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Abstract: Using the fiber bundle M over a manifold B, we define a semi-cotangent (pull-back) bundle t* B, which has a
degenerate symplectic structure. We consider lifting problem of projectable geometric objects on M to the semi-cotangent

bundle. Relations between lifted objects and a degenerate symplectic structure are also presented.
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1. Introduction

Let M, be an n-dimensional differentiable manifold of class C~ and m : M, — B,, the differentiable
bundle determined by a submersion 7. Suppose that (z%) = (2% z2%),a,b,... = 1,...n — m;,f3,... =
n—m+4+1,..,n;%,7,... = 1,2,...,n is a system of local coordinates adapted to the bundle m : M, — B,

where x® are coordinates in B,,, and x® are fiber coordinates of the bundle m; : M,, — B,,. If (:c“l,:z:”‘/) is

another system of local adapted coordinates in the bundle, then we have
a’ _ a (,.b .8
{ 2t =2t (@27, (1.1)

The Jacobian of (1.1) has components

o (o' [ Ay AY
(Aj)_<axj>_< 0 Ag’)'

Let T} (Bm)(x = m (%), = (2% 2%) € M,) be the cotangent space at a point = of B,,. If p, are

components of p € T (B,,) with respect to the natural coframe {dz®}, i.e. p=p; da’, then by definition the
set of all points (z!) = (2%,2%,2%), 2% =p,, @ =a+m, I =1,..,n+m is a semi-cotangent bundle ¢*(B,,)
over the manifold M,,.

The semi-cotangent bundle ¢*(B,,) has the natural bundle structure over B,,, its bundle projection
7 : t*(Bm) — By, being defined by 7 : (2%, 2%, 2%) — («%). If we introduce a mapping 7o : t*(B,,) — M,, by

o ¢ (%, %, %) — (z% z%), then t*(B,,) has a bundle structure over M,,. It is easily verified that m = m o 7.
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On the other hand, let now 7« : E — B be a fiber bundle and let f : B’ — B be a differentiable map.
It is well known that the pull-back (induced) bundle or Whitney product is defined by the total space (see, for
example [2,3,6])

[E={(t,e)e BB xE|f(t)=m(e)} CB'xE
and the projection map 7’ : f*E — B’ is given by the projection onto the first factor, i.e.
7'(,e) =1.
The generalization of pull-back bundles to higher order cases is known as Pontryagin bundles [4].
From the above definition it follows that the semi-cotangent bundle (¢*(B,,),m2) is a pull-back bundle
of the cotangent bundle over B,, by 7.

To a transformation (1.1) of local coordinates of M, , there corresponds on t*(B,,) the coordinate

transformation

2 = 2 (a?,29),
=z (zP), (1.2)
2@ = g;f, 2B,
The Jacobian of (1.2) is given by
B / A¢ A%/ 0
A== o Ag o |, (1.3)
B" pa B
0 pUAﬁ AB/O/ Aa/
where
aZl,a
Aa/ I = A~ -
N I e

It is easily verified that the condition Det A # 0 is equivalent to the non-vanishing of the diagonal

matrices:

Det(Ay') #0, Det(A3)#0, Det(AD) #0.

Also, dimt*(B,,) = n+ m. In the special case n = m, t*(B,,) is a cotangent bundle T*(M,,) [8, p.
224].
We note that semi-tangent bundles and their properties were studied in [1,5,7]. The main purpose of this

paper is to study semi-cotangent bundles and some of their lift problems.
We denote by 3%(B,,) the module over F'(B,,) of all tensor fields of type (p,q) on B,,, where F(B,,)

denotes the ring of real-valued C” -functions on B,.

2. Basic 1-form in the semi-cotangent bundle

Let us consider a 1-form p in 7= (U) € t*(B,,), U C B,,, whose components are (0,p,,0). Taking account of
(1.3), we easily see that p = Ap’, where

p= (Oapaao)a p/ = (Oapo/,o)'
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We call the 1-form p a basic 1-form on t*(B,,).
The exterior differential dp of the basic 1-form p is the 2-form given by

dp = dpo, N dx®.

Hence, if we write dp = w = %wABda:A A dz® | then we have

0 0 0
w=(wap)=1| 0 0 =465 |,
0 6 0

where A = (a,o, @), B = (b, 3,5). Since dw = d?>p = 0, we have:

Theorem 1 The semi-cotangent bundle t*(B,,) has a degenerate symplectic structure w.

