d 1

dt T2

92
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+1 +1
~IVuelld = [IVoell3 = lluellyi = llvellgiy < 0.

(2.6)

Proof. Multiplying the first equation in (1.1) by u; and the second by v, integrating over €2, using the bound-

ary conditions and (2.5), we obtain (2.6).

The following lemmas play critical roles in the proof of our main results.

Lemma 2.3 Assume that (2.2); holds. Then there exists n > 0 such that for any (u,v) € HZ(Q) x HZ(Q) one

has

r+1
2

| Flucoyde < (nlaul + il a0l )
Proof. Using Minkowski’s inequality, we get
et olZey <2 (Tl + ol ) -
Moreover, by Holder’s inequality, (2.1) and Young’s inequality we get

1 < r+1 r+1 S fHAUH2||AU||2
[uv]| =g < flullpallvllra < C

1 1
< 2 (ghaul + 318013) < e (tAulE + Llavlp ).

2.7)

(2.8)

(2.9)

for some positive constant c¢. Combining (1.3), (2.8), and (2.9) and using the embedding HZ(Q2) — L™T1(Q),

we obtain (2.7).

Lemma 2.4 There exist 2 positive constants p1 and po such that

1o Pde < g (Jau+ avjg) " i=.2
Proof. Clearly we have
(w0 < (lut ol + Juf = o] 5) < Co (Jul” + o] + Jul = o] 5.
Using Young’s inequality we obtain

u| = [o] 5 < (Calul” + Calo]").

Therefore,
|f1(u,0)] < Cs(Ju]” + [o]).

Thus, by lemma 2.1 we get
/Q |f1(u,0)Pdz < Co(llull3r + [lol3r) < m ([Aul3 + [|Av]3)"

The same way can be followed to obtain a similar inequality for fs.
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We define
d(t) = inf sup J(Au, Av), t>0.
(u,v)EHg(Q) XHg(Q),(u,v);é(0,0) A>0

Then we obtain the following result.

Lemma 2.5 For t > 0 we have

0 <dy <d(t) < da(u,v) =supJ(Au, Av),

A>0
where
b =l < 1 )T21
te 2(r+1) \n(r+1) ’
and
r41
da(u,0) = o= |
2(r+1) ( (r+1) fQ F(u,v)dz ) r-t
where

r(r) = (1 - glmdv) JAu + (91 0 Au)(t) + (1 - 92<T>d7) JAV]2 + (g2 0 Av)(2).
Proof For fixed (u,v) € HZ(Q) x HZ(2)\(0,0), we define

G(\) = J(\u, \v) = %v {(1 - /Ot gl(T)dT) | Aul|2 + (g1 0 Au)(t)

+(1—/0t92(7)d7) |Av|§+(ggoAv)(t)—2)\7'_1/QF(u,v)dx}.

A direct calculation shows that

1

o B D(t) T
G'(A\1) =0 where A\ = <(7" +1) fQ F(u,v)dx) '

Therefore,

supG(A) = G(\1) = da(u,v). (2.10)
A>0

Then from (2.10) the desired result can be obtained by using the inequality (2.7) and the fact that 1 —
fot gi(T)dr > 1;, i =1,2. O
Now we state a local existence theorem for solutions of the system (1.1) that can be established by com-

bining the arguments in [1, 6, 27].

Theorem 2.1 Suppose that (G1) holds. Let (ug,u1),(vo,v1) € HE(Q) x HL(Q) be given. Then there ex-

ists a unique weak solution (u,v) of (1.1) such that

u,v € C([0,T], H3 (Q)),

94



TAHAMTANI and PEYRAVI/Turk J Math

ug € C([0,T); HY(Q)) N LPTH(Q x (0,T)), v, € C([0,T); HY () N LITH(Q x (0,T)),

for some T > 0.
We state our results as follows.
Theorem 2.2 Suppose that (G1) — (G3) hold. Assume that (ug,u1), (vo,v1) € HZ(Q) x HE() and satisfy
1(0) > 0; E(0) < dy. (2.11)

Then, for each tg > 0, there exist 2 positive constants K and k such that the solution of (1.1) satisfies

