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Abstract: In this paper we present a direct approach to determining a class of solutions, the asymptotic analysis of

the dromion solutions, and their asymptotic properties of the Nizhnik–Veselov–Novikov equations by means of Pfaffians.

The form of the solution obtained allows a detailed asymptotic analysis of the dromion solutions and compact expression

for the phase shifts and changes of amplitude as a result of interaction of the dromions to be determined.
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1. Introduction

In recent years the generalizations of integrable (1+1)-dimensional equations to (2+1) dimensions have been

widely studied. The integrable generalization of the nonlinear Schrödinger (NLS) equation is the Davey–

Stewartson (DS) equations [5]. The generalization of the Korteweg–de-Vries (KdV) equation has 2 possibilities,

which are the Kadometsev–Petviashvili (KP) equations [11] and the Nizhnik–Veselov–Novikov (NVN) equations

[14]. The NVN equations are

Ut = Uxxx + Uyyy + 3(ΦxxU)x + 3(ΦyyU)y, (1)

U = Φxy. (2)

These generalizations, the DS and NVN equations, have 2-dimensional localized hump solutions that

decay exponentially in all directions, which are called 2-dimensional solitons or dromions. The KP equation

does not have such solutions. The word dromion comes from the Greek word dromos, which means track, and

it has been given [6] to these objects because they are located at the intersection of plane waves, which can

be thought to form tracks. These 2-dimensional solitons, like the well-known solutions in (1 + 1)-dimensional

systems, decay to zero exponentially as spatial variables tend to infinity and, as a result of interaction with

other solitons, undergo a phase shift. However, unlike the (1 + 1)-dimensional situation, changes of amplitude

because of interaction may also occur.

These (2+1)-dimensional generalizations also possess the usual features of (1+1)-dimension integrable

equations, namely solvability by the inverse scattering transform, existence of Bäcklund transformations, and

Hamiltonian formulation [1], [6], [16]. The NVN equations are a pair of coupled nonlinear equations in 2

dependent variables; U is the amplitude and Φ is related to an auxiliary field V = 1
2 (Φxx + Φyy), which is
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the velocity of an underlying mean flow. This mean flow is a feature of the 2-dimensional model having no

counterpart in the 1-dimensional KdV equation. The soliton solution is localized only in the physical variable

U , while the auxiliary variable V consists of a pair of perpendicular solitons. The point of intersection of the

plane-wave solitons in V and the localized soliton in U coincide. The most general solution consists of 2 sets

of perpendicular plane waves, M and N in number, in the V plane and M × N localized solitons in the U

plane.

The NVN equations are the first member of the hierarchy describing the deformations preserving the

zero energy level of 2-dimensional Schrödinger operators [21]. They also naturally arise in the theory of surfaces

[18], and a modified version appears in string theory [12]. There are elliptic version of NVN equations (NVN-I)

studied by Veselov and Novikov [21] and hyperbolic version of NVN equations (NVN-II) studied by Nizhnik

[13].

An alternative approach has been through direct methods using the bilinear form of the DS and NVN

equations. Hietarinta and Hirota [9] and Jaulent et al. [10] obtained a broader class of dromion solutions of the

DS equations in terms of Wronskian determinants and as polynomials in exponentials, respectively. Athorne

and Nimmo [2] and Ohta [15] obtained dromion solutions of the NVN equations in terms of Pfaffians. Gilson

and Nimmo [7] studied the dromion solutions of the DS equations [3] and their asymptotic properties. Recently,

there has been a number of studies in the asymptotic analysis of the NVN equations. Peng [17] and Kumara [19]

used the Painlevé truncation approach. This approach converts the given evolution equation into a multilinear

equation in terms of the noncharacteristic manifold. This multilinear equation can be solved in terms of lower-

dimensional arbitrary functions of space and time. Zhou [22] used the Darboux transformations for the DSII

equation to solve the NVN-II equation and obtained global multisoliton solutions.

In this paper, we wish to consider an alternative direct approach that uses a formulation of the solutions

as Pfaffians. These solutions describe a class of solutions much broader than those obtained in the other
approaches mentioned above. This paper is organized as follows. In Section 2, we introduce some properties of

Pfaffians. In Section 3 we recall some results obtained in [2] and give a class of solutions of the NVN equations,

which uses a formulation of the solutions as Pfaffians. In Section 4 we wish to consider asymptotic analysis of

the (1, 1)-dromion solution. In Section 5 we will see that the form of the solution taken allows us to carry out

a detailed asymptotic analysis of the (M,N)-dromion solution and obtain compact expressions for the phase

shifts and changes in amplitude that occur due to the interactions.

2. Introduction to Pfaffians

Let A = (aij) be an n × n skew-symmetric matrix (i.e. aij = −aji and consequently aii = 0 for i, j =

1, 2, · · · , n). It is known that if n is odd, then det(A) is zero, but if n is even det(A) is a perfect square of a

polynomial in the entries aij , called the Pfaffian of A and denoted by Pf(A). Roughly speaking, a Pfaffian is

the square root of the determinant of a skew-symmetric matrix. To be precise, for even n

Pf(A) =

∣∣∣∣∣∣∣∣∣
a12 a13 · · · a1n

a23 · · · a2n
. . .