3. Vertical lift of 1-form
If f is a function on B,,, we write " f for the function on ¢*(B,,) obtained by forming the composition of
7w :t*(By) = By, and Vf = fomy, so that

Vf="fom=fomom=form. (3.1)

Then we have
Yt a®, 2%) = f(a).
Thus, the value vV f is constant along each fiber of 7 : t*(B,,,) = B,,. We call ** f the vertical lift of the
function f.
Let X € 3¢ (t*(Bm)) be a vector field such that X(*f) = 0 for all functions f € 39(B,) - Then we
say that X is a vertical vector field on ¢*(B,,). If X« are components of X with respect to the induced
xa

coordinates (x®,xz%,z®), then for the vertical vector field we have

)’Zaaam;f + )’Zaaavvf + )?Eaavvf = 0,
)?aaavvf = 0,
X = 0.

Thus, the vertical vector field X on t*(B,,) has components
~ ~ X-a
X=xMH=1[ o
XE

with respect to the coordinates (z%,z%, z%).
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Let w be a 1-form with local components w, on B,,, so that w is a 1-form with local expression
w = wedz®. On putting

Y = 0 , (3.2)
Wa

we have a vector field ““w on t*(B,,). In fact, from (1.3) we easily see that (""w)' = A("w). The vector field

thus introduced is called the vertical lift of the 1-form w to t*(B,,). Clearly, we have
UUw(UUf) — 0

for any f € 30 (B.), so that “Yw is a vertical vector field. In particular, if w = p, then “’p is a Liouville

covector field on t*(By,).

From (3.2) we have:

Theorem 2 For any 1 -forms w,0 and function f on B,
(1) "(w+0)=""w+"4,
(i) "(fw) = " f .

For the natural coframe dz® in each U, from (3.2) we have in 7~ 1(U)

vV o _i
(de )_3pa

with respect to the coordinates (z%,z%, z%).

4. ~—Operator
Let X be a vector field on B,,. We define a function vX on t*(B,,) by

vX =psXP. (4.1)

For any F € $1(B,,), if we take account of (1.3), we can prove that (yF)" = A(yF) where vF is a
vector field defined by
0

YF = (yFA) = 0 : (4.2)
psFy
with respect to the coordinates (%, 2%, z%). Then we have

(vE)""(f) =0

for any f € S§(By,), i.e. vF is a vertical vector field on t*(B,,).
Let T € S3(B,,). On putting

0 0 0
NT=0nT8)=10 0 0|, (4.3)
0 pT5, O
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we easily see that yTh = A4 AT, where (A)~! = (AE,) is the inverse matrix of A.

If we3Y(B,,) and T € 33(B,,), then

(vT)("'w) = 0.

5. Complete lift of vector fields
We now denote by 3% (M,,) the module over F'(M,) of all tensor fields of type (p,q) on M, , where F'(M,)
denotes the ring of real-valued C~ -functions on M,, .

Let X € S3(M,,) be a projectable vector field [7] with projection X = X*(2%)d, i.e. X = X(2%, 2%)q+
X*(x*)0y . On putting

_ Xe
X = X« , (5.1)
—Pe (aaXE)

we easily see that ce X/ = Z(CC)? ). The vector field X is called the complete lift of X to the semi-cotangent
bundle t*(B,,).

A vector field X on a semi-cotangent bundle t*(B,,) with the degenerate symplectic structure w = dp is

called a Hamiltonian vector field if txw = dH for same C~ -function H on t* (Bm), i.e. if the interior product
txw is exact. X is called a symplectic vector field if Lxw = 0, i.e. if txw is closed. It is well known that,

locally, symplectic vector fields are Hamiltonian. Using Lx = dotx +tx od (Cartan’s magic formula), we have

Lchdp = (d e} Lccx) dp —+ (Lch e} d) dp = dch (L (dp)) + Lccx(dzp) =d (Lch (dp))

for complete lift ““X . From here we see that ““X is a Hamiltonian vector field (only locally) if Lecxdp = 0,

i.e.
CCXA&AWKL + (aK(CCXA))wAL + (8L(CCXA))WKA =0.

Using (5.1) and coordinates of w = dp, from the last equation, we have the identity 0 = 0. Thus, we have:

Theorem 3 The complete lift ce X of projectable vector field X toa semi-cotangent bundle s Hamiltonian

with the degenerate symplectic structure w = dp.

