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Abstract: In this paper, we consider continued fraction expansions for algebraic power series over a finite field. Especially,

we are interested in studying the continued fraction expansion of a particular subset of algebraic power series over a

finite field, called hyperquadratic. This subset contains irrational elements α satisfying an equation α = f(αr ), where r

is a power of the characteristic of the base field and f is a linear fractional transformation with polynomials coefficients.

The continued fraction expansion for these elements can sometimes be given fully explicitly. We will show this expansion

for hyperquadratic power series satisfying certain types of equations.
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1. Introduction

Let p be a prime number and q = ps , where s is a positive integer. We consider the finite field Fq with q

elements. We introduce with an indeterminate X the ring of polynomials Fq[X] and the field of rational

functions Fq(X). We also consider the absolute value defined on Fq(X) by |P/Q| = |X|degP−degQ for

P,Q ∈ Fq[X] , where |X| is a fixed real number greater than 1. By completing Fq(X) with this absolute value,

we obtain a field, denoted by Fq((X
−1)), which is the field of formal power series in X−1 with coefficients in

Fq . Thus, if α is a nonzero element of Fq((X
−1)), we have

α =
∑
k≤k0

αkX
k,

where k0 ∈ Z , αk ∈ Fq , αk ̸= 0, and |α| = |X|k0 . Observe the analogy between the classical construction of

the field of real numbers and this field of formal power series. The rôles of ±1, Z , Q , and R are played by F∗
q ,

Fq[X] , Fq(X), and Fq((X
−1)) respectively.

As in the classical context of real numbers, we have a continued fraction algorithm in Fq((X
−1)). Then

if α ∈ Fq((X
−1)) we can write

α = a1 +
1

a2 +
1

a3 +
1

. . .

= [a1, a2, a3, . . .]
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where ai ∈ Fq[X] . The ai are called the partial quotients and we have deg ai > 0 for i > 1. This continued

fraction is finite if and only if α ∈ Fq(X). We define 2 sequences of polynomial (Pn) and (Qn) by P1 = a1 ,

Q1 = 1, P2 = a1a2 + 1, Q2 = a2 and, for any n ≥ 3,

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2.

We easily check that

PnQn−1 − Pn−1Qn = (−1)n−1

and
Pn

Qn
= [a1, a2, a3, . . . , an].

The rational fraction
Pn

Qn
is called the nth−convergent of α and we have for all n ≥ 2:

[an, an−1....., a2] =
Qn

Qn−1
and [an, an−1....., a1] =

Pn

Pn−1
.

Moreover, we have for n ≥ 1 the equality:

α = [a1, a2, . . . , an, αn+1] =
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
,

where αn+1 = [an+1, an+2, . . .] is called a complete quotient of α .

For a general presentation of continued fractions and diophantine approximation in the function field

case, the reader may consult Schmidt’s work [6].

Finally, we have the notation F+
q = {α ∈ Fq((X

−1)) with |α| ≥ |X|} .

In 1976, Baum and Sweet [1] opened up a new field of research on diophantine approximation in the field

of formal power series with coefficients in a finite field through the continued fraction expansion. These authors

gave an example of a formal power series with coefficients in F2 , algebraic of degree 3 over F2(X), where all

partial quotients in its continued fraction expansion are polynomials of degree 1 or 2. Ten years later, Mills

and Robbins [5] described an algorithm that allowed them to give explicitly the continued fraction of the cubic

series of Baum and Sweet. These studies have identified a subset of algebraic formal power series obtained as

fixed points of the composition of a linear fractional transformation with the Frobenius homomorphism. These

series are called hyperquadratic. We will denote the set of these elements by H . Then an irrational element of

Fq((X
−1)), belonging to H satisfies an algebraic equation of the form

α =
Aαr +B

Cαr +D
(1.1)

where A,B,C,D ∈ Fq[X] and r = pt , t ≥ 0.

The continued fraction expansion for the hyperquadratic elements could be given explicitly (see [3], [4],

[6] for more references) for many examples of power series.

