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Abstract: In this paper we consider the Dirichlet problem for a discrete anisotropic equation with some function α , a

nonlinear term f , and a numerical parameter λ : ∆
(
α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ λf(k, u(k)) = 0, k ∈ [1, T ] .

We derive the intervals of a numerical parameter λ for which the considered BVP has at least 1, exactly 1, or at least 2

positive solutions. Some useful discrete inequalities are also derived.

Key words: Discrete boundary value problem, variational methods, Ekeland’s variational principle, mountain pass

theorem, Karush–Kuhn–Tucker theorem, positive solution, anisotropic problem

1. Introduction

In this paper we consider by variational methods and a critical point theory the existence and multiplicity of

positive solutions for a perturbed anisotropic difference equation with dependence on a numerical parameter

λ > 0 and with the Dirichlet type boundary condition, namely

{
∆
(
α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ λf(k, u(k)) = 0, k ∈ [1, T ] ,

u(0) = u(T + 1) = 0,
(1)

where T ≥ 2 is an integer; [1, T ] is a discrete interval {1, 2, ..., T}; ∆u(k − 1) = u (k) − u(k − 1) is the

forward difference operator; u (k) ∈ R for all k ∈ [1, T ] ; α : [1, T + 1] → (0,+∞) is a fixed function;

p : [0, T + 1] → [2,+∞); f : [1, T ] × R → (0,+∞) is a continuous function, i.e. for any fixed k ∈ [1, T ] a

function f (k, ·) is continuous.

We aim to provide intervals for a parameter λ for which (1) has at least 1, exactly 1, or at least 2

positive solutions. For these results we use some known tools such as a direct variational method, mountain

pass geometry, Ekeland’s variational principle, and Karush–Kuhn–Tucker theorem. We also provide several

inequalities useful in variational investigations of discrete anisotropic problems. Some of them are known, but

we provide different proofs or else we give other estimations for constants appearing in these inequalities; see

Section 3. As far as the existence of 2 positive solutions is concerned, we have already obtained some results in

[9]. However, the problem considered in [9] does not depend on a numerical parameter and next in the present

paper we simplify considerably some proofs. We also mention that, contrary to the present paper, solutions

obtained in [9] are small in the sense that they belong to a unit ball.
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Concerning discrete anisotropic problems of type (1) or similar, there has already been some research

beginning from [12], [15], where critical point theory was applied. In [2] the authors examine the existence

of periodic or Neumann solutions for the discrete p(k)−Laplacian. Problem (1) may be seen as discretization

of mathematical models arising in the study of elastic mechanics [23], electrorheological fluids [16], or image

restoration [6]. Variational continuous anisotropic problems have been considered by many methods and authors

[11], for an extensive survey of such boundary value problems.

There are some related papers in the area of discrete problems. Paper [3] treats the discrete p−Laplacian

problem and intervals for a nonlinear parameter are derived for which the existence and multiplicity are obtained.

Let us also mention, far from being exhaustive, the following recent papers on discrete BVPs investigated via

critical point theory: [1], [5], [13], [17–22]. These papers employ in the discrete setting the variational techniques

already known for continuous problems, of course with necessary modifications. The tools employed cover the

Morse theory, the mountain pass methodology, and linking arguments.

About the nonlinear term, we assume the following condition:

(C) There exist a function m : [1, T ] → [2,+∞) and functions φ1, φ2, ψ1, ψ2 : [1, T ] → (0,+∞) such

that

ψ1(k) + φ1(k)|u|m(k)−2u ≤ f(k, u) ≤ φ2(k)|u|m(k)−2u+ ψ2(k)

for all u ≥ 0 and all k ∈ [1, T ] .

From now on we will use the following notations:

α− = mink∈[1,T+1] α (k) , α+ = maxk∈[1,T+1] α (k) ;
p− = mink∈[0,T+1] p (k) , p+ = maxk∈[0,T+1] p (k) ;
m− = mink∈[1,T ]m (k) , m+ = maxk∈[1,T ]m (k) ;
φ−
1 = mink∈[1,T ] φ1 (k) , φ+

2 = maxk∈[1,T ] φ2 (k) ,
ψ−
1 = mink∈[1,T ] ψ1 (k) , ψ+

2 = maxk∈[1,T ] ψ2 (k) .