We have from (5.1)
ccjz vvf _vv (Xf)

for any f € S9(B,,) and projectable vector field Xe I (M,,).
We also have from (3.2) and (5.1)

CC(X/' + '}7) — CCX +CC }77
cc(f)?) _ va(cc)?) B (’)/X)Uv(df),

for any f € S9(B,,) and X,Y € SL(M,).
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Theorem 4 Let X and Z be projectable vector fields on M, with projections X and Z on B, , respectively.
If f €S%(Bm), weSYBm), and F € SH(B,,), then

(i) "wf =0,

(i) "w(y2) =" (w(2)),
(wii) (YE)(""f) =0,

(iv) (VF)vZ =~(FZ),

(v) <X (vZ) =9[X, 2],

(vi) =X v f = (Xf).
Proof (i) If w € 3Y(B,,), then, by (3.1) and (3.2), we find

v E = vyl g (v f)

— vaaaa (’UUf) +U11 waaa (UUf) +’UU wa&a(vvf)
= 0.

Thus, we have (i) of Theorem 4.

(ii) If w € SU(B,,) and Z is a projectable vector field on M, with projection Z € S3(B,,), then we
have by (3.2) and (4.1):

Pw(vZ) = "w'di(v2)
_ vvwaaa(pﬁzﬂ) +vv waaa(pﬁzﬁ) +vv wa%(pﬁzﬂ)
= waZ% =" (w(Z)).

Thus, we have "Yw(vZ) =" (w(Z)).
(iii) If F € $1(By,), then we have by (3.1) and (4.2):

VE)f) = (vF)or("f)
= (yF)"0u(" ) + (YF)*0u("" f) + (YF)*0a("" f)
= 0.

Thus, we have (i7) of Theorem 4.

(iv) If F € $}(By), and Z is a projectable vector field on M, , then we have by (4.1) and (4.2):

(YFwzZ = (vF)'or(v2)
= (vF)0u(ppZ”) + (vF)*0u(psZ”) + (F)*0x(ps Z”)
= psFlox(psZ")

= pgFlZ% =ps(FZ)° =~(FZ),
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and hence equation (iv) of Theorem 4.

(v) If X and Z are projectable vector fields on M, , then taking account of (4.1) and (5.1), we have:

“X(v2) = “X'0,(2)
= “X“0u(psZ”) +° X*0a(pp2”) +°° X “0x(ppZ”)
= X%0a(psZ®) — ps(0aX")Z"
= pp(X°0,2° — 2°9,X")

= pﬁ[sz]ﬂ = V[Xa ZL

which proves (v) of Theorem 4.

(vi) We shall prove the last equation. If X is a projectable vector field on M,,, then we have by (3.1)
and (5.1):

ccjz' m)f — chlal(vvf)
_ chaaa(vvf) 1o X9, (vvf) 4ee Xﬁaa(vv f)
= X%af=""(X[),

which gives equation (vi) of Theorem 4. O

Theorem 5 Let X and Y be projectable vector fields on M, with projection X € S4(By,) and Y € 4 (By) -

For the Lie product, we have
(1) ["w,” 0] =0,
(i) ["w,yF] =" (wo F),
(iii) [VF,7G) =~[F, G,
(iv) [X,"w] =" (Lxw),

(v) [*X,vF]=~(LxF),

(U’L) [ccjz’cc 17] —cc [)(’/\}7]
for any w,0 € 3Y(B,,) and F,G € $1(B,,), where wo F is a 1-form defined by (wo F)(Z) = w(FZ) for any
Z € 3Y(Bm) and Ly is the operator of Lie derivation with respect to X .

[vvwvvv e]b

Proof (i) If w,0 € 3Y(B,,) and | [""w,”" 0] | are components of [**w,”" #]” with respect to the coordinates
[vvw7m} 9}[3
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(z, 2P, 2B) on t*(B,,), then we have
[P0, 8 = Ywlap(*ee”) —v 19, (*w”)
= U, (MU07) 4 W8 (07 ) 7 WP D(VU67)
_0gag, (")~ g, (“w) Y 670 ("w”)
= wa0x(""07) — 0,0s(""w).
Firstly, if J =0, we have
[7%0,7" 0] = waBa?"0° — o057 W = 0
because of (3.2). Secondly, if J = /3, we have
["Pw,% 0]° = wadx""0% — 0,02""w = 0
because of (3.2). Thirdly, let J = 3. Then we have
P00 = wnda"07 — 0,050
= waO0als — 0,05ws =0

by (3.2). Thus, we have (i) of Theorem 5.