We present the reasoning on which our proofs are based. We start with a Lemma about elementary

continued fractions. We recall the following notation. Let U/V ∈ Fq(X) such that U/V := [a1, a2, . . . , an] . For

all x ∈ Fq(X), we will note [
[a1, a2, . . . , an], x

]
:=

U

V
+

1

x
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Lemma 1.1 Let a1, . . . , an, x ∈ Fq(X) . We have the following equality:

[
[a1, a2, . . . , an], x

]
= [a1, a2, . . . , an, y], where y =

(−1)n−1

Q2
n

x− Qn−1

Qn
.

The proof of this Lemma can be found in Lasjaunias’s article [4].

We now state the general reasoning and notations used in the sequel. Let (P,Q,R) ∈ (Fq[X])3 and let l

be a positive entire. We say that α satisfies a relation of type (r, l, P,Q,R) if we have:

Pαr = Qαl+1 +R.

Then, in this case, the continued fraction of α is determined by the first l partial quotients and the triple

(P,Q,R). In some simple cases the expansion can be completely and explicitly described and it has a very

regular pattern. It is likely that this relationship is true for almost all hyperquadratic formal series, but, to our

knowledge, no general result is confirmed (the reader may consult [4] for some comment on that).

The aim of this work is to describe the result of expansions of a subset of formal series satisfying an

equation of type (1.1). We are concerned on the continued fraction expansion with a regular pattern of formal

power series satisfying (1.1): with B = 1 and D = 0 in the first part, and with B = 0 and D = 1 in the second

part. To describe the continued fraction expansion of these formal series, we use a technique that has been

used by Lasjaunias in [4]. We will give certain continued fraction expansions for power series with all partial

quotients of degree one, which are nonquadratic algebraic elements over the field of rational functions.

2. Results

Lemma 2.1 Let r = pt, t ≥ 1 . The equation

x = (Axr + 1)/Cxr (1)

where (A,C) ∈ Fq[X]× F∗
q [X] such that degA > degC , admits a unique irrational solution in F+

q . Moreover,

this solution admits unbounded partial quotients if (r − 1) degA > r degC .

Proof We denote by f the map defined on F+
q by

f(x) =
Axr + 1

Cxr
.

Then f(x) =
A

C
+

1

Cxr
and since degA > degC then |f(x)| ≥ |X| . Hence, f is a map from F+

q to F+
q . For

x, y ∈ F+
q , by straightforward calculation and using the Frobenius homomorphism if r > 1, we obtain

f(x)− f(y) =
(y − x)r

Cxryr
.

Since x, y ∈ F+
q , we have |1/x− 1/y|r−1 < 1. So

|f(x)− f(y)| = |x− y||x− y|r−1

|C||x||y||xy|r−1
<

|x− y|
|C||X|2

.
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This shows that f is a contracting map from F+
q to F+

q . Thus, as F+
q is a complete metric subspace of

Fq((X
−1)), the equation x = f(x) has a unique solution in F+

q . Finally we shall prove that this solution is

irrational. We assume that it is rational and we shall obtain a contradiction. So we can write α = R/S with

R,S ∈ Fq[X] , gcd(R,S) = 1 and |R| > |S| . From the equality R/S = f(R/S) we obtain

R/S = U/V

with U = ARr + Sr and V = CRr . Then we have

CU −AV = CSr and V = CRr.

So if we consider W = gcd(U, V ) and since gcd(R,S) = 1 then |W | < |C| . Consequently we have

|V/W | > |V/C| > |R| > |S|.

Hence, we have V/W ̸= S and this gives a contradiction.

Now, in relation with the equation defining elements of H , we have here |∆| = |(AD − BC)| = |C| .

Consequently, if α has a partial quotient, other than the first, with degree >
deg(C)

r − 1
, then α has unbounded

partial quotients (see Lemma 3 in [2]).