...
an−1,n

∣∣∣∣∣∣∣∣∣ =
∑
σ

ϵ(σ) aσ(1),σ(2) · · · aσ(n−1),σ(n),

where σ runs over the permutations of {1, · · · , n} such that

σ(1) < σ(2), σ(3) < σ(4), · · · , σ(n− 1) < σ(n), σ(1) < σ(3) < · · · < σ(n− 1),
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and ϵ(σ)(= ±1) is the parity of this permutation. For example, we have Pf(A) = a12 for n = 2 and

Pf(A) =
| a12 a13 a14

a23 a24
a34

∣∣∣∣∣∣ = a12a34 − a13a24 + a14a23

for n = 4. The aij is taken to be skew-symmetric, and therefore aij = −aji.
A classical notation for the Pfaffian of A [4] is

Pf(A) = (1, 2, · · · , n),

where (i, j) = aij . One expansion rule for Pfaffians is given by

(1, 2, · · · , n) =
n∑

i=2

(−1)i(1, i)(2, 3, · · · , î, · · · , n),

where ˆ indicates that the index underneath should be deleted. For example, for n = 4, we can write the

Pfaffian representation as

(1, 2, 3, 4) = (1, 2)(3, 4)− (1, 3)(2, 4) + (1, 4)(2, 3).

(See [20] for more information on Pfaffians.)

3. Dromion solution of the NVN equations

We recall some results obtained in [2]. A class of solutions of (1) and (2) is given by

U = 2 (log(Pf(θ1, · · · , θn)))xy, (3)

where θi are solutions of the linear equations

ϕxy +Φ(0)
xy ϕ = 0, (4)

ϕt = ϕxxx + ϕyyy + 3Φ(0)
xxϕx + 3Φ(0)

yy ϕy, (5)

and

Pf(θ1, · · · , θn) =
{

(1, 2, · · · , n) n even
(1, 2, · · · , n, I) n odd,

where (i, j) = Pf(θi, θj), (i, I) = θi , and

Pf(θi, θj) =

∫
Wx[θi, θj ] dx−Wy[θi, θj ] dy. (6)

In (6), WX [θi, θj ] = θiθjX−θiXθj denotes the Wronskian of θi and θj with respect to variable X = x or X = y

and so Pf(θi, θj) is skew-symmetric. In particular, setting Φ(0) = 0 in (4) and (5) yields separable θi :

θi = θ
(x)
i (x, t) + θ

(y)
i (y, t),

where θ
(X)
it

= θ
(X)
iXXX

for X = x or X = y .
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To obtain plane wave soliton solutions, we choose

θ
(x)
i = αi exp(kix+ k3i t) and θ

(y)
i = βi exp(liy + l3i t),

and then (3) gives, in the case of n = 1,

U = −kl
2
sech2

(
1

2

[
kx− ly + (k3 − l3)t+ log

(
α

β

)])
.

If k or l tends to zero then U tends to the trivial solution. The individual solitons are then a kind of “ghost”

solitons [8], parallel to the x and y axes. These are given by θ(x) = α exp(kx + k3t) + β and θ(y) =

α+ β exp(ly+ l3t), respectively. A single dromion solution may be thought of as a 2-soliton solution made out

of 2 intersecting ghost solitons. Outside the interaction region, the solution is approximated by individual ghost

solitons and the physical field U vanishes. If we take n = 2 with

θ1 = θ
(x)
1 = α exp(kx+ k3t) + 1 and θ2 = θ

(y)
2 = 1 + β exp(ly + l3t),

and using equation (6), the Pfaffian becomes

Pf(θ1, θ2) =

∫
Wx[θ1, θ2] dx−Wy[θ1, θ2] dy (7)

= −(θ1θ2 + c− 1), (8)

where c is some constant. From equation (3)

U = 2 (log(P (θ1, θ2)))xy

=
2kl(c− 1)αβ

(ce−η/2e−ρ/2 + αeη/2e−ρ/2 + βe−η/2eρ/2 + αβeη/2eρ/2)2
,

where η = kx + k3t and ρ = ly + l3t. Here, we see that as (x, y) → ∞ , at least one of the terms in the

denominator tends to infinity, and hence U is a localized solution, which we call the (1, 1)-dromion solution of

the NVN equations. This is illustrated in Figure 1.

An (M,N)-dromion solution, in which M +N is even, is obtained by choosing θi = αi exp(kix+ k3i t) +

1 for i = 1, · · · ,M and θj+M = 1 + βj exp(ljy + l3j t) for j = 1, · · · , N. To express the solution in a

compact form, we take S as the square of the Pfaffian Pf(θ1, · · · , θM+N ), and hence S = |Pf(θi, θj)| . Then S

has the following block structure:

S =

∣∣∣∣∣∣
∫ x

Wx[θi, θp] dx −(θi θj + cij)

(θp θq + cpq) −
∫ y

Wy[θj , θq] dy

∣∣∣∣∣∣ , (9)

where i, p = 1, · · · ,M and j, q = M + 1, · · · ,M +N. Hence, the solution is given by U = (log(S))xy and the

auxiliary field

V = 1
2 (∂

2
x + ∂2y)(log(S)), (10)

(Φ = log(S)), which is introduced to help visualize the nature of the soliton.

The motivation for studying V is that, while U is localized, V is not in general and the point of

intersection of the plane-wave solitons in the V -plane coincide with the localized solitons in the U -plane.
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ÜNAL/Turk J Math

Figure 1. The (1, 1)-dromion plot for the parameters given by k = l = 1
2
, c = 3

2
, and α = β = 1.

4. Asymptotic analysis of the (1, 1)-dromion solution

To understand the meaning of the parameters that appear in the (M,N)-dromion solution (9), we consider the

simplest case in which M = N = 1. The form of S is then

S(θ1, θ2) = (Pf(θ1, θ2))
2 (11)

and from (7) and (8) we get

Pf(θ1, θ2) = −θ1θ2 + constant. (12)

In order to simplify the representation, we use P instead of Pf(θ1, θ2) and take θ1 = 1 + eη and θ2 = 1 + eρ ;

then P becomes

P = −c− eη − eρ − eη +ρ, (13)

where c is constant and η = k(x + k2t), ρ = l(y + l2t). The effect of the parameters c , k , and l on the

properties of the solution to the NVN equations is explained in the following theorem.

