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doi:10.3906/mat-1306-46

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Semi-cotangent bundle and problems of lifts

Furkan YILDIRIM, Arif SALIMOV∗

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum Turkey

Received: 23.06.2013 • Accepted: 03.10.2013 • Published Online: 27.01.2014 • Printed: 24.02.2014

Abstract: Using the fiber bundle M over a manifold B, we define a semi-cotangent (pull-back) bundle t∗B, which has a

degenerate symplectic structure. We consider lifting problem of projectable geometric objects on M to the semi-cotangent

bundle. Relations between lifted objects and a degenerate symplectic structure are also presented.

Key words: Vector field, complete lift, basic 1-form, semi-cotangent bundle

1. Introduction

Let Mn be an n-dimensional differentiable manifold of class C
∞

and π1 : Mn → Bm the differentiable

bundle determined by a submersion π1 . Suppose that (xi) = (xa, xα), a, b, ... = 1, ..., n − m;α, β, ... =

n − m + 1, ..., n; i, j, ... = 1, 2, ..., n is a system of local coordinates adapted to the bundle π1 : Mn → Bm,

where xα are coordinates in Bm , and xa are fiber coordinates of the bundle π1 : Mn → Bm . If (xa′
, xα′

) is

another system of local adapted coordinates in the bundle, then we have

{
xa′

= xa′
(xb, xβ),

xα′
= xα′

(xβ).
(1.1)

The Jacobian of (1.1) has components

(Ai′

j ) =

(
∂xi′

∂xj

)
=

(
Aa′

b Aa′

β

0 Aα′

β

)
.

Let T ∗
x (Bm)(x = π1(x̃), x̃ = (xa, xα) ∈ Mn) be the cotangent space at a point x of Bm . If pα are

components of p ∈ T ∗
x (Bm) with respect to the natural coframe {dxα}, i.e. p = pi dxi , then by definition the

set of all points (xI) = (xa, xα, xα), xα = pα , α = α+m , I = 1, ..., n+m is a semi-cotangent bundle t∗(Bm)

over the manifold Mn .

The semi-cotangent bundle t∗(Bm) has the natural bundle structure over Bm , its bundle projection

π : t∗(Bm) → Bm being defined by π : (xa, xα, xα) → (xα). If we introduce a mapping π2 : t∗(Bm) → Mn by

π2 : (xa, xα, xα) → (xa, xα), then t∗(Bm) has a bundle structure over Mn . It is easily verified that π = π1 ◦π2.
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On the other hand, let now π : E → B be a fiber bundle and let f : B′ → B be a differentiable map.

It is well known that the pull-back (induced) bundle or Whitney product is defined by the total space (see, for

example [2,3,6])

f∗E = {(b′, e) ∈ B′ × E |f(b′) = π(e)} ⊂ B′ × E

and the projection map π′ : f∗E → B′ is given by the projection onto the first factor, i.e.

π′(b′, e) = b′.

The generalization of pull-back bundles to higher order cases is known as Pontryagin bundles [4].

From the above definition it follows that the semi-cotangent bundle (t∗(Bm), π2) is a pull-back bundle

of the cotangent bundle over Bm by π1 .

To a transformation (1.1) of local coordinates of Mn , there corresponds on t∗(Bm) the coordinate

transformation 
xa′

= xa′
(xb, xβ),

xα′
= xα′

(xβ),

xα′
= ∂xβ

∂xα′ xβ .

(1.2)

The Jacobian of (1.2) is given by

A = (AI′

J ) =

 Aa′

b Aa′

β 0

0 Aα′

β 0

0 pσA
β′

β Aα
β′α′ Aβ

α′

 , (1.3)

where

Aα
β′α′ =

∂2xα

∂xβ′∂xα′ .

It is easily verified that the condition Det A ̸= 0 is equivalent to the non-vanishing of the diagonal

matrices:

Det(Aa′

b ) ̸= 0, Det(Aα′

β ) ̸= 0, Det(Aβ
α′) ̸= 0.

Also, dim t∗(Bm) = n + m . In the special case n = m , t∗(Bm) is a cotangent bundle T ∗(Mn) [8, p.

224].

We note that semi-tangent bundles and their properties were studied in [1,5,7]. The main purpose of this

paper is to study semi-cotangent bundles and some of their lift problems.

We denote by ℑp
q(Bm) the module over F (Bm) of all tensor fields of type (p, q) on Bm , where F (Bm)

denotes the ring of real-valued C
∞
-functions on Bm.