Set |A| = |X|degA and |C| = |X|degC . It is clear that |α| = |X|degA−degC . Furthermore,

|α− A

C
| = 1

|C||α|r
=

1

|X|degC |X|r(degA−degC)
=

1

|X|2 degC |X|r(degA−degC)−degC
.

We have r degA − r degC − degC >
degC

r − 1
equivalent to (r − 1) degA > r degC . So we conclude that if

(r − 1) degA > r degC then α admits unbounded partial quotients. 2

Remark 2.2 i) It is easy to see that if degC < r − 1 then the solution of the equation (1) admits unbounded

partial quotients, and if degC < r then A/C is always a convergent for the solution of (1) .

ii) The previous Lemma give us a necessary condition on the degree of the coefficients A and C of the equation

(1) to obtain a solution having bounded partial quotients in its continued fraction expansion.

Lemma 2.3 Let α ∈ Fq((X
−1)) be an irrational formal power series that satisfies the equation (1) and

(
Pn

Qn
)n≥1 be the sequence of convergent of α . Suppose that there exists n ≥ 1 such that A/C = Pn/Qn .

Then α is an expansion of the type (r, n, gcd(A,C), (−1)nQn, (−1)nQn−1) .

Proof We have α is a solution of (1); then with a simple transformation on (1), we get that α satisfies

αr =
1

−A+ Cα
.

Let D = gcd(A,C). Suppose that A/C = Pn/Qn is a convergent of α ( Pn = A/D and Qn = C/D ). We

recall that if Pn/Qn = [a1, a2, · · · , an] then we have the equality

α = [a1, a2, · · · , an, αn+1] =
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
.

194



AYADI and TAKTAK/Turk J Math

So we obtain

Dαr =
1

−Pn +Qn(
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
)

= (−1)nQnαn+1 + (−1)nQn−1

and degQn−1 < degQn . This gives that α is an expansion of the type (r, n,D, (−1)nQn, (−1)nQn−1).

This Lemma will allow us to determine explicitly the continued fraction expansion of power series satis-

fying an equation of the type (1). 2

Theorem 2.4 Let α ∈ F+
q be the solution of the equation (1) such that:

1) A/C = [a1, C] is a convergent of α

2) C divides ar−1
1 .

Then

α = [a1;C, a3, · · · , an, · · · ]

where

a4k+1 = −ar2k/C k ≥ 1, a4k+2 = C k ≥ 0

a4k+3 = ar2k+1/C k ≥ 0, a4k = −C k ≥ 1

Proof Following the Lemma 2.3, we have in this case n = 2 and αr = Cα3 + 1.

So [ar1, α
r
2] = Cα3 + 1 and then

[
[ar1/C,−C], Cαr

2

]
= α3 . Thus by Lemma 1.1 and since C divides ar1

we get that

α3 = [ar1/C,−C,α
′
], with α

′
= −αr

2

C
+

1

C
.

Since |α′ | > 1 then a3 = ar1/C , a4 = −C and α
′
= α5 .

Applying the same reasoning again, we obtain

α5 =
[
[ar2/C,C],−Cαr

3

]
= [ar2/C,C, α

′′
], with α

′′
=

αr
3

C
− 1

C

We deduce that a5 = −αr
2/C , a6 = C and since |α′′ | > 1 then α

′′
= α7 . So we have

α3 = [ar1/C,−C,−ar2/C,C, α7].

In general, by an easy recurrence on k we obtain that:

αr
2k = −Cα4k+1 + 1

αr
2k+1 = Cα4k+3 + 1,

and

α4k+3 = [ar2k+1/C,−C,−ar2k+2/C,C, α4k+7].

So we obtain the desired result. 2
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Corollary 2.5 Let α ∈ F+
q be the solution of the equation (1) with r = 2 and q is a power of 2. Suppose that

A/C = [a1, C] with a1 = u1X and C = u2X where (u1, u2) ∈ (F∗
q)

2 . If a ∈ Fq[X] and n ≥ 0 is an integer,

[a]n denotes the sequence a, a, . . . , a , where a is repeated n times and [a]0 is the empty sequence. Define Hn

a finite sequence of elements of Fq[X] , for n ≥ 1 , by

Hn = u2n
1 X/u2n−1

2 , [u2X]2n+1.