[va,’yF]b
(i) If w € SY(By), FeS(Bn) and | ["w,vF]?
]

[UUW’ ,)/F
the coordinates (z°,27 ) on t*(B,,) , then we have by (3.2) and (4.2)

are components of ["Yw,vF]’ with respect to

@

[Pw, A F) = Pwloi(vF) — (vF) 0 ("w)’
— 9y (VF) 47 PO (vF) +7 T Om(yF)’
—(VF)*0a("w)” = (yF)*a("w)” — (vF) (" w)”
= "W 0(vF)” — (vF) 0a("w)’

= walz(VF)’ = pF50x(""w)”.
Firstly, if J = b, we have
'va7 szwa% Fb_ EFaaavvwaO
["w, yF] ¥ Pk
because of (3.2) and (4.2). Secondly, if J = /3, we have
"w, V1P = wads(vF)” — pe F§05""w® =0
["*w,VF) v peF5

because of (3.2) and (4.2). Thirdly, let J = 3. Then we have

waOz(VF)? — p.F50:(""w)”
waaa_png - pngaa_W,B
= woFg =(woF)g

[va, 'YF}B
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by (3.2) and (4.2). On the other hand, the vertical lift *”(w o F') of (wo F') has components of the form
0

"(woF)= 0
(woF)g

with respect to the coordinates (2, z?,28) on t*(B,y,). Thus, we have (ii) of Theorem 5.

[YF.AG)
(iii) If F,G € S1(By,) and | WF,7G)? | are components of [yF,yG]” with respect to the coordinates
WFAG)
(2,28, 28) on t*(B,,), then we have by (4.2)
WEAGY = (vF)'0:(3G) — (vG) 01 (vF)’
= (VF)0.(1G) + (vF)*0a(1G)” + (F)*0(G)’

—(1G)*0u(vF)” — (1G)*0a(vF)” — (7G)*0x(vF)’
= (YF)0a(vG)” = (vG)*0x(vF)’
= pFi0a(vG)’ — pGLox(7F)’.
Firstly, if J = b, we have
VF,AG)’ = p-F05(7G)" — p-GL0x(vF)" =0
because of (4.2). Secondly, if J = 3, we have
VFAG)? = pF05(1G)’ — p.G0x(vF)’ =0

by (4.2). Thirdly, let J = 3. Then we have

DFAGY = peFide(1G)” — p-GLos(vF)’
= PeFZ0mp.GY — peGaOap. FS
= pFLGE —pGLFE
= pe(FoGE — GLFf)
= pe[F Gl

because of (4.2). It is well known that ~[F, G] have components

0
V[F,G] = 0
pe[F, G

with respect to the coordinates (z°, 2%, 28) on t*(B,,). Thus, we have (iii) of Theorem 5.
(iv) If w € S9B,), X is a projectable vector field on M, with projection X € S3(B,), and
[CCX VU w]b
[ccX " w]® | are components of [*X " w]” with respect to the coordinates (z?,2?,27) on t*(By), then

[cc)?’vv w]ﬁ
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we have
[ccj‘(',vv w]J — (ccj?)la[(vvw).] _ (vvw)lal(ccj(')J.

Firstly, if J =0, we have

[CC)?,M) w]b _ (ch)IaI(vvw)b N (vuw)lal(ccg)b
_ 7(vvw)aaa(ccjz)b o (vvw)aaa(ccj(')b B (vvw)a%(cci)b
_ _(vvw)aaajzb
=0

because of (3.2) and (5.1). Secondly, if J = /3, we have

[Cc)?’m’ w]ﬁ — (cci)]a[(@vw)ﬁ _ (vvw)lal(ccjz)ﬁ
_ _(m)w>a8a (ccjzv)ﬂ _ (vvw>aaa<ccjz>/3 _ (vvw>aaa(ccjz)[3
_ _(va)Eaa)Z'ﬂ
- 0

by (3.2) and (5.1). Thirdly, let J = 3. Then we have

[ccj@vv OJ}E _ (ch)IaI (vv (vvw)lal(ch)E

w)P -

= (“X)"0a("w)” + (“X)*0a (W) + (“°X) 0a("w)’
~(70)* 00 (*°X)7 = ("w)*0a(“X)7 — ()" 0x(“X)?