When compared to [9] there is no additional condition placed on functions φ1 , φ2, ψ1 , and ψ2 , and so

there are many functions that satisfy our conditions. Our results will depend on the relation between p− , p+

and m− , m+ . These will influence the method used in proving that a solution exists.

Example 1 Let m : [1, T ] → [2,+∞) . Put f : [1, T ]× R → (0,+∞) by the formula

f(k, u) = |sin k| |u|m(k)−2
u arctanu+ ln(k + 1)

for (k, u) ∈ [1, T ]× R.

Solutions to (1) will be investigated in a space

H = {u : [0, T + 1] → R : u(0) = u(T + 1) = 0}

considered with a norm

∥u∥ =

(
T+1∑
k=1

|∆u(k − 1)|2
)1/2

with which H becomes a Hilbert space. For u ∈ H let

u+ = max{u, 0}, u− = max{−u, 0}.
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Note that
u+ ≥ 0 and u− ≥ 0; u = u+ − u−; u+ · u− = 0.

2. Preliminaries

In this section we provide some tools that are used throughout the paper.

Theorem 2 [14] Let E be a reflexive Banach space. If a functional J ∈ C1(E,R) is weakly lower semicontin-

uous and coercive, i.e. lim
∥x∥−→∞

J (x) = +∞, then there exists x ∈ E such that inf
x∈E

J(x) = J(x) and x is also

a critical point of J , i.e. J
′
(x) = 0. Moreover, if J is strictly convex, then a critical point is unique.

Theorem 3 [8](Ekeland’s principle) Let X be a complete metric space and Φ : X → R a lower semicontinuous

function that is bounded below. Let ε > 0 and u ∈ X be given such that

Φ(u) ≤ inf
X
Φ+

ε

2
.

Then given λ > 0 there exists uλ ∈ X such that

(i) Φ(uλ) ≤ Φ(u),

(ii) d(uλ, u) < λ,

(iii) Φ(uλ) < Φ(u) + ε
λd(u, uλ) for all u ̸= uλ .

Definition 4 Let E be a real Banach space. We say that a functional J : E → R satisfies the Palais–Smale

condition if every sequence (un) such that {J(un)} is bounded and J ′(un) → 0 has a convergent subsequence.

Lemma 5 [7] Let E be a Banach space and J ∈ C1(E,R) satisfy the Palais–Smale condition. Assume that

there exist x0, x1 ∈ E and a bounded open neighborhood Ω of x0 such that x1 /∈ Ω and

max{J(x0), J(x1)} < inf
x∈∂Ω

J(x).

Let
Γ = {h ∈ C([0, 1], E) : h(0) = x0, h(1) = x1}

and
c = inf

h∈Γ
max
s∈[0,1]

J(h(s)).

Then c is a critical value of J ; that is, there exists x⋆ ∈ E such that J ′(x⋆) = 0 and J(x⋆) = c , where

c > max{J(x0), J(x1)} .

Finally, we recall the Karush–Kuhn–Tucker theorem with Slater qualification conditions (for 2 con-

straints).

Theorem 6 [4] Let X be a finite-dimensional Euclidean space, η, µ1, µ2 : X → R be differentiable functions,

and S = {x ∈ X : µ1(x) ≤ 0, µ2(x) ≤ 0} . Moreover, let x ∈ S be such that η(x) = infS η (x) . Then there exist

numbers σ0, σ1, σ2 ≥ 0 such that (σ0)
2
+ (σ1)

2
+ (σ2)

2
> 0 and

σ0η
′(x) + σ1µ

′
1(x) + σ2µ

′
2(x) = 0 and σ1µ1 (x) = 0, σ2µ2 (x) = 0.
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3. Auxiliary inequalities

Now we recall some auxiliary materials that we use later on.

(A.1) [15] For every u ∈ H with ∥u∥ ≤ 1 we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T− p+−2
2 ∥u∥p

+

.