Let H∞ be the infinite sequence defined by:

H∞ = H1, H2, . . . , Hn, . . .

Then the continued fraction expansion of α is

α = [u1X,u2X,H∞].

Proof According to the previous Theorem we get that if we put α = [a1, a2, · · · , an, · · · ] then

a1 = u1X and a2 = u2X

a3 = u2
1X/u2 and a4 = a5 = a6 = u2X,

a7 = u4
1X/u3

2 and a8 = a9 = a10 = a11 = a12 = a13 = a14 = u2X,

a15 = u8
1X/u5

2, . . .

Thus, we built by recurrence a sequence of rational functions (Hn)n≥1 such that H1 = u2
1X/u2, [u2X]3 and for

n ≥ 2,

Hn = u2n

1 X/u2n−1+1
2 , [u2X]2

n+1−1.

Hence we get the explicit continued fraction expansion of α . 2

Theorem 2.6 Let α ∈ F+
q be the solution of the equation (1) such that:

1) A/C = [a1, C] is a convergent for α

2) C2 divides ar1 − 1 .

Then

α = [a1;C, a3, · · · , an, · · · ]

where a3 =
ar1 − 1

C
and for all k ≥ 2

a2k = Car2k−2, a2k+1 = ar2k−1/C.

Proof Following the Lemma 2.3, we have in this case n = 2 and αr = Cα3 + 1. This relationship can be

written in the form [ar1, α
r
2] = Cα3 + 1, then [

ar1 − 1

C
,Cαr

2] = α3 . This gives that a3 =
ar1 − 1

C
and

α4 = Cαr
2 = [Car2, α

r
3/C].
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Hence we get a4 = Car2 and since C divides a3 then

α5 = αr
3/C = [ar3/C,Cαr

4].

In general, by an easy recurrence on k ≥ 2 we obtain

αr
2k−2 = α2k/C

αr
2k−1 = Cα2k+1,

which ends the proof. 2

Theorem 2.7 Let α ∈ F+
q be the solution of the equation (1) such that q is a power of 2 and r = 4 . Suppose

that A/C = [λX;X,X,X] = λX, [X]3 , where λ ∈ F∗
q . Then

α = [H∞].

where Hn = λ4n−1

X, [X]4
n−1 for n ≥ 1 .

Proof Note that in this case A = λX4 + X2 + 1 and C = X3 . Since A/C = [λX;X,X,X] = P4/Q4 is

a convergent of α then Q3/Q4 = [X,X,X] and A/C = H1 . Furthermore, we have in this case n = 4 and

α4 = Cα5 +Q3 . So [a41, α
4
2] = Cα5 +Q3 then

a41
C

+
Q3

C
+

1

Cα4
2

= α5.

Hence
[
[a41/C,X,X,X], Cα4

2

]
= α5 . Following the Lemma 1.1 and since C divides a41 we get

[a41/C,X,X,X, α′] = α5, with α
′
=

α4
2

C
+

Q3

C
.

Since |α′ | > 1 then α
′
= α9 . So we obtain:

a5 =
a41
C

= λ4X, a6 = a7 = a8 = X,α9 =
α4
2

C
+

Q3

C
.

We apply again the same reasoning and we get the following relation:

[a42/C,X,X,X], α′′] = α9.

This gives that a9 = a10 = a11 = a12 = X, and since |α′′ | > 1 then α
′′
= α13 =

α4
3

C
+

Q3

C
.

In general, by an easy recurrence on k ≥ 1 we obtain:

α4k+1 =
α4
k

C
+

Q3

C
= [

a4k
C

,X,X,X, α4k+5].