= (*“X)"0a("w)? — ("w) (" X)"

= X"0awp +walspe(95X°)

= X%0qwg + (08X “)wa

= (Lxw)s
because of (3.2) and (5.1). On the other hand, the vertical lift *”(Lxw) of (Lxw) has components of the form

0
W(Lyw)= | 0
(Lxw)g

with respect to the coordinates (z°,27,28) on t*(B,,). Thus, we have (iv) of Theorem 5.
(v) If F € $1(Bn), X is a projectable vector field on M, with projection X € S3(B,), and
X, yF]*
[CCX77F]E are components of [©X,vF]/ with respect to the coordinates (z°, z°,2%) on t*(B,,), then
[ccjz’ ,va]f3
we have

X, yF) = (“°X) 0;(vF)” — (vF)"0r(<°X)".
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For J = b, we have

X, yF]" = (“X) 0;(vF)" — (YF) 9(°X)°
—(VF)?0,(°°X)? — (YF)“0a(“°X)" — (vF)"0x(“X)* = 0

because of (4.2) and (5.1). For J = 3, we have

(X, vF)? = (“X)9r(vF)® — (vF)'9;(*°X)?
= —(YF)9,XP — (yF)?0,X" — (vF)%0zX" =0

by (4.2) and (5.1). For J = 3 we have

X AF) = (“X)0;(yF)® — (vF) or(“X)?
= (“X)"0a(YF)? + (“X)*0a(YF)? + (““X)"0a(yF)?
—(YF)*0a(*°X)” — (YF)*0a(*X)? — (yF)*0x(“X)?
= X 0upeF§ + X®0apeF§ — pe(0aX®)0xpF§ + p Fi0ap=(05X°)
= X0upeF§ — pe(0aX®)F§ +p-F5(95X)
= pE(XO‘&aFg — aaXng‘ + aﬁX“Fj)

= ps(LXF)%
because of (4.2) and (5.1). Tt is well known that v(Lx F') have components

0
p=(Lx F)5

with respect to the coordinates (2, z?,28) on t*(B,,). Thus, we have (v) of Theorem 5.
(vi) If X and Y are projectable vector fields on M, with projection
[ccj?fc ?]b
XY € $4(By,) and | [*°X Y] | are components of [°X,* Y]’ with respect to the coordinates
[ee s 37]?
(2, 2P, 28) on t*(B,,) , then we have

[cc)?vcc }N/]J _ (662)181(60?)‘] B (CC}N/)Ia](CC)?)J.
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Firstly, if J = b, we have

[ X e 7P XV 9y (V) — (V) 9y (< X)
= (CR) (T + (“CK) D (TP + (X )FDa(CT )
LT, (XY — (VD (X — (V)T m( X )P
= (CR)D (T — (CT) D, (X
= X%0,Y’-v°9,X"
= [X,Y]
because of (5.1). Secondly, if J = 8, we have

[ccg—,ccff]ﬁ _ (ccg)zal(cc?)ﬁ,(ccy)zal(ccg)ﬁ
= (“X)"0u(“Y)" + (“X)*0a(“Y)’ + (“X)0a(“Y)’
—(“Y)*0a(*X)7 — (V) 0a(X)” — (V) 0a(*X)°
= (“X)%0a("Y)" — (“Y)*0a(*X)’
= X99,YP —Y“0,X"
= Xy

by (5.1). Thirdly, let J = 3. Then we have

[ccjz’cc }7]3 _ (ccj{v)[a](cc'yvv)g _ (ccy)IaI( )5

= (“X)0u(“Y)7 + (“X)0a(“Y)7 + (“X)70s(“Y)?
—(“Y)0,(“X)7 = (“Y)*0a(“X)7 — (“Y)"0x(X)’

= —(“X)"0upe(05Y°) = (“X)*0ape(95Y7) — (““X) 0ap-(95Y7)

+(*Y ) Pap=(05X%) + (“Y)*0ap-(95X°) + (“Y ) 0ap-(95.X7)

= (X 0pe(95Y7) — (“X)T(DY") + (“V)*0ape(95X7) + (“Y)T(D5X")

= —X%0ape(05YF) + 0o X (YY) + Y Oupe (05 XF) — peOaY (85X %)

= P(—X%0a05Y° + 05Y Y00 X + Y 0,05 X° — 05X “0,Y*)

= —pe(03(XY0,Y* — Y0, X%))