BE(t) < Ke "o gy > (2.12)
Theorem 2.3 Suppose that (G1), (G2), and (G4) hold and r+1 > max(p+2,p+1,q+ 1). For any fized
number 0 < § < 1, assume that (ug,u1), (vo,v1) € H3(Q) x HY(Q) and satisfy
1(0) <0,  E(0) < dd;. (2.13)
Assume further that there exists a fixed number

r+1

20 <o

such that

max ( /0 h g1(7)dr, /0 h gQ(T)dT> <G 7 2)(‘9_/21);11/ @0 (2.14)

Then the norm ||(u,v)||~+1 of solutions grows exponentially where

(s 041 2= [lullrgr 4 [0l

3. Global existence and energy decay

Lemma 3.1 Suppose that (2.2) holds. Let (ug,u1), (vo,v1) € HE(Q) x H(Q) and satisfy (2.11). Then I(t) >0
forall t > 0.

Proof. Since I(0) > 0, then by continuity, there exists T, < T such that I(¢) > 0 for all ¢t € [0,T%).
Using the fact that 1 — f(f gi(T)dT > 1; , for any t € [0,T) we have

s = =5 (1= t n(rar) I8l + 57 (1= t n(r)ar ) ol

n r—1
2(r+1)

(g0 Aw)(®) + (g2 0 A0)(E) ) + —=T(u,0)

r+1

r—1

= 2+ 1)

(wllaal3 + a3 ). (3.1)
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Therefore, from (2.5), (2.6), and (3.1) we have

Il Aull3 + L[| Av]3 <

E(0). (3.2)
By (2.11), (3.2), and lemma 2.3 we obtain
(r+ 1)/ F(u,v)dz <n(r+1) (hHAuH% + lo|| Av||3 )
Q

<+ 1) (5 ) T (Ll + a2

< (1= [ omar) 130+ (1= [ oatrrar) 12013

This shows that I(¢) > 0 for all ¢ € [0,7T%). By repeating this procedure, T, can be extended to T'.

Lemma 3.2 Suppose that (2.2) and (2.11) hold. If (ug,u1), (vo,v1) € HZ(Y) x HE(), then the solution
of (1.1) is global and bounded.

Proof. Using (2.6) and lemma 3.1 we have

1 1
B(0) 2 B) = 5 (lall7Z3 + leal;23) + 5 (193 + 1Vl ) + )

1 2 2 1 r — 1
> g (a3 + Nel73) + 5 (19wl + 190l ) + 575 (BlAlE + Ll AvlE )
Therefore,
2 2
laellS3 + oel1553 + Vel + [ V0l + | Aull3 + | Aollf < CE(0), (3.3)

where C' is a positive constant that depends only on p, I1, l2, and r.

Remark 3.1 When, in (1.2), a < 0 and b < 0, then any solution of (1.1) with (ug,u1), (vo,v1) € HZ(Q)x H(Q)
is global in time and lemma 3.2 and Theorem 2.2 hold without condition (2.11).

To prove Theorem 2.2 we need to define the following perturbed energy functional:
G(t) = ME(t) + e(t) + x(1),

where M and e are positive constants that will be specified later and

p+1/ |ut|putuda:+7/ |ve|Posvde

L IVl + vl + /(Vu.Vut—i-Vv.Vvt)dx, (3.4)
Q

l\D\»—~

|| Py

X(t)z/ﬂ(Au—i—Aut— e )/Otg1(t—7')(u(t)—u(7'))d7dx
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+, (A” + Ao - ',)'H) / ot = ) (0(t) ~ v(r))drd.

(3.5)

It is straightforward to see that G(¢) and E(t) are equivalent in the sense that there exist 2 positive constants

B1 and B2, depending on € and M, such that for ¢ > 0

MLE(t) < G(t) < BE(1).

(3.6)

Lemma 3.3 Suppose that (G1) and (G2) hold. Let (ug,u1),(vo,v1) € H3(2) x HY(Q) and satisfy (2.11).

Then any solution of (1.1) satisfies

1 +2 w2\ 1 2 2
V(1) < g (3 + el 2) = 5 (Al + a3 )
Vel + [V0rllf + b (g1 0 Au)(e) + k(g2 0 Av) (1)
Hhallullp1 + kg + 0+ 1) [ Flaode,
Q

for some positive constants ki, ko, ks, and k4.