Using this relation of recurrence, we obtain a13 = . . . = a20 = X and a21 = λ16X . Thus H1 = λ4X, [X]15

and H2 will begin with λ16X . It is clear that the sequence (Hn)n≥1 begins with the first partial quotient an

obtained by the process, which has a power of λ as coefficient. We get that for all n ≥ 1, Hn+1 is obtained

from Hn after 4n − 1 iteration. So we obtain the desired result. 2

We exhibit now some results concerning another family of hyperquadratic power series.

197



AYADI and TAKTAK/Turk J Math

Lemma 2.8 Let r = pt, t ≥ 1 such that r > 2 . The equation

x = Axr/(Cxr + 1) (2)

where (A,C) ∈ Fq[X]×F∗
q [X] such that degA > degC , admits a unique irrational solution α ∈ F+

q . Moreover,

we have the following result:

i) α admits unbounded partial quotients if (r − 2) degA > (r − 1) degC .

ii) If A/C is a convergent of α , i.e. there exists n ≥ 1 such that A/C = Pn/Qn (where (
Pn

Qn
)n≥1 is the

sequence of convergent of α), then α is an expansion of the type

(r − 1, n, gcd(A,C), (−1)nQn, (−1)nQn−1) and (r, n, gcd(A,C), (−1)nPn, (−1)nPn−1) .

Proof The proof of the existence and the uniqueness of the irrational solution of (2) and the property i) is

the same as in the Lemma 2.1.

Now, we can write the equation (2) in 2 forms:

αr−1 =
1

−A+ Cα
, (2.2)

or

αr =
α

−A+ Cα
. (2.3)

So if A/C is a convergent of α then there exists n ≥ 1 such that A/C = Pn/Qn . Then as Lemma 2.3, the

equation (2.2) implies that α is of the type (r − 1, n, gcd(A,C), (−1)nQn, (−1)nQn−1).

The equation (2.3) implies that:

Dαr =

Pnαn+1 + Pn−1

Qnαn+1 +Qn−1

−Pn +Qn(
Pnαn+1 + Pn−1

Qnαn+1 +Qn−1
)
= (−1)nPnαn+1 + (−1)nPn−1,

where D = gcd(A,C). So we get that α is of the type (r, n,D, (−1)nA, (−1)nPn−1). 2

Now, using this Lemma, we will determine the continued fraction expansion of some power series of

strictly positive degree satisfying an equation of type (2). All given examples are with a regular pattern. Some

of them are general (i.e. with arbitrary coefficients A and C ) and other are well chosen to obtain power series

with all partial quotients of degree one. Note that the part (i) of the previous Lemma allows us to chose degA

and degC in such a way that we could obtain power series with bounded partial quotients.

Theorem 2.9 Let α ∈ F+
q be the solution of the equation (2) such that A/C = [a1, C] is a convergent of α .

Then

i) If C divides ar−2
1 .

Then
α = [a1;C, a3, · · · , an, · · · ]

where

a4k+1 = −ar−1
2k /C k ≥ 1, a4k+2 = C k ≥ 0
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a4k+3 = ar−1
2k+1/C k ≥ 0, a4k = −C k ≥ 1

ii) If C2 divides ar−1
1 − 1 .

Then

α = [a1;C, a3, · · · , an, · · · ]

where a3 =
ar−1
1 − 1

C
and for all k ≥ 2

a2k = Car−1
2k−2, a2k+1 = ar−1

2k−1/C.

Corollary 2.10 Let α ∈ F+
q be the solution of the equation (2) with r = 3 and q is a power of 3. Suppose

that A/C = [a1, C] with a1 = u1X and C = u2X , where (u1, u2) ∈ (F∗
q)

2 . Define the sequence of integers

(vn)n≥1 by

v1 = 1 and vn = 2vn−1 + 1.

Then the continued fraction expansion of α is

α = [u1X,u2X,u2
1X/u2, · · · , an, · · · ],

such that for all k ≥ 1 :

a4k = a4k+1 = 2u2X, a4k+2 = u2X,

and

a4k+3 =

{
u2n+1

1 X/u2n+1−1
2 if there exists n such that k = vn

u2X else.