(A.2) [10] For every u ∈ H and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ 2m
T∑

k=1

|u(k)|m .

(A.3) [18] For every u ∈ H and for any p, q > 1 such that 1
p + 1

q = 1 we have

∥u∥C = max
k∈[1,T ]

|u(k)| ≤ (T + 1)
1
q

(
T+1∑
k=1

|∆u(k − 1)|p
)1/p

.

The following inequalities will also be of use.

Lemma 7

(A.4) For every u ∈ H and for every m > 1 we have

T∑
k=1

|u(k)|m ≤ T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m .

(A.5) For every u ∈ H and for every m ≥ 1 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1) ∥u∥m .

(A.6) For every u ∈ H and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≥ (T + 1)
2−m

2 ∥u∥m .

(A.7) For every u ∈ H with ∥u∥ > 1

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
2−p−

2 ∥u∥p
−
− (T + 1).

(A.8) For every u ∈ H we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ (T + 1)∥u∥p
+

+ (T + 1).
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Proof We will show that (A.4) holds true. Let m, q > 1 be such that 1
m + 1

q = 1. By (A.3) we have

|u(k)|m ≤ (T + 1)
m
q

T∑
i=0

|∆u(i)|m for every k ∈ [1, T ] .

Thus summing for k from 1 to T we get

T∑
k=1

|u(k)|m = |u(1)|m + |u(2)|m + ...+ |u(T )|m ≤

(T + 1)
m
q

T∑
i=0

|∆u(i)|m + (T + 1)
m
q

T∑
i=0

|∆u(i)|m + ...+ (T + 1)
m
q

T∑
i=0

|∆u(i)|m =

T (T + 1)
m
q

T∑
i=0

|∆u(i)|m = T (T + 1)
m
q

T+1∑
k=1

|∆u(k − 1)|m =

T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m.

To see (A.5) note that for every k ∈ [0, T ] we have

|∆u(k)|2 ≤
T∑

i=0

|∆u(i)|2,

and so

|∆u(k)|m ≤

( T∑
i=0

|∆u(i)|2
) 1

2

m

.

Thus

T∑
k=0

|∆u(k)|m ≤ (T + 1)

( T∑
k=0

|∆u(k)|2
) 1

2

m

and
T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1) ∥u∥m .

To see (A.6) note that for m > 2 the Hölder inequality implies

T∑
k=0

|∆u(k)|2 ≤
(

T∑
k=0

1
m

m−2

)m−2
m
(

T∑
k=0

(
|∆u(k)|2

)m
2

) 2
m

= (T + 1)
m−2
m

(
T∑

k=0

|∆u(k)|m
) 2

m

.

The above inequality leads to

(
T+1∑
k=1

|∆u(k − 1)|2
) 1

2

≤ (T + 1)
m−2
2m

(
T+1∑
k=1

|∆u(k − 1)|m
) 1

m

.
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Thus for m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≥ (T + 1)
2−m

2 ∥u∥m .

The relation (A.7) we obtain by (A.6). Indeed,

T+1∑
k=1

|∆u(k − 1)|p(k−1) =∑
{k∈[1,T+1]:|∆u(k−1)|<1}

|∆u(k − 1)|p(k−1) +
∑

{k∈[1,T+1]:|∆u(k−1)|≥1}
|∆u(k − 1)|p(k−1) ≥∑

{k∈[1,T+1]:|∆u(k−1)|<1}
|∆u(k − 1)|p+

+
∑

{k∈[1,T+1]:|∆u(k−1)|≥1}
|∆u(k − 1)|p− =

T+1∑
k=1

|∆u(k − 1)|p−−( ∑
{k∈[1,T+1]:|∆u(k−1)|<1}

|∆u(k − 1)|p− −
∑

{k∈[1,T+1]:|∆u(k−1)|<1}
|∆u(k − 1)|p+

)
≥

T+1∑
k=1

|∆u(k − 1)|p− −
T+1∑
k=1

1 ≥ T
2−p−

2 ∥u∥p− − (T + 1).

