
Turk J Math

(2014) 38: 311 – 317

c⃝ TÜBİTAK
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Abstract: In this paper for 1 ≤ p < ∞ we introduce a space Ap (Ω\K) of all functions u ∈ bp (Ω\K) such that there

exist v ∈ bp (Ω) and w ∈ bp (Rn\K) such that u = v + w on Ω\K , and we give a characterization of it. For the case

p = 2 we get a reproducing kernel for a Hilbert space A2 (Ω\K) , after which we obtain a characterization and its useful

properties.
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1. Introduction

The theory of Bergman spaces is connected to the theory of reproducing kernels (see [3, 4, 5]). The theory of

reproducing kernels related to harmonic Bergman space is considered for example in [7] for the special case of the

unit ball, or for the case of smooth bounded domains in [6], and in their references. The theory of reproducing

kernels on Hilbert spaces is not new, and it can be found in [1] or elsewhere. In this paper we introduce a

new reproducing kernel on the Hilbert space whose definition is closely related to harmonic Bergman space on

domains outside compact sets, and we obtain its useful properties. The theory of domains outside a compact

set can now be considered in the framework of this space and the new reproducing kernel introduced in this

paper. 1

2. Definition of Ap (Ω\K) and its properties

Let Ω be an open subset of the Euclidean space Rn and K ⊂ Ω a compact set. For 1 ≤ p <∞ , the harmonic

Bergman space bp (Ω) is the set of all harmonic functions on Ω that belong to Lp (Ω). In [2] we can find the

following decomposition theorem.

Theorem 1 1. (n > 2) : Let Ω be an open subset of Rn and K be a compact subset of Ω . If u is harmonic

on Ω\K , then u has a unique decomposition of the form

u = v + w,

where v is harmonic on Ω and w is a harmonic function on Rn\K satisfying limx→∞ w (x) = 0.

2. (n = 2) : Let Ω be an open subset of Rn and K be a compact subset of Ω . If u is harmonic on Ω\K , then
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u has a unique decomposition of the form

u = v + w,

where v is harmonic on Ω and w is a harmonic function on R2\K satisfying limx→∞ w (x)− b log |x| = 0 for

some constant b .

In [8], an analogous result was proven for solutions of parabolic equations. In this paper we consider the set

Ap (Ω\K) of all functions u ∈ bp (Ω\K) possessing unique decomposition u = v+w , v ∈ bp (Ω), w ∈ bp (Rn\K),

and the condition on w at infinity remains the same (i.e. stronger conditions than those given in the previous

theorem).

From the definition, it is obvious that Ap (Ω\K) is a vector subspace of bp (Ω\K) and that bp (Ω) is a vector

subspace of Ap (Ω\K). We define a norm in Ap (Ω\K) as follows.

Definition 1 Let 1 ≤ p <∞ and u ∈ Ap (Ω\K) , and then define

∥u∥pAp(Ω\K) = ∥v∥pbp(Ω) + ∥w∥pbp(Rn\K).

With this norm, Ap (Ω\K) becomes a normed space. We will now prove that this is a Banach space and

that bp (Ω) is its closed subspace.

Lemma 1 Let 1 ≤ p <∞ and u ∈ Ap (Ω\K) is arbitrarily chosen. Then

∥u∥bp(Ω\K) ≤ 2
p−1
p ∥u∥Ap(Ω\K).

Proof The result follows from the following inequalities:

∥u∥pbp(Ω\K) = ∥v + w∥pbp(Ω\K) ≤
(
∥v∥bp(Ω\K) + ∥w∥bp(Ω\K)

)p
≤ 2p−1

(
∥v∥pbp(Ω\K) + ∥w∥pbp(Ω\K)

)
≤ 2p−1

(
∥v∥pbp(Ω) + ∥w∥pbp(Rn\K)

)
= 2p−1∥u∥pAp(Ω\K).

2

Theorem 2 Suppose x ∈ Ω\K . Then

|u (x) | ≤
2

p−1
p ∥u∥Ap(Ω\K)

V (B)
1/p

d (x, ∂ (Ω\K))
n/p

for every u ∈ Ap (Ω\K) .

Proof The proof follows immediately from Lemma 1, the fact that Ap (Ω\K) ⊆ bp (Ω\K), and from Propo-

sition 8.1 in [2]. 2

Lemma 2 Let 1 ≤ p <∞ , n ≥ 2 . If w ∈ bp (Rn\K) , then limx→∞ w (x) = 0 .
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Proof The assertion follows directly from the fact that lim|x|→∞ d (x, ∂ (Rn\K)) = ∞ . 2

Theorem 3 Let 1 ≤ p <∞ . Ap (Ω\K) with a norm ∥.∥Ap(Ω\K) is a Banach space.