Theorem 4.1 For c > 0 and k, l ̸= 0 ,

U = 2 ∂x∂y(log(P )) and V = (∂2x + ∂2y)(log(P )) (14)

with P given by (13) have the following properties:

1) V is the interaction of a pair of plane-wave solitons, one parallel to the y -axis, V (x) , parametrized

in terms of k , and the other parallel to the x-axis, V (y) , parametrized in terms of l . These waves have speeds

−k2 and −l2 , and amplitudes k2

4 and l2

4 , respectively. The relative phase shifts of the plane-wave solitons at

the interaction may be expressed in terms of F⊥ = log(c), the ‘perpendicular phase shift’; for V (x) the relative

phase shift is sgn(l)F⊥ and for V (y) it is sgn(k)F⊥ .

2) U decays to zero exponentially as (x, y) → ∞ in any direction and the amplitude is

U0 =
kl

2

√
c− 1√
c+ 1

=
kl

2

e
1
2F⊥ − 1

e
1
2F⊥ + 1

.
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At time t the maximum or minimum on the dromion is located at

(x, y) =

(
log(c)− 2k3t

2k
,
log(c)− 2l3t

2l

)

=

(
1

2
(ψ+

x − ψ−
x )− k2t,

1

2
(ψ+

y − ψ−
y )− l2t

)
,

where ψ±
x and ψ±

y are the phase constants in the plane waves in the V -plane at y = ±∞ and x = ±∞ ,

respectively. The trajectory of the dromion is the line

k2y − l2x =
1

2kl
log(c) (k3 − l3).

Proof 1) To find the speeds and the amplitudes, for any value of t , we fix y and hence ρ in P :

P = −c− eη − eρ − eη +ρ = −(c+ eρ)

(
1 +

1 + eρ

c+ eρ
eη
)
.

Since ρ and c are constants, this expression for P gives the same U and V . In what follows, the symbol ≃
is used to denote functions that are ‘asymptotically equivalent’. We say that 2 expressions P = B and P = C

are equivalent under the changes of variable (14) from P to U and V if C = αeβx+γyB for some constants

α, β, γ so that both B and C give the same U and V . Thus, we write A ≃ B (A ≃ P ) as X → a to mean

that A ∼ C (A is asymptotic to C ) as X → a and B and C are equivalent in the sense given above. Hence,

we write P ≃ 1 + αeη, where α = (1 + eρ)/(c + eρ) and the relation between B and C is C = −(c + eρ)B .

Thus, V can be written as

V = (∂2x + ∂2y)(log(P )) =
1

4
k2 sech2

(
1

2
k

[
(x+ k2t) +

1

k
log(α)

])
,

which is a 1-dimensional plane wave soliton propagating in the x direction. Hence, the speed is −k2 and the

amplitude is k2

4 . If we fix x and hence η in P , the other 1-dimensional plane wave soliton perpendicular to

this one, propagating in the y direction, would be of the form

V = ∂2y(log(1 + βeρ)) =
1

4
l2 sech2

(
1

2
l

[
(y + l2t) +

1

k
log(β)

])
,

where β = (1 + eη)/(c+ eη) , the speed is −l2 , and the amplitude is l2

4 .

To determine the phase shift we consider the change in P as x and y change from −∞ to +∞ . Then

we obtain the phase shift in the x direction by fixing x in the limits as y → ±∞ . For l > 0, as y → ∞ ,

P = −eρ(ce−ρ + eη−ρ + 1 + eη) ≃ 1 + eη (C = −eρB);

hence, V = k2

4 sech2
(
1
2k(x+ k2t)

)
, and as y → −∞ ,

P ≃ −c− eη and V =
k2

4
sech2

(
1

2
k

[
(x+ k2t)− 1

k
log(c)

])
.
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Thus, the phase constants at y = ±∞ are ψ+
x = 0, ψ−

x = − 1
k log(c), and the phase shift in the plane wave

parallel to the y -axis is

ψ+
x − ψ−

x =
1

k
log(c). (15)

By a similar calculation, the phase shift when l < 0 is

ψ+
x − ψ−

x = −1

k
log(c). (16)

Hence, the relative phase shift (= (wave number)×(absolute phase shift)) is sgn(l) log(c) as required.

Similarly, to get the phase shift in the y direction, we fix y in the limits as x → ±∞ . For k > 0, as
x→ ∞ ,

P = −eη(c e−η + 1 + eρ−η + eρ) ≃ 1 + eρ (C = −eηB);

hence, V = l2

4 sech2
(
1
2 l(y + l2t)

)
, and as x→ −∞ ,

P ≃ −c− eρ, V =
l2

4
sech2

(
1

2
l

[
(y + l2t)− 1

l
log(c)

])
.

Thus, the phase constants at x = ±∞ are ψ+
y = 0 and ψ−

y = − 1
l log(c). Hence, the phase shift in the plane

wave parallel to the x-axis is

ψ+
y − ψ−

y =
1

l
log(c) (17)

and the phase shift when k < 0 is

ψ+
y − ψ−

y = −1

l
log(c). (18)

2) For P given by (13),

U =
2 kl(c− 1)eη+ρ

(c+ eη + eρ + eη+ρ)2
(19)

=
2 kl(c− 1)

(c e−(η+ρ)/2 + e(η−ρ)/2 + e−(η−ρ)/2 + e(η+ρ)/2)2
, (20)

from which we see that U is exponentially localized since at least one of the exponential terms in the denominator

tends to infinity as (x, y) → ∞ . To see this we consider the exponentials in the denominator in (20) and a ray

in any direction y = αx , where α ∈ R . With y = αx and the appropriate expressions for η and ρ , we have

c e−(η+ρ)/2 + e(η−ρ)/2 + e−(η−ρ)/2 + e(η+ρ)/2.