And the relation (A.8) we obtain by (A.5)

T+1∑
k=1

|∆u(k − 1)|p(k−1) =∑
{k∈[1,T+1]:|∆u(k−1)|<1}

|∆u(k − 1)|p(k−1) +
∑

{k∈[1,T+1]:|∆u(k−1)|≥1}
|∆u(k − 1)|p(k−1) ≤∑

{k∈[1,T+1]:∆u|(k−1)|<1}
|∆u(k − 1)|p−

+
∑

{k∈[1,T+1]:|∆u(k−1)|≥1}
|∆u(k − 1)|p+ =

T+1∑
k=1

|∆u(k − 1)|p++∑
{k∈[1,T+1]:|∆u(k−1)|<1}

|∆u(k − 1)|p− −
∑

{k∈[1,T+1]:|∆u(k−1)|<1}
|∆u(k − 1)|p+ ≤

T+1∑
k=1

|∆u(k − 1)|p+ +
T+1∑
k=1

1 ≤ (T + 1)∥u∥p+

+ (T + 1).

The proof of Lemma 7 is complete. 2

4. Variational framework

In this section we connect positive solutions to (1) with critical points of a suitably chosen action functional.

Next, we derive a type of a maximum principle and then we prove that under (C) and an additional assumption

this functional satisfies the (PS) condition. Let

F (k, u) =

∫ u

0

f(k, s)ds for u ∈ R and k ∈ [1, T ] . (2)

Let us define a functional Jλ : H → R by the formula

Jλ(u) =
T+1∑
k=1

α(k)

p(k − 1)
|∆u(k − 1)|p(k−1) − λ

T∑
k=1

F (k, u+(k)).
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The functional Jλ is continuously Gâteaux differentiable and its Gâteaux derivative J ′
λ at u reads

⟨J ′
λ(u), v⟩ =

T+1∑
k=1

α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)−

λ
T∑

k=1

f(k, u+(k))v(k)

(3)

for all v ∈ H . Suppose that u is a critical point to Jλ , i.e. ⟨J ′
λ(u), v⟩ = 0 for all v ∈ H . Summing by parts

and taking boundary values into account, see [10], we observe that

T+1∑
k=1

∆
(
α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
v(k) + λ

T∑
k=1

f(k, u+(k))v(k) = 0.

Since v ∈ H is arbitrary we see that u satisfies (1).

Now we will provide some results that are used in the proof of the Main Theorem. The following lemma

may be viewed as a kind of a discrete maximum principle. These results follow partially as in [9].

Lemma 8 Let λ > 0 . Assume that u ∈ H is a solution of the equation

{
∆
(
α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ λf(k, u+(k)) = 0, k ∈ [1, T ] ,

u(0) = u(T + 1) = 0,
(4)

then u (k) > 0 for all k ∈ [1, T ] and moreover u is a positive solution of (1).

Proof Note that

∆u(k − 1)∆u−(k − 1) ≤ 0 for every k ∈ [1, T + 1].

Assume that u ∈ H is a solution of (4). Taking v = u− in (3) we obtain

T+1∑
k=1

α (k) |∆u(k − 1)|p(k−1)−2∆u(k − 1)∆u−(k − 1) = λ
T∑

k=1

f(k, u+(k))u−(k).

Since the term on the left is nonpositive and the one on the right is nonnegative, this equation holds true if

both terms are equal to zero, which leads to u−(k) = 0 for all k ∈ [1, T ]. Then u = u+. Moreover, u (k) ̸= 0

for all k ∈ [1, T ] . Indeed, assume that there exists k ∈ [1, T ] such that u(k) = 0. Then, by (4) we have

α(k + 1)u(k + 1)p(k)−1 + α(k)u(k − 1)p(k−1)−1 + λf(k, 0) = 0;

Since λ > 0 and f(k, 0) > 0, we have a contradiction. Thus u (k) ̸= 0 for all k ∈ [1, T ], and it follows u is a

positive solution of (1).