Proof By taking the time derivative of (3.4) and using problem (1.1), we get

1 2 2
90 = = (lallg 3+ ell55) — 1Awl3 — A0l + [ Vell3 + V3

/uut\ut\p_ld:ﬁ - / vvg|vg |7 e + (r + 1)/ F(u,v)dx
) Q

/Q/ g1(t — 7)Au(t)Au(r )drdx+/ /t g2(t — 7)Av(t) Av(T)drdz.

Using Young’s inequality, (2.1), and (3.3), for 1,72 > 0, we have

‘—/ g [ug [P d
Q

+1
< yallullpiy + eyl

< el Aulf +e(n) fuelpia,

where ¢; = C?TH(CE(0))*z . Similarly

‘/ voglvg| 9 N
Q

+1
< yallollgin + c(r)llve g

1
< 22l Avl[3 + e(r2)llve g,

where ¢ = CIT(CE(0))*= . For the last 2 terms in the right-hand side of (3.8) we have

; g1(t — 7)Au(t)Au(r)drdx

(3.10)
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<[ ([ Cgut— )| du(r) - Au(o)|Su(olar ) dz + | g (r)rl Al

< (L4 7)(1— 1) Al + 4—;@1 o Au)(1).

Analogously,

/ﬂ /ot g2(t = 7)Av(t) Av(r)drda

1
V2
Inserting (3.9)—(3.12) into (3.8) we obtain

P(t) <

1 2 2
< g (hwllg 3+ el 23) + G+ 1) /Q F(u,v)de + | Vel + [ Voell3

+ (mer+ (1) = 1) = 1) JAuf3+ (1262 + (L4 22) (1 = 1) = 1) [ Av]3

1
o Au)(t) + -

1 1
yoo (92 0 Av)(t) + c(ya)lluellp 3 + elr2) vl

Letting v = m and o = m, the estimate (3.7) follows.

< (1+72)(1 = )| Av]l3 + 1, (92 0 Av)(2).

(3.11)

(3.12)

d

Lemma 3.4 Suppose that (G1) and (G2) hold. Let (ug,uy), (vo,v1) € HZ(Q) x HE(Q) and satisfying (2.11).

Then there exist positive constants ks, ke, k7, and kg such that the functional

p t
x1(t) = / (Au + Auy — [ ut) / g1(t — 7)(u(t) — u(r))drdz,
Q p+1 0
satisfies, for all v >0,

X1 (6) < 7 (hsllAul + ks [Av]3 ) +01(3) (g1 © Au)(t)

1 t
(1= l)[luel 22T - (p+1/0 gl(T)dT> lue|5F5

—%(91 o Au)(t) + [ks (’H— Ply) — /Otgl(T)dT] ([ Ve |3

where p1(7) is a positive function of v, which will be given in the proof.

Proof. By the first equation in (1.1), we get

() = /ﬂ Au /O 91(t = 7)(Ault) — Au(r))drdz

- / ( /0 Cont - T)Au(T)dT) ( /O "ot — 1) (Ault) - Au(T)dr)) do

Q
+ [ bt (/Ot 1t — 7)(u(t) u(r))m) dx
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—|—/QAu /Ot g1t — 1) (u(t) — u(r))drdx
- /Q Vug. /Ot g1t — 7)(Vu(t) — Vu(r))drdz

! P L — ) (u(t) — u(r))drdz
/Qw ut/oglu )(u(t) - u(r))drd

o4l

— /Q fi(u,v) (/Ot g1(t —7)(u(t) — u(T))dT) dx

1 t t
_ (|Vut||% + ||utgi§> / gl(T)dT+/ up Au dx/ g1(T)dr. (3.14)
p+1 0 Q 0

We estimate the terms in the right-hand side of (3.14). First, using Young’s inequality for v > 0 we have

/Q Au /O "ot — 1) (Au(t) — Au(r))drdz

<slaul+ o [ ( / "t — ) (du(t) - Aum)m) da

< lAuf? + ﬁ(l 1) (g 0 AW (1), (3.15)