Proof Let (um) be a Cauchy sequence in Ap (Ω\K). From Lemma 1 it follows that (um) is a Cauchy sequence

in bp (Ω\K). bp (Ω\K) is a Banach space, so there exists u ∈ bp (Ω\K) such that um → u in bp (Ω\K). Also,

∥um − uk∥pAp(Ω\K) = ∥vm − vk∥pbp(Ω) + ∥wm − wk∥pbp(Rn\K),

where um = vm + wm on Ω\K is a decomposition mentioned in the definition of Ap (Ω\K). Since (um) is

a Cauchy sequence in Ap (Ω\K), it follows that (vm) is a Cauchy sequence in bp (Ω) and (wm) is a Cauchy

sequence in bp (Rn\K). Since bp (Ω) and bp (Rn\K) are Banach spaces, it follows that there are v ∈ bp (Ω)

and w ∈ bp (Rn\K) such that vm → v in bp (Ω) and wm → w in bp (Rn\K). Now define u′ = v + w . By

Lemma 2, u′ ∈ Ap (Ω\K). Now,

∥um − u′∥pAp(Ω\K) = ∥vm − v∥pbp(Ω) + ∥wm − w∥pbp(Rn\K),

so um → u′ in Ap (Ω\K). Since um → u in bp (Ω\K) and, by Lemma 1, um → u′ in bp (Ω\K), it yields

u = u′ ∈ Ap (Ω\K). This implies that Ap (Ω\K) is a Banach space, and so the theorem is proven. 2

Lemma 3 Let 1 ≤ p <∞ . The norm ∥.∥bp(Ω) on bp (Ω) is equal to the norm ∥.∥Ap(Ω\K) restricted to bp (Ω) .

Proof Let u ∈ bp (Ω) be arbitrarily chosen. Then u = v+w , where v = u on Ω and w = 0 on Rn\K . The con-

dition at infinity on w is obviously satisfied. Thus, u ∈ Ap (Ω\K) and ∥u∥pAp(Ω\K) = ∥u∥pbp(Ω) + ∥0∥pbp(Rn\K) =

∥u∥pbp(Ω) , which proves this lemma. 2

Theorem 4 Let 1 ≤ p <∞ . Then bp (Ω) is a closed subspace of Ap (Ω\K) .

Proof The previous lemma implies that the topology on bp (Ω) is the same as subspace topology from

Ap (Ω\K). Because a subspace of a complete metric space is complete if and only if it is closed in subspace

topology, it follows that bp (Ω) is closed in Ap (Ω\K). 2

Theorem 5

Ap (Ω\K) = V ⊕W, (1)

where V = bp (Ω) |Ω\K and W = bp (Rn\K) |Ω\K .

Proof Lemma 2 and the definition of Ap (Ω\K) imply that it is sufficient to prove that V ∩W = {0} . Let
u ∈ V ∩W be arbitrarily chosen. There exists v ∈ bp (Ω) such that u (x) = v (x) for all x ∈ Ω\K. Also, there

exists w ∈ bp (Rn\K) such that u (x) = w (x) for all x ∈ Ω\K. So, v (x) = w (x) for all x ∈ Ω\K. Let us

define the function

ψ(x) =

{
v (x) for x ∈ Ω
w (x) for x ∈ Rn\K.
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The defined function ψ (x) is harmonic on Rn and∫
Rn

|ψ (x) |pdx ≤
∫
Ω

|v (x) |pdx+

∫
Rn\K

|w (x) |pdx <∞,

so ψ ∈ bp (Rn) = {0} (see [2]). It follows that v = 0 on Ω and w = 0 on Rn\K . So, V ∩W = {0} . The proof

follows. 2

Lemma 4 Let Ω′ be an open set in Rn such that Ω ⊆ Ω′ and let K ′ be a compact set such that K ′ ⊆ K .

Then

Ap (Ω′\K ′) = bp (Ω′\K ′) ∩ Ap (Ω\K) .

Proof The proof will be done in 2 parts. “ ⊆ ” Let u ∈ Ap (Ω′\K ′), and then u = v + w on Ω′\K ′ , where

v ∈ bp (Ω′) ⊆ bp (Ω) and w ∈ bp (Rn\K ′) ⊆ bp (Rn\K). Therefore, we have that u ∈ Ap (Ω\K). Additionally,

Ap (Ω′\K ′) ⊆ bp (Ω′\K ′), so this part is done.