We will prove that Jλ satisfies the Palais–Smale condition. 2

Lemma 9 Assume that (C) holds with m− > p+ . Then for any λ > 0 the functional Jλ satisfies the Palais–

Smale condition.
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Proof Assume that {un} is such that {Jλ(un)} is bounded and J ′
λ(un) → 0. Since H is finitely dimensional,

it is enough to show that {un} is bounded. Let {unk
} be such a subsequence of the sequence {un} whose all

elements are non-negative and {unl
} be such subsequence of {un} whose all elements are non-positive. Either

of this sequences must have an infinite number of elements. Assume that {un} is unbounded .Note that either

{unk
} or {unl

} is then unbounded, up to a subsequence that we assume to be chosen. Suppose that {unk
} is

unbounded. Then by (2), by the condition (C), and by relations (A.2), (A.6), (A.8) we have

Jλ(unk
) ≤ α+

p−

(
(T + 1) ∥unk

∥p
+

+ (T + 1)
)
−

λ

(
φ−

1

m+ 2
−m−

(T + 1)
2−m−

2 ∥unk
∥m

−
+ ψ−

1

T∑
k=1

unk
(k)

)
.

Since m− > p+ and since ∥unk
∥ → +∞ , it follows that Jλ(unk

) → −∞ . Thus we obtain a contradiction with

the assumption {Jλ(un)} is bounded since in this case also {Jλ(unk
)} is bounded.

Now suppose {unl
} is unbounded. Then by the relation (A.7) we observe that

Jλ(unl
) ≥ α−

p+

(
T

2−p−
2 ∥unl

∥p
−
− (T + 1)

)
.

Since ∥unl
∥ → +∞ , Jλ(unl

) → +∞ . Thus, there is a contradiction with the assumption {Jλ(un)} is bounded.

It follows that {unl
} is bounded. Hence the sequence {un} is bounded. 2

Remark 10 Note that with the assumptions of Lemma 9 the functional Jλ is neither coercive nor anticoercive.

5. Existence of a solution

In this section we consider the existence of at least one solution to the problem under consideration. We apply

a direct variational method and a mountain pass geometry and Ekeland’s variational principle. Results depend

on a relation between functions k → m (k) and k → p (k). Uniqueness is also undertaken.

5.1. Case m+ < p−

In this section we apply a direct variational approach.

Theorem 11 Let m+ < p−. Assume that the condition (C) holds. Then for all λ > 0 the problem (1) has at

least one positive solution.

Proof Fix λ > 0. Since H is finite dimensional and since Jλ is Gâteaux differentiable and continuous it

suffices to show that it is coercive. By the condition (C) and relations (A.3), (A.4), (A.5), and (A.7) for

sufficiently large ∥u∥ we obtain

Jλ(u) ≥
α−

p+

(
T

2−p−
2 ∥u∥p

−
− (T + 1)

)
− λ

(
φ+
2

m−

T∑
k=1

|u+(k)|m(k) + ψ+
1

T∑
k=1

|u+(k)|

)
≥

α−

p+
T

2−p−
2 ∥u∥p

−
− α−

p+
(T + 1)− λ

φ+
2

m−T (T + 1)m
+

∥u+∥m
+

− λTψ+
1 max

k∈[1,T ]
|u+(k)|

α−

p+
T

2−p−
2 ∥u∥p

−
− α−

p+
(T + 1)− λ

φ+
2

m−T (T + 1)m
+

∥u+∥m
+

− λT (T + 1)
1
2ψ+

1 ∥u+∥ .
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Thus the functional Jλ is coercive on H. The assumptions of Theorem 2 are satisfied and by Lemma 8 the

problem (1) has a positive solution. 2

Corollary 12 Let m+ < p−. Assume that the condition (C) holds. Assume additionally that for any k ∈ [1, T ]

the function x→ f (k, x) is nonincreasing. Then for all λ > 0 the problem (1) has exactly one positive solution.

Proof Fix λ > 0. By Theorem 11 there exists at least one positive solution. Set

J1(u) =
T+1∑
k=1

α(k)

p(k − 1)
|∆u(k − 1)|p(k−1), J2(u) = −

T∑
k=1

F (k, u+(k)).