For the second term we obtain

‘_/Q (/ot gt = T)A“(TW) ( /O gnt— ) (Aut) ~ Aum)) da
? 2

< y/ﬂ (/Ot gt — T)Au(T)dT> d + % ) (/Ot g1t — 7)(Au(t) — Au(T))> da

2

< ’y/ﬂ </Ot gt — T)AU(T)dT> dx + %(1 — 1) (g1 0 Au)(t). (3.16)

The first integral in the right-hand side of (3.16) can be estimated in the form

2

/Q ( /O tgl(t—T)Au(T)dT> dx

< /Q (/Ot 1(t = 7)(|Au(r) — Au(t)] + |Au(t)|)dr> dx

§2/Q(/Otgl(t—T)Au(T)—Au(t)|dT>2+2/Q(/Otgl(t—r)|Au(t)|dT)2dx

< 2(1 = 1)(g1 0 Au)(t) + 2(1 — I2)*[| Aulf3. (3.17)

99



TAHAMTANI and PEYRAVI/Turk J Math
Using (3.17), for the inequality (3.16) we have

‘_/Q (/ot gt - T)A“(TW) ( /Ot g1(t = 7)(Au(t) - Au(ﬂ)) dx

< (294 )= h)(gn o Au)(®) + 241~ )P Aul (3.18)

We use Young’s inequality, (2.1), and (3.3) to estimate the third term as

wg|ug|PT tl — 7)(u(t) — u(7))drdx
/Q|| /Ogos (u(t) - u(r))drd

< / g1(t =) (Ml + c)llute) — w5 dr

t
Y (1 =) luellpi + (V)Cf“/ g1(t =) Au(t) = Au(r)[5 dr
0

Y1 =) lfuellpds + e(v)es(gr o Au)(t), (3.19)

where ¢35 = C?T (2CE(0 )) . Concerning the fourth term we have

/Q Au / gl (t — 7)(u(t) — u(r))drdz < | Auf2 - %91(0)03(91 o Au)(t). (3.20)

By the Young and Poincaré inequalities we get

‘_ /Q Ve /Ot g1 (t = 7)(Vu(t) = Vu(r))drda

2

< IVl + 417 /g (/tglu—ﬂ(w() Vulr)ir) ds

< 7||Vut||§ 1t —7)|Vu(t) — u(T)|2de;U

917(0))\—

<y - £

1(9/1 o Au)(t), (3.21)

where A denotes the Poincaré constant. To estimate the sixth term, we use Young’s inequality, the Sobolev

embedding Hg(Q) < L2P+1(Q) with p satisfying (2.2)2, and the inequality (3.3) to obtain

p+1/ Jue” “t/ g1 (t = 7)(u(t) — u(r))drdx

<l + 75T ( / bt~ )t —um)ds)de

< yeul| Vel — 4v = (g) 0 Au)(p), (3.22)
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cs(CE(0))” g1(0)C2
p+1 p+1

and the lemma 2.4 and (3.3), for the seventh term in the right-hand side of (3.14), we have

“ / filu,0) ( / g1t — 1) ult) — um)dT) dz

r 1
< (18wl + 18013 ) + (1= 1)C2 (g1 0 A1)

where ¢4 = and c5 = , where c; is the embedding constant. Using Young’s inequality again

1
<es (1Auld+ [1Av]E ) + (1= 0)C2 g1 o Au)(e), (3.23)
where cg = p1(CE(0))"L. Finally, exploiting the Poincaré inequality, we have
-1

t
A
[ duds [ myar <50 = t)18ul+ 0 - IVl (3:24)

where A is the Poincaré constant. Combining (3.14),(3.15), (3.18)-(3.24), the estimate (3.13) follows with
ks = 2(1—|—(1 —l1)2) 4+cg+1—11, k¢ =cg, k7 :g1(0)(03+)\_1) +c5, kg = %(1 —l1)+64+ 1 and

1

v1(y) = 1 ( (1—11)(2+ C? +892) + 4yc(v)es ) .

Repeating the same discussion in lemma 3.4, we have the following result.

Lemma 3.5 Suppose that (G1) and (G2) hold. Let (ug,uy), (vo,v1) € HZ(Q) x HE(Q) and satisfying (2.11).