Here, if x → ∓∞ , the expression tends to infinity, whatever the signs of k , l , and α are. To find any critical

points we need to solve the equations Ux = 0 and Uy = 0. Differentiating U in (19) with respect to x and y

gives

Ux =
2 k2lekx+k3t+ly+l3t (c− 1)

(
c− ek(x+k2t) + el(y+l2t) − ekx+k3t+ly+l3t

)
(
c+ ek(x+k2t) + el(y+l2t) + ekx+k3t+ly+l3t

)3 ,
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Uy =
2 kl2ekx+k3t+ly+l3t (c− 1)

(
c+ ek(x+k2t) − el(y+l2t) − ekx+k3t+ly+l3t

)
(
c+ ek(x+k2t) + el(y+l2t) + ekx+k3t+ly+l3t

)3 .

One obvious solution of this pair of equations is c = 1, but this corresponds to the trivial solution U = 0 and

is therefore excluded. Hence, solving the equations Ux = 0 and Uy = 0 for x and y is the same as solving the

equations

c− ek(x+k2t) + el(y+l2t) − ekx+k3t+ly+l3t = 0,

c+ ek(x+k2t) − el(y+l2t) − ekx+k3t+ly+l3t = 0,

which imply that ekx+k3t+ly+l3t = c and ek(x+k2t) = el(y+l2t).

This pair has a unique real solution x = log(
√
c)−k3t
k , y = log(

√
c)−l3t
l . Since U → 0 as (x, y) → ∞ and

there is a unique critical point, this clearly must be a local maximum or minimum located at the point

(x, y) =

(
log(c)− 2k3t

2k
,
log(c)− 2l3t

2l

)
.

By eliminating t we get the trajectory of the dromion:

k2y − l2x =
1

2kl
log(c) (k3 − l3).

If we substitute the critical values of x and y into U , we obtain the amplitude of the dromion:

U0 =
kl

2

√
c− 1√
c+ 1

,

which can be written in terms of the phase shift F⊥ as follows:

U0 =
kl

2

e
1
2F⊥ − 1

e
1
2F⊥ + 1

.

2

4.1. Summary of results for (1, 1)-dromion

The main result is that there is a dromion in the U -plane and a pair of perpendicular plane waves in the

V -plane. We observe further from Theorem 4.1 that:

• The dromion may have arbitrary amplitude, positive, negative, or zero. The amplitude is:

1. positive if kl > 0 and c > 1 or kl < 0 and 0 ≤ c < 1,

2. negative if kl < 0 and c > 1 or kl > 0 and 0 ≤ c < 1,

3. zero if kl = 0 or c = 1

• The plane waves always have positive amplitude and exert a phase-shift on one another. In particular,

the directions of these phase shifts (forward or backward) depend on the signs of k , l , and log(c). The

phase shift is zero if and only if the dromion amplitude is zero.
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Figure 2. Phase shifts in the plane waves and the location of the dromion.

• At any fixed time, the dromion (in the U -plane) is symmetrically located between the plane waves (in

the V -plane). This is illustrated schematically for the case k > 0, l > 0, log(c) > 0 in Figure 2.

We next consider the general case in which V consists of M +N plane waves, M plane waves parallel

to the y -axis, and N plane waves parallel to the x-axis, each set of plane waves interacting like 1-dimensional

multisolitons and U consisting of M×N dromions situated symmetrically at the interaction of the plane waves

in the V -plane.

5. Asymptotic analysis of the (M,N)-dromion solution

In this section we consider the nature of the (M,N)-dromion solution as t → ±∞ . In order to get succinct

expressions for these asymptotic forms of the solution, we order the parameters ki and lj in this way:

k1 < k2 < · · · < kM and l1 < l2 < · · · < lN . (21)

Also, to have nonsingular solutions, we make the following choices for the arbitrary constants appearing in the

solution:
αi = βj = 1 for i, j odd, αi = βj = −1 for i, j even.

Next we write the (M,N)-dromion solution given in (9), in the case where M + N is even, in the following

form:

S =

∣∣∣∣∣ Θ1 Θ2

−ΘT
2 Θ3

∣∣∣∣∣ (22)

where Θ1 and Θ3 are skew-symmetric matrices with entries

Θi,p = cip − αie
ηi + αpe

ηp + αiαp
kp−ki

kp+ki
eηi+ηp 1 ≤ i < p ≤M,

ΘM+j,M+q = cM+jM+q + βje
ρj − βqe

ρq + βjβq
lj−lq
lj+lq

eρj+ρq 1 ≤ j < q ≤ N,

respectively, and Θ2 has the entries

Θi,M+j = ciM+j − αie
ηi − βje

ρj − αiβje
ηi+ρj i = 1, . . . ,M, j = 1, . . . , N,
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where cip , cM+jM+q , and ciM+j are arbitrary constants. We will only be interested in cij such that the

solution has no singularities. The conditions on cij that give this property will be found by considering the

asymptotic form of all of the M ×N dromions.

To study the (M,N)-dromion solution in the case that M +N is odd, we may consider an (M + 1, N)

or an (M,N + 1) dromion in which we set a ki or an lj equal to zero, respectively. In making this choice it is

important that the ordering of (21) is preserved.