The proof of the Theorem 2.9 and Corollary 2.10 is the same as that of the Theorem 2.4 and 2.6 and Corollary

2.4.

Theorem 2.11 Let α ∈ F+
q be the solution of the equation (2) such that q is a power of 2 and r = 4 . Suppose

that A = X3 +X2 + 1 and C = X2 +X + 1 . Then

α = [X;X,X + 1, · · · , an, · · · ]

such that for all k ≥ 1 :

a3k+1 ∈ {X,X + 1}, a3k+2 = X and a3k = X + 1.

Proof We have A/C = [X,X,X + 1] and we can verify that A/C is the 3rd -convergent of α . Following

the Lemma 2.8 we have that α is of the type (3, 3, 1, C,Q2) and it satisfies the equation α3 = Cα4 +Q2 . So

[a31, α
3
2] = Cα4 +Q2 and then

a31
C

+
Q2

C
+

1

Cα2
2

= α4,

hence

X3 +X

X2 +X + 1
+

1

Cα2
2

= α4.
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We have
X3 +X

X2 +X + 1
= [X + 1, X,X + 1] then

α4 = [X + 1, X,X + 1, α
′
], with α

′
=

α3
2

C
+

Q2

C
.

Thus a4 = X + 1, a5 = X, a6 = X + 1, and α
′
= α7 . We apply again the same reasoning and we get

a32
C

+
Q2

C
+

1

Cα3
3

= α7.

Then since a2 = a1 = X , we get

α7 = [X + 1, X,X + 1, α
′′
], with α

′′
=

α3
3

C
+

Q2

C
.

Thus a7 = X + 1, a8 = X, a9 = X + 1, and α
′′
= α10 . Now, we have

a33
C

+
Q2

C
+

1

Cα2
4

= α10,

then

(X + 1)3 +X

X2 +X + 1
+

1

Cα3
4

=
X3 +X2 + 1

X2 +X + 1
+

1

Cα3
4

= α10.

Since
X3 +X2 + 1

X2 +X + 1
= [X,X,X + 1] then

α10 = [X,X,X + 1, α
′′′
], with α

′′′
=

α3
4

C
+

Q2

C
.

So a10 = X, a11 = X, a12 = X + 1, and α
′′′

= α13 . In general, by an easy recurrence on k we obtain:

α3k+1 =
a3k
C

+
Q2

C
+

1

Cα2
k+1

.

Since ak ∈ {X,X+1} , then a3k
C

+
Q2

C
∈
{
[X,X,X+1], [X+1, X,X+1]

}
. So a3k+1 ∈ {X,X+1} , a3k+2 = X ,

and a3k+3 = X + 1. 2

Theorem 2.12 Let α ∈ F+
q be the solution of the equation (2) . Suppose that A/C = [a1, a2, a3] is a convergent

of α such that A divides ar−1
1 , ar−1

2 , and ar−1
3 . Then

α = [a1; a2, a3, · · · , an, · · · ],

where for all k ≥ 1 :

a4k = −ark/A, a4k+1 = −a3, a4k+2 = −a2, and a4k+3 = −a1.
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Proof In this case we have A/C = P3/Q3 and αr = −Aα4 − P2 . Then we have:

−ar1
A

− P2

P3
− 1

Aαr
2

= α4.

Since
P2

P3
= [0, a3, a2, a1] and taking into account that A divides ar−1

1 , ar−1
2 , and ar−1

3 then:

[−ar1/A,−a3,−a2,−a1, α
′] = α4, with α′ =

−αr
2

A
− P2

P3
.

Hence a4 = −ar1/A, a5 = −a3, a6 = −a2, a7 = −a1 , and α′ = α8 . We apply again the same reasoning and we

obtain

[−ar2/A,−a3,−a2,−a1, α”] = α8, with α” =
−αr

3

A
− P2

P3
.