“ ⊇ ” Let u ∈ bp (Ω′\K ′) ∩ Ap (Ω\K) . The decomposition theorem for harmonic functions and the fact that

bp (Ω′\K ′) ⊆ h (Ω′\K ′) yields that u = v + w on Ω′\K ′ , where v ∈ h (Ω′), w ∈ h (Rn\K ′), v ∈ bp (Ω), and

w ∈ bp (Rn\K). It is sufficient to prove that v ∈ Lp (Ω′) and w ∈ Lp (Rn\K ′). From u ∈ Lp (Ω′\K ′) ⊆
Lp (Ω′\Ω) and w ∈ Lp (Rn\K ′) ⊆ Lp (Ω′\Ω) it follows that v = u − w ∈ Lp (Ω′\Ω). However, we have that

v ∈ bp (Ω) ⊆ Lp (Ω), so we have v ∈ Lp (Ω′). Also, we have u ∈ Lp (Ω′\K ′) ⊆ Lp (K\K ′) and v ∈ Lp (Ω) ⊆
Lp (K\K ′), so it follows that w = u − v ∈ Lp (K\K ′). Since additionaly w ∈ bp (Rn\K) ⊆ Lp (Rn\K), it

follows that w ∈ Lp (Rn\K ′), so the second part and hence the lemma are proven. 2

Corollary 1 If Ap (Ω\K) = bp (Ω\K) , then Ap (Ω′\K ′) = bp (Ω′\K ′) , for every K ′ ⊆ K and Ω′ ⊇ Ω .

Corollary 2 If Ap (Ω\K) = bp (Ω\K) , then Ap (Ω\ {a}) = bp (Ω\ {a}) , for every a ∈ K .

Theorem 6 Let a ∈ Ω be arbitrarily chosen. Then Ap (Ω\ {a}) = bp (Ω\ {a}) if and only if a is a removable

singularity for any u ∈ bp (Ω\ {a}) .

Proof We have
Ap (Ω\ {a}) = V ⊕W,

where V = bp (Ω) |Ω\{a} and W = bp (Rn\ {a}) |Ω\{a} = {0} . So, Ap (Ω\ {a}) = bp (Ω\ {a}) if and only if

bp (Ω) |Ω\{a} = bp (Ω\ {a}). As bp (Ω) |Ω\{a} ⊆ bp (Ω\ {a}), “ ⊇ ” follows if and only if for each u ∈ bp (Ω\ {a}),
there exists v ∈ h (Ω) such that v = u on Ω\ {a} , i.e. if and only if for every u ∈ bp (Ω\ {a}), a is a removable

singularity of u . So, the proof is finished. 2

Theorem 7 If n ≥ 3 and p ≥ n
n−2 , then Ap (Ω\ {a}) = bp (Ω\ {a}) , for every a ∈ Ω .

Proof It is sufficient to prove that a is a removable singularity for every u ∈ bp (Ω\ {a}). It can be shown

(see [2]) that u has a removable singularity at a if and only if

lim
x→a

|x− a|n−2|u (x) | = 0.
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Also, by using Proposition 8.1 in [2] we can prove that if u ∈ bp (Ω\ {a}), then

u (x) = o
(
|x− a|n/p

)
,

as x→ a . Now, the proof follows. 2

Remark 1 For n = 2 , we can find a function u ∈
∩

1≤p<∞ bp (B\ {0}) such that 0 is not a removable

singularity of u . So, for n = 2 , Ap (B\ {0}) ̸= bp (B\ {0}) , for all 1 ≤ p < ∞ , where B is a unit ball in Rn

(see [2]).

Remark 2 It would be interesting to characterize the set M of all (n, p,Ω,K) such that Ap (Ω\K) = bp (Ω\K) .

From the last theorem we see that (n, p,Ω, {a}) ∈M for n ≥ 3, p ≥ n
n−2 , and a ∈ Ω , arbitrarily chosen. Also,

from Remark 1 and Corollary 2 we have that for any p ≥ 1 and any compact set K ⊆ B , where B is a unit

ball in Rn , (2, p, B,K) /∈M .

3. A reproducing kernel for A2 (Ω\K)

For p = 2, A2 (Ω\K) is a Hilbert space with inner product defined by

⟨u1, u2⟩A2(Ω\K) = ⟨v1, v2⟩b2(Ω) + ⟨w1, w2⟩b2(Rn\K),

where u1 = v1 + w1 and u2 = v2 + w2 are decompositions of u1 and u2 in A2 (Ω\K), respectively.

From Lemma 2 we have that for every x ∈ Ω\K, a map u 7−→ u (x) is a bounded linear functional on A2 (Ω\K).

So, there exist SΩ\K (x, ·) ∈ A2 (Ω\K) such that u (x) = ⟨u, SΩ\K (x, ·)⟩A2(Ω\K), for every u ∈ A2 (Ω\K) .