Then Jλ = J1 + λJ2 . Note that J1 is strictly convex and J2 is convex. Thus Jλ as a sum of a strictly convex

and a convex functional is strictly convex and thus it has a unique critical point. 2

5.2. Case m− > p+

Define

λ0 =

α−

p+ T
− p+−2

2 (T + 1)
−p+

2

T∑
k=1

(
φ2(k)
m(k) + ψ2(k)

) . (5)

Using a mountain pass geometry we see that

Theorem 13 Let m− > p+. Suppose that the condition (C) is satisfied. Then for any λ ∈ (0, λ0) the problem

(1) has at least one positive solution.

Proof Fix λ ∈ (0, λ0). We will show that the assumptions of Lemma 5 hold. By Lemma 9 the functional Jλ

satisfied the Palais–Smale condition. Let

Ω :=
{
u ∈ H : ∥u∥ ≤ (T + 1)

− 1
2

}
.

Note that for u ∈ Ω by (A.3) it follows that for all k ∈ [1, T ]

|u (k)| ≤ max
s∈[1,T ]

|u (s)| ≤ (T + 1)
1
2 ∥u∥ ≤ 1.

Next we see that for all u ∈ Ω

T∑
k=1

F (k, u+(k)) ≤
T∑

k=1

φ2(k)

m(k)
+

T∑
k=1

ψ2(k).

Therefore, by (A.1) for u ∈ ∂Ω we obtain

Jλ (u) ≥
α−

p+
T− p+−2

2 (T + 1)
−p+

2 − λ

(
T∑

k=1

φ2(k)

m(k)
+

T∑
k=1

ψ2(k)

)
.
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Then we see that for all λ ∈ (0, λ0)

Jλ (u) > 0 for all u ∈ ∂Ω.

Let uξ ∈ H be defined as follows: uξ(k) = ξ for k = 1, ..., T and uξ(0) = uξ(T + 1) = 0. Then for ξ > 1 we

have

J(uξ) ≤ α+
(

ξp(0)

p(0) + ξp(T )

p(T )

)
− λ

T∑
k=1

(
φ1(k)ξ

m(k)

m(k) + ψ1(k)ξ
)
≤

2α+

p− ξ
p+ − λTξm

−
(

φ−
1

m+ + ψ−
1 ξ

1−m−
)
.

Since m− > p+ , limξ→∞ Jλ(uξ) = −∞ , and so there exists ξ0 such that uξ0 ∈ H\Ω and Jλ(uξ0) <

minu∈∂Ω Jλ(u). The assumptions of Lemma 5 are satisfied; thus by Lemma 8 the problem (1) has at least

one positive solution. 2

5.3. Case p− > m−

Recall that λ0 is defined by (5). In this subsection we apply Ekeland’s variational principle.

Theorem 14 Assume that the condition (C) holds and that p− > m− . Then for any λ ∈ (0, λ0) the problem

(1) has at least one positive solution.

Proof Let λ ∈ (0, λ0) be fixed. Let Ω be defined as in the proof of Theorem 13. Recall from the proof of

Theorem 13 that for every λ ∈ (0, λ0) and every u ∈ ∂Ω we have Jλ(u) > 0. By the Weierstrass theorem we

see that

inf
u∈∂Ω

Jλ(u) > 0.

Now take t ∈ (0, (T + 1)−(1/2)), which satisfies also the following inequality:

t <
p−−m−

√√√√√λ
(

φ−
1

m+ + ψ−
1

)
2α+

p−

.

Choose k0 ∈ [1, T ] such that m (k0) = m− . Let u0 ∈ H be such a function that u0(k0) = t and u0(k) = 0 for

any k ∈ [1, T ] \{k0}. We see that

Jλ(u0) ≤ α(k0)
p(k0−1) t

p(k0−1) + α(k0+1)
p(k0)

tp(k0) − λ
(

φ1(k0)
m(k0)

tm(k0) + ψ1(k0)t
)
≤

2α+

p− t
p− − λ

(
φ−

1

m+ + ψ−
1

)
tm

−
< 0.

Thus Jλ(u0) < 0. Recall that u0 ∈ IntΩ. Therefore,

inf
u∈IntΩ

Jλ(u) < 0.