Then there exist positive constants kg, k1o, k11, and ki such that the functional

vt ] Pv

x2(t) = /Q (Av + Avy — P ) /Ot g2(t — 7)(v(t) — v(7))drdz,

satisfies, for all v >0,

¥6(t) < (Koll Aul3 + ko[ Av]3 ) + 2(v)(g2 0 Av)(2)

1 t
1 2
+y(1 = L) [Joel2T7 — (p+1/0 92(7)‘17) loellpis

_%(g; o Av)(t) + {km <7+ i) - /Otgz(f)df} IVoel3-

where

p2(7) = 7 (1 = )2+ C2 +89%) + relr)er ).

1

in which ¢; = CIT (2CE(0))*7 .
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Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The assumption (G2) guarantees that for any ¢y > 0 we have

By using the definition of the function G(¢) and lemmas 3.3-3.5 we deduce
el
6'(0) < = (5= 2ths + ) ) 180l = (52 = 20h + ) ) 14013
Mk , M ki1 ,
(5 - 5) Goswm+ (5 - 1) o su
Ly 2 Ly 2
— (M —ks(y+ ;) +o—e ) [Vullz = | M = kia(y + ;) + 92— ) [Vudz

M = eky = 4(1 = 1) ) luellZ51 = (M = eha = (1= 1) ) el 451

(g1 —¢ pt2 (G2 —¢ p+2 l/F d
(222 bl - (255 bl + e +1) [ Plaoyas

ek +91(7)) (91 0 Au)(t) + (eka + 92(7)) (92 © Av)(1).

We choose ¢ and v small enough such that & < min(g, g2) and

< min { eh ely }
! 3(ks + ko) 3(ks + k1o) J
With e and ~ fixed, we take M sufficiently large such that

kr ki1

1
M > max {%/, 2 (ks + ki2) (v + ;)75163 +y(1—l),eka +~(1 - 12)} :

Therefore, there exist positive constants k1 and ko such that for all t >ty we have
G'(t) < —mB(t) + k2 ( (g1 0 Au)(t) + (g2 0 A0)(2) ).
Multiplying (3.26) by £(¢) = min(&;(¢),&2(t)), using the condition (G3) and (2.6), we get

EBG () < —r&()E(t) + r28(t)((91 0 Au)(t) + (92 0 Av) (1))

< —Ri€(HE(t) — r2((g) 0 Au)(t) + (g5 © Av))(t)
< —R1E(t)E() — 202/ (2).

In other words, for all ¢t > tg we have
(EO)G(t) +2r2E(t)) < €(H)G(t) — k1€ E(R).
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Let us define
E(t) = E(t)G(t) + 2r2E(t). (3.28)

Using the fact that £(¢) is a positive nonincreasing function, we have £(t) < £(0) for all ¢ > to. Then, by (3.6),
it is not difficult to see that £(t) is equivalent to E(t). Therefore, by (3.27) and (3.28), we find

E'(t) < B (HE(L) — mEME() < —m&(t)E(t) < —rE(HE(L), (3.29)

for some positive constant k. Integrating (3.30) over (to,t) gives the estimate

E(t) < Etg)e T 6%y >y (3.30)

Consequently, by using (3.6), (3.28), and (3.30), the estimate (2.12) follows.

4. Exponential growth

In this section we prove an unboundedness result, Theorem 2.3, for certain solutions of (1.1) with positive initial

energy. For this purpose, we first give a lemma that will be used later.

Lemma 4.1 Suppose that (ug,u1), (vo,v1) € HZ(Q) x HE(Q) and satisfy (2.13). Then I(t) <0 for 0<t<T
and
r—1 r—1

i < 2(r+1)F(t) <

/ F(u,v)dz, vt, 0<t<T. (4.1)
Q

Proof Let I(0) < 0; we have to prove that I(¢t) < 0 for all ¢t € [0,7). This can be shown by contradiction.
Suppose that there exists t* > 0 such that I(t*) =0 and I(t) <0 for ¢ € [0,t*). Therefore,

T(t) < (r+1)/F(u,v)dx, vt € [0, 4).