For the (M,N)-dromion solution in the case that M + N is even, it is convenient to express the

determinant S in (22) in terms of other matrices so that it can have simpler structure, namely

S = | C + D A − AT D + D B D |. (23)

The matrices in (23) have the following structure: A is a constant matrix with the (ij)th entry

Aij =


(−1)i (1− δij) for i = 1, . . . ,M

j = 1, . . . ,M +N

(−1)i−(M+1) (1− δij) for i =M + 1, . . . ,M +N

j = 1, . . . ,M +N

,

where δij is the Kronecker δ symbol and B is a skew-symmetric matrix with the block structure

B =

(
K R

−RT L

)
, (24)

in which K and L are constant skew-symmetric matrices with entries

Kij = (−1)i+j kj − ki
kj + ki

1 ≤ i < j ≤M (25)

Lij = (−1)i+j+1 lj − li
lj + li

1 ≤ i < j ≤ N ; (26)

R is a rank-1 matrix with entries

Rij = (−1)i+j+1 for i = 1, . . . ,M, j = 1, . . . , N ;

C is the general constant skew-symmetric matrix, which has the entries

cij for 1 ⩽ i < j ⩽M +N ;

and

D = diag(eη1 , eη2 , . . . , eηM ; eρ1 , eρ2 , . . . , eρN ) (27)

is a diagonal matrix, where

ηi = ki(x+ k2i t) for i = 1, . . . ,M, (28)

ρj = lj(y + l2j t) for j = 1, . . . , N. (29)
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To determine the asymptotic form of the solution we fix the mth (x, t)-dependent plane wave and the

nth (y, t)-dependent plane wave and we call the corresponding dromion the (m,n)th. We write S given by

(23) in terms of x̂ = x + km
2t and ŷ = y + ln

2t so that the (m,n)th dromion is independent of t (i.e. is

stationary) when x̂ and ŷ are fixed. We also write the expressions (28) and (29) in terms of x̂ and ŷ such that

we have

ηi = ki(x̂+ (ki
2 − km

2)t), ρj = lj(ŷ + (lj
2 − ln

2)t).

We will see that the asymptotic form of the solution as t → ±∞ is a dromion. The (M,N)-dromion

solution consists of M×N dromions separate asymptotically as t→ ±∞ . Unlike solitons, however, amplitudes

are not necessarily preserved. The study of these limits is rather technical but in the end we will obtain compact

expressions for the change in amplitude of the dromions due to interaction. Considering the limits of S with x̂

and ŷ fixed, we have as t→ −∞

ηi →
{

+∞ for i < m
−∞ for i > m

and ρj →
{

+∞ for j < n
−∞ for j > n,

and as t→ ∞

ηi →
{

−∞ for i < m
+∞ for i > m

and ρj →
{

−∞ for j < n
+∞ for j > n,

while ηm and ρn are t-independent and the limits of the exponentials are as t→ −∞

e−ηi → 0 (i < m) e−ρj → 0 (j < n)

eηi → 0 (i > m) eρj → 0 (j > n)

and as t→ ∞
eηi → 0 (i < m) eρj → 0 (j < n)

e−ηi → 0 (i > m) e−ρj → 0 (j > n).

To exploit these limits we must use appropriate equivalent forms for S given by (23). We factorize the

diagonal matrix D given by (27) so that the factors or their inverses have finite limits as t→ ∓∞ , namely

D = D− Do D+,

where

D− = diag(1, . . . , 1, 1, eηm+1 , . . . , eηM ; 1, . . . , 1, 1, eρn+1 , . . . , eρN ),

Do = diag(1, . . . , 1, eηm , 1, . . . , 1; 1, . . . , 1, eρn , 1, . . . , 1),

D+ = diag(eη1 , . . . , eηm−1 , 1, 1, . . . , 1; eρ1 , . . . , eρn−1 , 1, 1, . . . , 1).

Hence we get, as t→ −∞ ,

D− → diag(1, . . . , 1, 1, 0, . . . , 0; 1, . . . , 1, 1, 0, . . . , 0)

D−1
+ → diag(0, . . . , 0, 1, 1, . . . , 1; 0, . . . , 0, 1, 1, . . . , 1),
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and as t→ ∞ ,

D+ → diag(0, . . . , 0, 1, 1, . . . , 1; 0, . . . , 0, 1, 1, . . . , 1)

D−1
− → diag(1, . . . , 1, 1, 0, . . . , 0; 1, . . . , 1, 1, 0, . . . , 0).

To find the asymptotic forms of S as t→ ∓∞ , we take out factors of D+ or D− so that it is expressed

solely in terms of matrices having finite limits. As t→ −∞

S = | C +DA−ATD +DBD |

= | C +D+D−DoA−ATD−DoD+ +D+DoD−BD−DoD+ |

= |D+||D−1
+ CD−1

+ +D−DoAD
−1
+ −D−1

+ ATD−Do +DoD−BD−Do||D+|

and so the limit is

S− ∼ | D−1
+ CD−1

+ +D−DoAD
−1
+ −D−1

+ ATDoD− +D−DoBDoD− |. (30)

As t→ ∞
S = |D−||D−1

− CD−1
− +D+DoAD

−1
− −D−1

− ATD+Do +DoD+BD+Do||D−|

and the limit is

S+ ∼ | D−1
− CD−1

− +D+DoAD
−1
− −D−1

− ATDoD+ +D+DoBDoD+ |. (31)

We see from (30) and (31) that S− and S+ are the determinants of skew-symmetric matrices and are hence

the squares of the Pfaffians P− and P+ , respectively. By expanding P− and P+ by their mth and (M + n)th

lines, one finds that

P− = P1 + P2e
ηm + P3e

ρn + P4e
ηm+ρn ,

P+ = P5 + P6e
ηm + P7e

ρn + P8e
ηm+ρn .

A necessary and sufficient condition that P− and P+ have no zeros, and hence U = 2(logP±)xy has no

singularities, is that P1, . . . , P4 and P5, . . . , P8 have the same sign. Furthermore, an overall change of sign in

P± does not change U , and so, since U is supposed to be nonsingular, without loss of generality we may write

P− = |P1|+ |P2|eηm + |P3|eρn + |P4|eηm+ρn ,

P+ = |P5|+ |P6|eηm + |P7|eρn + |P8|eηm+ρn ,
(32)

where the Pfaffians Pi (i = 1..8) satisfy the relation P 2
i = Si and are defined in terms of minors of A , B ,

and C , and Si are the skew-symmetric determinants. It can be expressed (see Appendix) that each of the Si

(i = 1...8) can be factorized into skew-symmetric determinants defined in terms of minors of B and C ; to be

precise,

S1 = C⩾;⩾B<;<, S2 = C>;⩾B⩽;<,

S3 = C⩾;>B<;⩽, S4 = C>;>B⩽;⩽,

S5 = C⩽;⩽B>;>, S6 = C<;⩽B⩾;>,

S7 = C⩽;<B>;⩾, S8 = C<;<B⩾;⩾.