So a8 = −ar2/A, a9 = −a3, a10 = −a2, a11 = −a1 , and α” = α12 . Thus, by recurrence we show that

α4k =
−αr

k

A
− P2

P3

for all k ≥ 1 and then

a4k = −ark/A, a4k+1 = −a3, a4k+2 = −a2, and a4k+3 = −a1.

2

Corollary 2.13 Let α ∈ F+
q be the solution of the equation (2) with r = 4 and q is a power of 2. Suppose

that A = δX3 and C = δX2 + 1 , where δ ∈ F∗
q . Then

α = [δX;X, δX, · · · , an, · · · ],

where for all k ≥ 1 :

a4k = −a4k/A, a4k+1 = δX, a4k+2 = X, and a4k+3 = δX.

Proof This corollary is a direct application of the previous Theorem. In fact, we have that A/C =

[δX,X, δX] = [a1, a2, a3] is a convergent of α and A divides a31 , a
3
2 , and a33 . 2

We conclude this paper by seeing the behavior of the partial quotients of the solution of the equations (1) and

(2) when C divides A .

Theorem 2.14 Let α ∈ F+
q be the solution of the equation (1) such that C divides A . Then

α = [a1, · · · , an, · · · ]

where for all n ≥ 1

an = (
A

C
)r

n−1

(C)
rn−1+(−1)n

r+1 .
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Proof It is clear that if C divides A then the first partial quotient of α is a1 = A/C and α =
A

C
+

1

α2
. But

if α is a solution of (1) then we have

αr =
1

−A+ Cα
=

α2

C
.

Then Cαr = α2 . So Car1+
C

αr
2

= α2 . Hence a2 = Car1 and α3 = αr
2/C . We apply again the same reasoning and

we obtain α3 =
ar2
C

+
1

Cαr
3

, so a3 = ar2/C and α4 = Cαr
3 . Then a3 = Cr−1ar

2

1 and a4 = Car3 = Cr2−r+1ar
3

1 .

We remark that a3 = C
r2−1
r+1 ar

2

1 and a4 = C
r3+1
r+1 ar

3

1 . By recurrence on k we prove easily that α2k = Cαr
2k−1 ,

α2k+1 = αr
2k/C , and ak = C

rk−1+(−1)k

r+1 ar
k−1

1 . 2

We obtain with the same method as the previous Theorem the following result.

Theorem 2.15 Let α ∈ F+
q be the solution of the equation (2) such that C divides A . Then

α = [a1, · · · , an, · · · ],

where for all n ≥ 1

an = (
A

C
)(r−1)n−1

(C)
(r−1)n−1+(−1)n

r .

Acknowledgement

The authors would like to thank Alain Lasjaunias for his comments and valuable suggestions during the

preparation of this work. They also thank Mohamed Hbaib for his helpful discussions.

References

[1] Baum L, Sweet M. Continued fractions of algebraic power series in characteristic 2. Ann of Math 1976; 103: 593–610.

[2] Lasjaunias A. Continued fractions for algebraic power series over finite field. Finite Fields Appl 1999; 5: 46–56.

[3] Lasjaunias A. A survey of diophantine approximation in fields of power series. Monatsh Math 2000; 130: 211–229.

[4] Lasjaunias A. Continued fractions for hyperquadratic power series over finite field. Finite Fields Appl 2008; 14:

329–350.

[5] Mills M, Robbins D. Continued fractions for certain algebraic power series. Journal of Number Theory 1986; 23:

388–404.

[6] Schmidt W. On continued fractions and diophantine approximation in power series fields. Acta Arith 2000; 95:

139–166.

202

http://dx.doi.org/10.2307/1970953
http://dx.doi.org/10.1006/ffta.1998.0236
http://dx.doi.org/10.1007/s006050070036
http://dx.doi.org/10.1016/j.ffa.2007.01.001
http://dx.doi.org/10.1016/j.ffa.2007.01.001
http://dx.doi.org/10.1016/0022-314X(86)90083-1
http://dx.doi.org/10.1016/0022-314X(86)90083-1

	Introduction
	Results