It then follows

inf
u∈IntΩ

Jλ(u) < inf
u∈∂Ω

Jλ(u).
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The remaining part of the proof follows as in [15] but we provide it for reader’s convenience in our setting. Let

0 < ε < inf
u∈∂Ω

Jλ(u)− inf
u∈IntΩ

Jλ(u).

Applying Ekeland’s variational principle to the functional Jλ : Ω → R we find uε ∈ Ω such that

Jλ(uε) < inf
u∈Ω

Jλ(u) + ε and Jλ(uε) < Jλ(u) + ε ∥u− uε∥ for u ̸= uε.

Note that

Jλ(uε) < inf
u∈Ω

Jλ(u) + ε ≤ inf
u∈IntΩ

Jλ(u) + ε < inf
u∈∂Ω

Jλ(u).

Thus uε ∈ IntΩ. Let Φλ : Ω → R be defined by

Φλ(u) = Jλ(u) + ε ∥u− uε∥ for u ̸= uε.

It follows that uε is an argument of a minimum for Φλ and therefore

Φλ(uε + hv)− Φλ(uε)

h
≥ 0 (6)

for any v ∈ Ω and a small enough positive h . Note that the formula (6) reduces to

Jλ(uε + hv)− Jλ(uε)

h
+ ε ∥v∥ ≥ 0.

Letting h→ 0 we obtain

⟨J ′
λ(uε), v⟩+ ε ∥v∥ > 0,

and finally

∥J ′
λ(uε)∥ ≤ ε.

Putting ε = 1
n for sufficiently large natural n , we see that there exists a sequence {un} ⊂ IntΩ such that

Jλ (un) → inf
u∈Ω

Jλ(u) and J
′
λ (un) → 0

The sequence {un} is bounded in H, and so there exists v0 ∈ H such that, up to a subsequence, {un} converges

to v0 in H . Thus

Jλ (v0) = inf
u∈Ω

Jλ(u) and J
′
λ (v0) = 0.

The above relations imply that v0 is a solution of the problem (1). 2

6. Multiple solutions

In this section we apply the Karush–Kuhn–Tucker conditions together with the mountain pass technique in

order to obtain the existence of at least 2 solutions. We follow [9], but we obtain solutions outside the unit ball

contrary to [9].
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Theorem 15 Let m− > p+ and let us chose γ > 1 such that T
2−p−

2 γp
−
> (T +1) . Suppose that the condition

(C) holds. For any

λ ∈

0,
α−T

2−p−
2 γp

− − (T + 1)
T∑

k=1

(
φ2(k)
m(k)

(
(T + 1)

1
2 γ
)m(k)

+ ψ2(k) (T + 1)
1
2 γ

)
 (7)

the problem (1) has at least 2 positive solutions with at least 1 solution satisfying ∥u∥ > 1 .

Proof Fix λ satisfying (7). Let

Ω1 := {u ∈ H : ∥u∥ ≤ γ} ; Ω2 := {u ∈ H : ∥u∥ ≥ ζ} ,

where ζ ∈ (1, γ). Assume that u0 ∈ H is a local minimizer of Jλ in Ω = Ω1 ∩ Ω2 . Note that for u ∈ Ω by

(A.3) it follows that for all k ∈ [1, T ]

|u (k)| ≤ max
s∈[1,T ]

|u (s)| ≤ (T + 1)
1
2 ∥u∥ ≤ (T + 1)

1
2 γ.

If u0 ∈ Int(Ω) then Jλ(u0) < minu∈∂Ω1 Jλ(u) and u0 is the element required by the mountain pass lemma.

Suppose otherwise that u0 ∈ ∂Ω1 . Then by Theorem 6 there exist κ, σ, ϑ ≥ 0, κ2 + σ2 + ϑ2 > 0, such that for

all v ∈ H

σ(∥u0∥2 − γ2) = 0 and ϑ(ζ2 − ∥u0∥2) = 0 (8)

and

κ⟨J ′(u0), v⟩+ σ⟨u0, v⟩ − ϑ⟨u0, v⟩ = 0.