= —pe(95X.YT")

e~

because of (5.1). It is well known that °°[X,Y] have components
[Xv Y] = [X
Pe(
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with respect to the coordinates (2, z?,28) on t*(B,,). Thus, we have (vi) of Theorem 5. O

Theorem 6 Let X be a projectable vector field on M, . If w € S%(Byn), F € SY(B,,), and S,T € $3(Bw),
then

(1) (15)" X =(Sx).
(i) (v8)("*w) =0,
(ii7) (v9)(vF) =0,
(iv) (v$)(YT) =0,

where Sx is tensor field of type (1,1) on B, defined by Sx(Z) = S(X,Z) for any Z € I{(Bm)-
Proof (i) Using (4.3) and (5.1), we have

0 0 0 Xe
) X=[0 0 o0 X
0 poS%, 0 —pe(8aX°)
0 0
= 0 = 0 7(Sx)-
paSgaXa pU(SX)g

Similarly, we have

(v9)("'w) =0, (vS)(vF) =0, (vS)(vT)=0.

6. Complete lift of affinor fields
Let F € S(M,) be a projectable affinor field [7] with projection F = Fg(2%)0q ®da?, i.e. F has components

e - By (o) ﬁ%fijﬂ )

with respect to the coordinates (z%,z%). On putting

o Ey Fs 0
F=CFh=1 o0 Fg 0o . (6.1)
0 po(0sFg —0aFg) FJ

«

we easily see that “1;}/ = A A7, “ﬁ}.
We call “F the complete lift of the tensor field F of type (1,1) to t*(B,y,).

Proof For simplicity we take only CCFE . In fact,
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CFS = AJAL (“F$)+ AT A, (“FF) + AY A7, (“F9)
= P ALASw AG S + AL AL Do (05F — uF) + AL (per Al A7 5)F]
= —p(0,AY)AS AL FS + po A AS (05 FT) — porAS AG 0 F + per Al A5 5 F)
= (0, AL AL S + po A% 05 FY — py Al A% 06 F§ — per (03 A% ) AG FL)
= —Ppar (0, AY)FS + peOp Y — po Al Oar F§ — pa(0 A% ) FL,
= P BaFG + o05 FS — polar FG — por Ay AS A% AL AP, (9549 FS,
= P OaFG + po(0p FY — 00 ) — par A§ ALAL (05.A% ) FG,
= P OaFG + o (05 FY — 0o FZ) + par A A% A% (95 A8V G
= P OaFG + 0o (05 FS — 0 FG ) + por Ay A% AL, 0, FS
= PaOaFG +por(05 FY — 00 FY) + par0a FG
= por (99 FS — Our FG)).

Thus, we have Cch = Py (85/F§,, — 3a/F§,,). Similarly, we can easily find other components of Ccﬁf,,.

Theorem 7 Let ﬁ,é, and X be projectable affinor and vector fields on M, with projections F,G, and X
on B, respectively. If w € SY(B,,), then

(i) “F(yG)=~(GoF),

(i) ccfp vv,, _vv (wo F),

—_~—

(iii) ©FecX = “(FX)+ y(LxF).

Proof (i) If F and G are projectable affinor fields on M,, , then we have by (4.2) and (6.1)

~ Fy Fg 0 0
“F(r@)=1 0 Fg 0 0
0 po(0sFg —0aFg) FJ PG
0 0
= 0 = 0 =7(GoF).
pG5FY pe(G o F)g,

Thus, we have “F(yG) = v(G o F).
(ii) If w € S9(B,y), and F is a projectable affinor field on M,, , then we get by (3.2) and (6.1):

N Fy Fg 0 0
“Fru=1| 0 Fg 0 0
0 po(9sF — 0aFg) FY wg
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0 0
= 0 = 0 =" (wo F),
wsFP (wo F)qu

which gives “F "Yw =% (wo F).

(i) If F and X are projectable affinor and vector fields on M, , respectively.
Then we have by (5.1) and (6.1):

o Fy Fg 0 XV
CCF CCX _ O FlBa 0 X/B
0 po(0sFS —0aFg) FJ —p:(0pX°)
FeXb+ FgXP
FgX
P07 0. F§)XP — p.(05X°)FP
+ 0
—pg ) Po(XPOsFT — (0uXP)Fg — (05 X7)FY)
0 —
" 0 = (FX) +(Lx F),
*pg )7 po(Lx F)g,
which gives “F “X = FX) +v(LxF). O
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