(33)
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The subscript notation in (33) is used to denote certain principal minors of an (M +N)× (M +N)-dimensional

matrix for fixed m and n . For instance, X<;⩽ means the minor formed from rows and columns 1, · · · ,m −
1,M+1, · · · ,M+n of the corresponding matrix X . In general, let W be a skew-symmetric (M+N)×(M+N)-

dimensional matrix with the entries

W =

(
X Y

−Y T Z

)
, (34)

where X is an M ×M , Y is an M × N , and Z is an N × N dimensional block matrix. For a given m, n

(1 ≤ m ≤ M and 1 ≤ n ≤ N ), and inequalities ≺1 , ≺2 (where ≺1 and ≺2 can be < , ⩽ , > , and ⩾), we

define W̃ to be a particular submatrix of W :

W̃ =

 (X) i≺1m
j≺1m

(Y ) i≺1m
j≺2M+n

(−Y T ) i≺2M+n
j≺1m

(Z) i≺2M+n
j≺2M+n

 ,

and then W≺1;≺2 = det(W̃ ). We also define the Pfaffian

w≺1;≺2 =


Pf(W̃ ) for even dimensions

Pf

(
W̃ ϵ
−ϵT 0

)
for odd dimensions,

where ϵ is the column matrix with all entries equal to 1. The minors of B in (33) can also be factorized (see

Appendix) into other minor skew-symmetric determinants, defined in terms of parameters ki and lj , which are

given in (25) and (26), respectively. Hence, we have the fully factorized form of the skew-symmetric determinants

Si :

S1 = C⩾;⩾K<L<, S2 = C>;⩾K⩽L<,

S3 = C⩾;>K<L⩽, S4 = C>;>K⩽L⩽,

S5 = C⩽;⩽K>L>, S6 = C<;⩽K⩾L>,

S7 = C⩽;<K>L⩾, S8 = C<;<K⩾L⩾,

(35)

where the single subscript notations are defined in a similar fashion.

In general, for a given m and n (1 ≤ m ≤ M and 1 ≤ n ≤ N ) and inequality ≺ (where ≺ can be < ,

⩽ , > , and ⩾), we define K̃ to be the submatrix of the (M ×M) block-matrix K in (24):

K̃ = (K) i≺m
j≺m

.

Then K≺ = det(K̃) and we also define the Pfaffian

k≺ =


Pf(K̃) for even dimensions

Pf

(
K̃ ϵ
−ϵT 0

)
for odd dimensions,

where ϵ = (−1, 1, . . . ,±1). Similarly, we define L̃ to be the submatrix of the (N ×N) block-matrix L in (24):

L̃ = (L) i≺n
j≺n

,
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L≺ = det(L̃) and l≺ =


Pf(L̃) for even dimensions

Pf

(
L̃ ϵ

−ϵT 0

)
for odd dimensions.

Next we write the Pfaffians Pi (i=1. . . 8) (32) of the skew-symmetric determinants Si (i=1. . . 8) in terms

of minor Pfaffians of the corresponding minor determinants formed from C , B in (33) and C , K , L in (35). We

will denote the Pfaffians with the lowercase letters of the corresponding uppercase letters that have been used for

denoting skew-symmetric determinants. For instance, c⩽;< is the Pfaffian corresponding to the skew-symmetric

determinant C⩽;< . From (33) we have the Pfaffians |Pi| = (Si)
1
2 :

|P1| = |c⩾;⩾b<;<|, |P2| = |c>;⩾b⩽;<|,
|P3| = |c⩾;>b<;⩽|, |P4| = |c>;>b⩽;⩽|,
|P5| = |c⩽;⩽b>;>|, |P6| = |c<;⩽b⩾;>|,
|P7| = |c⩽;<b>;⩾|, |P8| = |c<;<b⩾;⩾|,

and the Pfaffians in the fully factorized form, from (35):

|P1| = |c⩾;⩾k<l<|, |P2| = |c>;⩾k⩽l<|,
|P3| = |c⩾;>k<l⩽|, |P4| = |c>;>k⩽l⩽|,
|P5| = |c⩽;⩽k>l>|, |P6| = |c<;⩽k⩾l>|,
|P7| = |c⩽;<k>l⩾|, |P8| = |c<;<k⩾l⩾|.

Here the Pfaffian c determines the phase shifts F⊥ between the interacting perpendicular plane waves and

determines the amplitude of the dromions. The Pfaffian b determines the phase shifts between the 2 sets of

parallel plane waves in the V -plane. These interpretations may be made because, if we choose the entries of

Pfaffian c such that the perpendicular phase shift and hence the amplitudes of the dromions vanish, then the

only phase shifts we get, determined by the Pfaffian b , are the parallel phase shifts experienced by the parallel

plane waves in the V -plane. This is achieved by setting all arbitrary constants in c to be 1, so that all minor

Pfaffians c≺1;≺2 are equal to 1.