As SΩ\K (x, ·) ∈ A2 (Ω\K), there exist unique VΩ (x, ·) ∈ b2 (Ω) and WRn\K (x, ·) ∈ b2 (Rn\K) , such that

SΩ\K (x, ·) = VΩ (x, ·) +WRn\K (x, ·) on Ω\K . Let x ∈ Ω\K be arbitrarily chosen. It follows that

u (x) =

∫
Ω

v (y)VΩ (x, y)dy +

∫
Rn\K

w (y)WRn\K (x, y)dy,

where u = v+w is a decomposition of u in A2 (Ω\K). By the fact that b2 (Ω) ⊆ A2 (Ω\K) and b2 (Rn\K) ⊆
A2 (Ω\K), it follows that VΩ (x, ·) = RΩ (x, ·) on Ω and WRn\K (x, ·) = RRn\K (x, ·) on Rn\K, where RΩ and

RRn\K are reproducing kernels on Ω and Rn\K, respectively. We proved the following theorem.

Theorem 8 It holds that

SΩ\K (x, ·) = RΩ (x, ·) +RRn\K (x, ·)

on Ω\K.

Some useful properties of the reproducing kernel SΩ\K on Ω\K are given by the following theorem.

Theorem 9 The reproducing kernel SΩ\K on Ω\K has the following properties:

1. SΩ\K is real-valued.
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2. If (um) is an orthonormal basis of A2 (Ω\K) , then

SΩ\K (x, y) =
∞∑

m=1

um (x)um (y)

for all x, y ∈ Ω\K.
3. SΩ\K (x, y) = SΩ\K (y, x) for all x, y ∈ Ω\K.

4. ∥SΩ\K (x, ·) ∥2A2(Ω\K) = SΩ\K (x, x) for all x ∈ Ω\K .

Proof 1. and 3. follow immediately from Theorem 8 and from Proposition 8.4 in [2].

2. If um = vm + wm is a decomposition of A2 (Ω\K), then we have

SΩ\K (x, y) =
∞∑

m=1

⟨SΩ\K (x, ·) , um⟩A2(Ω\K)um (y)

=
∞∑

m=1

(
⟨RΩ (x, ·) , vm⟩b2(Ω) + ⟨RRn\K (x, ·)wm⟩

)
um (y)

=
∞∑

m=1

(
vm (x) + wm (x)

)
um (y)

and claim 2. follows.
4.

∥SΩ\K (x, ·) ∥2A2(Ω\K) = ∥RΩ (x, ·) ∥2b2(Ω) + ∥RRn\K∥2b2(Rn\K)

= RΩ (x, x) +RRn\K (x, x)

= SΩ\K (x, x)

2

The following lemma can be found in [2].

Lemma 5 Suppose Ω1 ⊆ Ω2 ⊆ ... is an increasing sequence of open subsets of Rn and Ω =
∪∞

k=1 Ωk. Then

RΩ (x, y) = limk→∞RΩk
(x, y) , for all x, y ∈ Ω .

Theorem 10 Supppose Ω1 ⊆ Ω2 ⊆ ... is an increasing sequence of open subsets of Rn , and K1 ⊇ K2 ⊇ ... is

a decreasing sequence of compact sets, K1 ⊂ Ω1 . If we denote Ω′
j = Ωj\Kj ,Ω =

∪∞
j=1 Ωj ,K =

∩∞
j=1Kj then

SΩ\K (x, y) = limj→∞ SΩ′
j
(x, y) for all x, y ∈ Ω\K .

Proof By Lemma 5 we have

SΩ\K (x, y) = RΩ (x, y) +RRn\K (x, y)

= lim
j→∞

RΩj (x, y) + lim
j→∞

RRn\Kj
(x, y)

= lim
j→∞

SΩj\Kj
(x, y) = lim

j→∞
SΩ′

j
(x, y)

for every x, y ∈ Ω\K and the theorem is proven. 2
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Remark 3 If A2 (Ω\K) = b2 (Ω\K) , then for any x ∈ Ω\K , we have RΩ\K (x, ·) ∈ A2 (Ω\K) , so it would

be interesting to see relations between SΩ\K (x, ·) and RΩ\K (x, ·) and their components in A2 (Ω\K) . We can

easily show by using Theorem 7 that SΩ\(a) (x, ·) = RΩ\{a} (x, ·) holds for n ≥ 4 and every a ∈ Ω . The hardness

of a problem to find a compact set for which equality of reproducing kernels does not hold (if there is any) is

influenced by not having an explicit formula for reproducing kernels in harmonic Bergman space on domains

outside compact sets.

Remark 4 It would be interesting to consider the same ideas in the case of solutions of parabolic equations,

because the decomposition theorem holds in that case also (see [8]).
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