Then, by the use of lemma 2.5, we obtain

r—1
d —I(¢ Vvt e [0,t%).
1 < 2(T+ 1) ( )7 6 [ ? )
Therefore,
r—1

dy <

/ F(u,v)dx, Vit € [0,t7).
2 Ja

Since t — [, F(u,v)dz is continuous, we have [, F(u(t*),v(t*))dz # 0. In view of lemma 2.5 and (2.4), we

have

dlgr—l

/ F(u(t™),v(t"))dz = 2r -1 Lt*) = J(u(t"),v(t")),
Q

20+ )

which is impossible, since J(u(t*),v(t*)) < E(¢*) < dy. The inequality (4.1) can be obtained by using lemma
2.5 again. This completes the proof. O

Proof of Theorem 2.3. Since E(0) < dd;, then E(0) < d;. Let us define

H(t) = 6dy — E(t), (4.2)
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which is an increasing function by (2.6) and

H'(t) 2 [luelpiy + lloligih = 0. (4.3)
Also
H(t) > H(0) = édy — E(0) >0,
and
H(t) < ddy Jr/QF(u,v)d:c < {5 <r;1> + 1] /QF(u,v)d:c, vt € [0,7).

We consider the following functional

€
pt1

L(t) = H(t)+ / ( Jutg |Pugts + |Ut|pw) da + f/ ( Vul? + [Vol? ) dz + s/ (Vu.Vug + Vo.Vuy),
Q 2 Ja Q

for small € > 0 to be specified later. By taking the time derivative of the function £(t), using problem (1.1),

performing several integration by parts, and using the relation

1 1 1
[ Plwvyde = 10 = a1+ —5 (lallzF3+ Bl3) + 501Vl + 190 ]B) + 5700

we get, for 2 <0 <r+1,

1 0

0
te (1 n 2) IVl + 190l +<r+1-0) [ Flav)da
Q

fE/Q ( g [P~ Fugu 4 v 9 oo ) dx + % ( (g1 0 Au)(t) + (g2 0 Av)(t) )

te Kg - 1> _ (g _ 1) /Ot gl(T)dT] | Aul2 + <6H (1)
+& K;} - 1) - (Z - 1) /Ot gz(T)dT] |Av||2 — 65d;

—|—<€/Q/0 91(t — 7)(Au(r) — Au(t))Au(t)drdx

+€/Q/O g2(t — 7)(Av(1) — Av(t))Av(t)drdz. (4.4)

By Young’s inequality, from (4.4) we obtain

1 4 +2 +2
02 0 +e (g4 ) (Tl +lulsi3 ) + <6+ 1-0) [ Pl

=, (ot gt < (5 =) (o0 3000+ 020 3000
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0
2

(g _ 1> - (Z —1+ 4117> /Otgl(T)dT} | Aulfy
(g - 1) - (g —1+ 4177> /Ot ga(T)dT} |Av]f3,

Taking 0 <7 < g and using (2.14), the inequality (4.5) can be rewritten as

) (Va3 + [Vorl2) + cOH(t) — cb5d,

1 0
L'(t)>H'(t) +e <p+1 + '0_1_2> ( I\Ut\lﬁii + HUtHZig )

+e (1 + g) ([IVue||2 + || Voe||3) + e(r + 1 —6) /Q F(u,v)dx
+zan (g1 0 Au)(t) + (92 0 Av)(1) ) + zaz (| Aull} + | Av]3)

+e0H(t) — efdd; — 6/ ( g [P~ Fugu 4 v ]9 g ) dz,
Q

where

0 0 0 1 o o°
a1—§—77>0, a2—<2—1>—<2—1+4n)max</0 g1(7’)d7',/0 gQ(T)dT)>O.

Using (4.1) and taking o = (r+1) — 6 (1+ (r —1)(6/2)) > 0, the estimate (4.6) reduces to

1 0
L'(t)>H'(t)+¢ <p—|—1 + p—i—2> ( ||“t||£i§ + IIth,’iii )

0
+e (1 + 2) (Vg3 + | Voel|3) +€a/ F(u,v)dz
Q
tear (((g10 Au)() + (920 Av)(2) ) + saz(|Aulf + | Avl)

+ebH(t) — s/ ( [P~ ugu + v |7 oo ) dx.
Q

Since 2 < p+1 < r+ 1, using the Holder inequality and the standard interpolation inequality, we get