The asymptotic expressions in (32) can then be written as t→ −∞ as:

P− = |b<;<|+ |b⩽;<|eηm + |b<;⩽|eρn + |b⩽;⩽|eηm+ρn , (36)

and as t→ ∞ as:

P+ = |b>;>|+ |b⩾;>|eηm + |b>;⩾|eρn + |b⩾;⩾|eηm+ρn . (37)

Additionally, (32) can also be written in the following way as t→ −∞ :

P− = |k<l<|+ |k⩽l<|eηm + |k<l⩽|eρn + |k⩽l⩽|eηm+ρn

∼ 1 +

∣∣∣∣k⩽k<
∣∣∣∣ eηm +

∣∣∣∣ l⩽l<
∣∣∣∣ eρn +

∣∣∣∣k⩽l⩽k<l<

∣∣∣∣ eηm+ρn

= 1 + e
ηm+F−

∥x + e
ρn+F−

∥y + e
ηm+ρn+F−

∥x+F−
∥y ,
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and as t→ ∞ :

P+ = |k>l>|+ |k⩾l>|eηm + |k>l⩾|eρn + |k⩾l⩾|eηm+ρn

∼ 1 +

∣∣∣∣k⩾k>
∣∣∣∣ eηm +

∣∣∣∣ l⩾l>
∣∣∣∣ eρn +

∣∣∣∣k⩾l⩾k>l>

∣∣∣∣ eηm+ρn

= 1 + e
ηm+F+

∥x + e
ρn+F+

∥y + e
ηm+ρn+F+

∥x+F+
∥y ,

where F±
∥x and F±

∥y are the relative phase shifts experienced by the (x, t)-dependent and (y, t)-dependent

parallel plane waves in the V -plane, respectively. This is a case in which all of the dromions have zero amplitude

and the solution for this case is U ≡ 0. As a consequence of these 2 Pfaffians b and c being independent, these

2 kinds of phase shifts, determined by b and c , are independent of each other.

We have now shown that the (M,N)-dromion solution U decomposes into M ×N dromions determined

by (32) as t→ ∓∞ . To identify the properties of the resulting dromions, we compare the asymptotic expressions

in (32) with (13), generalizing Theorem 4.1, and give the theorem for the general case:

Theorem 5.1

U = ∂x∂y(log(S)) and V = 1
2 (∂

2
x + ∂2y)(log(S))

with S given by (23) have the following properties:

1) V is the interaction of M plane-wave solitons parallel to the y -axis and N plane-wave solitons parallel

to the x-axis, which decomposes asymptotically into M ×N solutions as described in Theorem 4.1, part 1.

2) U decomposes asymptotically into M×N dromions as described in Theorem 4.1, part 2. The amplitude

of the (m,n) th dromion is

U−
0 =

1

2
km ln

e
1
2F

−
⊥ − 1

e
1
2F

−
⊥ + 1

and U+
0 =

1

2
km ln

e
1
2F

+
⊥ − 1

e
1
2F

+
⊥ + 1

(38)

as t→ −∞ and t→ ∞ , respectively, and the perpendicular phase shifts are

F−
⊥ = log

∣∣∣∣c>;>c⩾;⩾
c⩾;>c>;⩾

∣∣∣∣ and F+
⊥ = log

∣∣∣∣c<;<c⩽;⩽
c⩽;<c<;⩽

∣∣∣∣ (39)

as t→ −∞ and t→ ∞ , respectively.

The location at time t of the (m,n) th dromion moves from

(x, y) =

(
1

2km
log

∣∣∣∣∣c⩾;⩾c⩾;>k
2
<

c>;⩾c>;>k2⩽

∣∣∣∣∣− k2mt,
1

2ln
log

∣∣∣∣∣c⩾;⩾c>;⩾l2<
c⩾;>c>;>l2⩽

∣∣∣∣∣− l2nt

)

as t→ −∞ to

(x, y) =

(
1

2km
log

∣∣∣∣∣c⩽;⩽c⩽;<k
2
>

c<;⩽c<;<k2⩾

∣∣∣∣∣− k2mt,
1

2ln
log

∣∣∣∣∣c⩽;⩽c<;⩽l2>
c⩽;<c<;<l2⩾

∣∣∣∣∣− l2nt

)
,

and as t→ ∞ , giving the 2-dimensional phase shift due to all interactions,(
1

2km
log

∣∣∣∣∣c⩽;⩽c⩽;<c>;⩾c>;>k
2
>k

2
⩽

c<;⩽c<;<c⩾;⩾c⩾;>k2<k
2
⩾

∣∣∣∣∣ , 1

2ln
log

∣∣∣∣∣c⩽;⩽c<;⩽c⩾;>c>;>l
2
>l

2
⩽

c⩽;<c<;<c⩾;⩾c>;⩾l2<l2⩾

∣∣∣∣∣
)
.
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5.1. Summary of results for (M,N)-dromion

We observe from Theorem 5.1 that the summary of results for the (1, 1)-dromion can be generalized to the

(M,N)-dromion. The main result is that there are M ×N dromions in the U -plane and M +N perpendicular

plane waves in the V -plane. We observe further that:

• The (m,n)th dromion may have arbitrary amplitude, positive, negative, or zero, and it varies as t→ −∞
and t→ ∞ . The amplitude is:

1. positive

(a) as t→ −∞ : if kmln > 0 and |c>;>c⩾;⩾| > |c⩾;>c>;⩾|

or kmln < 0 and 0 <

∣∣∣∣ c>;>c⩾;⩾
c⩾;>c>;⩾

∣∣∣∣ < 1,

(b) as t→ ∞ : if kmln > 0 and |c<;<c⩽;⩽| > |c⩽;<c<;⩽|

or kmln < 0 and 0 <

∣∣∣∣ c<;<c⩽;⩽
c⩽;<c<;⩽

∣∣∣∣ < 1;

2. negative

(a) as t→ −∞ : if kmln < 0 and |c>;>c⩾;⩾| > |c⩾;>c>;⩾|

or kmln > 0 and 0 <

∣∣∣∣ c>;>c⩾;⩾
c⩾;>c>;⩾

∣∣∣∣ < 1,

(b) as t→ ∞ : if kmln < 0 and |c<;<c⩽;⩽| > |c⩽;<c<;⩽|

or kmln > 0 and 0 <

∣∣∣∣ c<;<c⩽;⩽
c⩽;<c<;⩽

∣∣∣∣ < 1;

3. zero

(a) as t→ −∞ : if kmln = 0 or |c>;>c⩾;⩾| = |c⩾;>c>;⩾| ,

(b) as t→ ∞ : if kmln = 0 or |c<;<c⩽;⩽| = |c⩽;<c<;⩽| .