We note by (8) that ϑ = 0. Suppose that σ = 0. Thus ⟨J ′(u0), v⟩ = 0 and u0 is a solution to (1). Assume

that κ > 0. We may take κ = 1. Hence

T+1∑
k=1

α(k)|∆u0(k − 1)|p(k−1)−2∆u0(k − 1)∆v(k − 1)−

λ
T∑

k=1

f(k, (u0)+(k))v(k) + σ
T∑

k=1

⟨u0 (k) , v (k)⟩ = 0.

Taking v = u0 , we see that

T+1∑
k=1

α(k)|∆u0(k − 1)|p(k−1) + σ∥u0∥2 = λ
T∑

k=1

f(k, (u0)+(k)) (u0(k)) .

Since u0 ∈ ∂Ω1, we see that ∥u0∥ = γ . Thus by (A.7) we have

T+1∑
k=1

α(k)|∆u0(k − 1)|p(k−1) + σ∥u0∥2 ≥ α−T
2−p−

2 γp
−
− (T + 1).
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On the other hand

λ
T∑

k=1

f(k, (u0)+(k)) (u0(k)) ≤

λ

(
T∑

k=1

φ2(k)
m(k) | (u0)+ (k)|m(k) +

T∑
k=1

ψ2(k)| (u0)+ (k)|
)

≤

λ

(
T∑

k=1

φ2(k)
m(k)

(
(T + 1)

1
2 γ
)m(k)

+
T∑

k=1

ψ2(k) (T + 1)
1
2 γ

)
.

Thus

α−T
2−p−

2 γp
−
− (T + 1) ≤ λ

T∑
k=1

(
φ2(k)

m(k)

(
(T + 1)

1
2 γ
)m(k)

+ ψ2(k) (T + 1)
1
2 γ

)
,

a contradiction with (7). Hence u0 ∈ Int(Ω) and u0 is a local minimizer of Jλ . Thus Jλ(u0) < minu∈∂Ω1 Jλ(u).

By the proof of Theorem 13 we know that there exists u1 ∈ H \ Ω such that Jλ(u1) < minu∈∂Ω1 Jλ(u). By

Lemma 5 and Lemma 9 we obtain a critical value of the functional Jλ for some u⋆ ∈ H. Note that u0 and u⋆

are 2 different critical points of Jλ and therefore by Lemma 8 they are 2 positive solutions of the problem (1). 2
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[11] Harjulehto P, Hästö P, Le UV, Nuortio M. Overview of differential equations with non-standard growth. Nonlinear

Anal. 2010; 72: 4551–4574.

[12] Kone B, Ouaro S. Weak solutions for anisotropic discrete boundary value problems. J. Difference Equ. Appl. 2011;

17: 1537–1547.

[13] Liu JQ, Su JB. Remarks on multiple nontrivial solutions for quasi-linear resonant problemes. J. Math. Anal. Appl.

2001; 258: 209–222.

309

http://dx.doi.org/10.1016/j.jmaa.2012.09.047
http://dx.doi.org/10.1016/j.jmaa.2012.09.047
http://dx.doi.org/10.1080/10236198.2010.491825
http://dx.doi.org/10.1080/10236198.2010.491825
http://dx.doi.org/10.1007/978-0-387-31256-9
http://dx.doi.org/10.1007/978-0-387-31256-9
http://dx.doi.org/10.1137/050624522
http://dx.doi.org/10.1137/050624522
http://dx.doi.org/10.1080/10236198.2012.709508
http://dx.doi.org/10.1080/10236198.2012.709508
http://dx.doi.org/10.1016/j.na.2010.02.033
http://dx.doi.org/10.1016/j.na.2010.02.033
http://dx.doi.org/10.1080/10236191003657246
http://dx.doi.org/10.1080/10236191003657246
http://dx.doi.org/10.1006/jmaa.2000.7374
http://dx.doi.org/10.1006/jmaa.2000.7374


GALEWSKI and WIETESKA/Turk J Math
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[16] Růžička M. Electrorheological fluids: Modelling and Mathematical Theory. in: Lecture Notes in Mathematics, vol.

1748, Berlin: Springer-Verlag, 2000.
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