’/ Jug [P~ L uguda
Q

where £ 4+ ijr’f = p—il, which gives k = % > 0. From the condition (G4), we have

< u@®lpr lue®lper < lu@ls lu@lhs lue®lpa,

o (Bl + ol ) < 70 = [ Fluoyds,  vee o.+00)

(4.5)

(4.8)

(4.9)
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Using lemma 4.1, since I(t) < 0, from (2.3) we obtain
1Aull3 + |Av]3 < e F(t), Yt € [0,+00).
Therefore, an application of (2.1) yields
lu@®lz  and  Jo@)If <cF(t),  Vte0,+00), (4.10)

From (4.8)—(4.10) we deduce

/ g [P~ L uguda
Q

Consequently, by using Young’s inequality, from (4.11) we get

k 1k _1_
< egF2 () Frrt(t) Nue(®)lpyy < csF 71 () flua (@)l (4.11)

1 5:?“ p
P=1yude| < Tt 57 w7, 412
[t sl < L F 0 + Es g (412)
and similarly
6Q+1 )
/|vt|q_1vtvda: <% f()+75 o, (4.13)
Q q+1

where 61,02 > 0 will be chosen later. We use (4.7), (4.12), (4.13), and (4.3) to obtain
L't > -6, 7 L B H'(t)
— € p - q
- p+1 qg+1°7

5§7+1 6121+1
— — F H
+elo e e /Q (u,v)dx + e0H(t)

tear (910 Au)(t) + (92 0 Av)(1) ) + 2 (| Aul3 + | Av]3)

1 0
te (g o ) (hedg3 4 Tzt ) +2 (14 5 ) A9l + 1901B) (419

Taking 61, d2, and € so small such that

5p+1 5q+1 ot g1
—p1+1—q2+1>0, 1—5(}7_1;161 v +qj+162 Q)>0,

then there exists A; > 0 such that (4.14) takes the form
L) = A (H) + [ Flu,v)de + | Al + [ A]I3 + [uelly 3 + lloallf 23 + Vel + V0|3 (4.15)
= M o ) 2 2 tllp+2 tllp+2 t112 tll2 ) - .

Therefore, we have
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where
€

p+1

/ ( |ur|Purug + |vi|Po1ve ) dx
Q

+£/ ( |Vauo|? + |Vl ) dx + s/ (Vug.Vui + Vug. Vo )dz.
2 Jo Q

On the other hand, since 2 < p+2 < r + 1, we use the standard interpolation inequality again to get

lu(®)llp+2 < lu@)ll3 @l

— 2(r=(p+1))

1-k _ _1
T (p2)(r-1)

r+1 — pF2°
inequalities (4.12) and (4.13), we have

where g + which gives k > 0. Thus, with the same way followed to obtain the

512 p+1 etz
Pusude| < Bt e p+2 4.16
/Qlut\ uude| < 7 (t) 2% l[uelloras (4.16)
and
52 p+1 etz
ve|Pogvda| < B F(t) + E=8, 7T ||l |P12, 4.17
[ ttruds| < S5m0+ 25 (417)

where d3 > 0 is an arbitrary constant. Using Young’s inequality we obtain
1 2 2 1 2 2
(Vu.Vut + Vo.Vu, ) dx < 3 ( [Vul® + |V ) dx + 3 ( [Vug|* + |V ) dx. (4.18)
Q Q Q
An application of the Poincaré inequality yields
/ ( |Vul? + |Vo|? ) dz < /\71/ ( |Aul? + |Av|? ) dx, (4.19)
Q Q

where X is the Poincaré constant. Consequently, from (4.16)—(4.19), we get

L(t) < As (H(t) +/QF(u, v)de + | Aully + | Av]l3 + luellfls + loe 532 + [ Vuel3 + IIVvtllg) - (420)

for some constant Ay > 0. Combining (4.15) and (4.20), we arrive at

L'(t) > ko L(t), vt >0, (4.21)

where kg is a positive constant. A simple integration of (4.21) over (0,¢) then gives
L(t) > L£(0) e, vt > 0. (4.22)
Using (4.2), (4.16)—(4.19), and the condition (G4), for sufficiently small e, we get
£(t) < Fo (ull T+ oli5t) (4.23)
for some Ko > 0. A combination of (4.22) and (4.23) completes the proof.
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