• The plane waves in the V -plane always have positive amplitude and exert a phase-shift on one another.

The directions of these phase shifts (forward or backward) depend on the signs of km , ln , and

log

∣∣∣∣c>;>c⩾;⩾
c⩾;>c>;⩾

∣∣∣∣ or log

∣∣∣∣c<;<c⩽;⩽
c⩽;<c<;⩽

∣∣∣∣ .
The phase shifts in (39) are zero if and only if the corresponding dromion amplitude is zero.

• At any fixed time, the (m,n)th dromion (in the U -plane) is symmetrically located between the mth

plane-wave soliton parallel to the y -axis and the nth plane-wave soliton parallel to the x-axis (in the

V -plane).

Appendix

In order to factorize the Pfaffian P1 and the skew-symmetric determinant S1 = (P1)
2 , we take its skew-

symmetric matrix form and denote it with G ; hence det(G) = S1 = P 2
1 . For convenience we write G in the
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following block structure:

G =


B1 A1 B2 A2

−AT
1 C1 A3 C2

−BT
2 −AT

3 B3 A4

−AT
2 −CT

2 −AT
4 C3

 ,

where

B1 = (B) 1⩽i<m
1⩽j<m

, A1 = (A) 1⩽i<m
m⩽j⩽M

,

B2 = (B) 1⩽i<m
M+1⩽j<M+n

, A2 = (A) 1⩽i<m
M+n⩽j⩽M+N

,

C1 = (C)m⩽i⩽M
m⩽j⩽M

, A3 = (−AT ) m⩽i⩽M
M+1⩽j<M+n

,

C2 = (C) m⩽i⩽M
M+n⩽j⩽M+N

, B3 = (B)M+1⩽i<M+n
M+1⩽j<M+n

,

A4 = (A) M+1⩽i<M+n
M+n⩽j⩽M+N

, C3 = (C)M+n⩽i⩽M+N
M+n⩽j⩽M+N

.

In order to have a simpler structure for factorization, we exploit the matrix G in the following way. We

interchange columns and rows in the determinant, so that the determinants Si can be written in the form of

a block structure. The numbers of the interchanges of the columns and rows are given by ri . We interchange

the rows in the second block-row with the rows in the third block-row, so the number of interchanges is

r̃ = (M −m + 1) × (n − 1), and we also interchange the corresponding columns in the second block-column

with the columns in the third block-column, so again the number of interchanges is r̃ = (M −m+1)× (n− 1).

Hence, the number of total interchanges in matrix G is r1 = 2× (M −m+ 1)× (n− 1). The interchanges of

the columns and rows do not affect the value of the determinant, since whenever 2 columns are interchanged

the corresponding 2 rows are also interchanged, nullifying the change in sign. Therefore, the numbers ri are

even for the determinants Si , but may not be even for the Pfaffians Pi . Therefore, we take the absolute values

of the Pfaffians, namely |Pi| . This process is achieved simply by premultiplying the permutation matrix P by

G and PT .

P =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 ,

where I and 0 are identity and zero block-matrices, respectively. Hence, we get G̃ = PT G P . Next we take

G̃ to continue with the proof, since det(G̃) = det(G). We have

G̃ =


B1 B2 A1 A2

−BT
2 B3 −AT

3 A4

−AT
1 A3 C1 C2

−AT
2 −AT

4 −CT
2 C3


=

(
B̃ Ã

−ÃT C̃

)
, (40)

where B̃ and C̃ are skew-symmetric matrices, and Ã is a rank-1 matrix given by

B̃ =

(
B1 B2

−BT
2 B3

)
Ã =

(
A1 A2

−AT
3 A4

)
C̃ =

(
C1 C2

−CT
2 C3

)
.
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Next we factorize the matrix (40) in this form:

G̃ =

(
B̃ 0

−ÃT I

)(
I B̃−1Ã

0 C̃ + ÃT B̃−1Ã

)
(41)

where, again, I and 0 are identity and zero block-matrices, respectively. Taking the determinants of the

factorized matrices in (41), we get

det(G̃) = det(B̃) det(C̃ + ÃT B̃−1Ã).

The expression ÃT B̃−1Ã is a zero matrix, as long as Ã is a rank-1 matrix and B̃ is a skew-symmetric matrix.

If B̃ is skew-symmetric then B̃−1 is also a skew-symmetric matrix. Thus, we get

det(G̃) = det(B̃) det(C̃), S1 = B<;<C⩾;⩾, P 2
1 = b2<;<c

2
⩾;⩾, |P1| = |b<;<c⩾;⩾|.

Furthermore, we can also factorize the matrix B̃ in terms of skew-symmetric matrices B1 and B3 defined by

the parameters ki and lj , respectively.

B̃ =

(
B1 B2

−BT
2 B3

)
=

(
B1 0

−BT
2 I

)(
I B−1

1 B2

0 B3 +BT
2 B

−1
1 B2

)
det(B̃) = det(B1) det(B3 +BT

2 B
−1
1 B2) = det(B1) det(B3)

B<;< = K< L<, b2<;< = k2< l2<, |b<;<| = |k< l<|,

where I and 0 are respectively identity and zero matrices, B2 is a rank-1 matrix, B1 and B3 are skew-symmetric

matrices, and the entries for the matrices B1 and B3 are given in (25) and (26), respectively. Hence,

S1 = B<;< C⩾;⩾ = K< L< C⩾;⩾

|P1| = |b<;< c⩾;⩾| = |k< l< c⩾;⩾|.

The proof for the other Pfaffians |Pi| (i=2. . . 8) can be done in a similar way.
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