2. Basic 1-form in the semi-cotangent bundle

Let us consider a 1-form p in π−1(U) ∈ t∗(Bm), U ⊂ Bm , whose components are (0, pα, 0). Taking account of

(1.3), we easily see that p = Ap′,where

p = (0, pα, 0), p′ = (0, pα′ , 0).

326



YILDIRIM and SALIMOV/Turk J Math

We call the 1-form p a basic 1-form on t∗(Bm).

The exterior differential dp of the basic 1-form p is the 2-form given by

dp = dpα ∧ dxα.

Hence, if we write dp = ω = 1
2ωABdx

A ∧ dxB , then we have

ω = (ωAB) =

 0 0 0
0 0 −δαβ
0 δβα 0

 ,

where A = (a, α, α), B = (b, β, β). Since dω = d2p = 0, we have:

Theorem 1 The semi-cotangent bundle t∗(Bm) has a degenerate symplectic structure ω.

3. Vertical lift of 1-form

If f is a function on Bm , we write vvf for the function on t∗(Bm) obtained by forming the composition of

π : t∗(Bm) → Bm and vf = f ◦ π1 , so that

vvf =v f ◦ π2 = f ◦ π1 ◦ π2 = f ◦ π. (3.1)

Then we have
vvf(xa, xα, xα) = f(xα).

Thus, the value vvf is constant along each fiber of π : t∗(Bm) → Bm . We call vvf the vertical lift of the

function f.

Let X̃ ∈ ℑ1
0 (t

∗(Bm)) be a vector field such that X̃(vvf) = 0 for all functions f ∈ ℑ0
0(Bm) . Then we

say that X̃ is a vertical vector field on t∗(Bm). If

 X̃a

X̃α

X̃α

 are components of X̃ with respect to the induced

coordinates (xa, xα, xα), then for the vertical vector field we have

X̃a∂a
vvf + X̃α∂α

vvf + X̃α∂α
vvf = 0,

X̃α∂α
vvf = 0,

X̃α = 0.

Thus, the vertical vector field X̃ on t∗(Bm) has components

X̃ = (X̃A) =

 X̃a

0

X̃α


with respect to the coordinates (xa, xα, xα).
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Let ω be a 1-form with local components ωα on Bm , so that ω is a 1-form with local expression

ω = ωαdx
α . On putting

vvω =

 0
0
ωα

 , (3.2)

we have a vector field vvω on t∗(Bm). In fact, from (1.3) we easily see that (vvω)′ = A(vvω). The vector field

thus introduced is called the vertical lift of the 1-form ω to t∗(Bm). Clearly, we have

vvω(vvf) = 0

for any f ∈ ℑ0
0 (Bm), so that vvω is a vertical vector field. In particular, if ω = p , then vvp is a Liouville

covector field on t∗(Bm).

From (3.2) we have:

Theorem 2 For any 1 -forms ω, θ and function f on Bm ,

(i) vv(ω + θ) =vv ω +vv θ,

(ii) vv(fω) = vvf vvω.

For the natural coframe dxα in each U, from (3.2) we have in π−1(U)

vv(dxα) =
∂

∂pα

with respect to the coordinates (xa, xα, xα).

4. γ−Operator

Let X be a vector field on Bm . We define a function γX on t∗(Bm) by

γX = pβX
β . (4.1)

For any F ∈ ℑ1
1(Bm), if we take account of (1.3), we can prove that (γF )′ = A(γF ) where γF is a

vector field defined by

γF = (γFA) =

 0
0

pβF
β
α

 , (4.2)

with respect to the coordinates (xa, xα, xα). Then we have

(γF )vv(f) = 0

for any f ∈ ℑ0
0(Bm), i.e. γF is a vertical vector field on t∗(Bm).

Let T ∈ ℑ1
2(Bm). On putting

γT = (γTA
B ) =

 0 0 0
0 0 0
0 pεT

ε
βα

0

 , (4.3)
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we easily see that γTA′

B′ = AA′

A AB
B′γTA

B , where (A)−1 = (AB
B′) is the inverse matrix of A .

If ω ∈ ℑ0
1(Bm) and T ∈ ℑ1

2(Bm), then

(γT )(vvω) = 0.

5. Complete lift of vector fields

We now denote by ℑp
q (Mn) the module over F (Mn) of all tensor fields of type (p, q) on Mn , where F (Mn)

denotes the ring of real-valued C
∞
-functions on Mn .

Let X̃ ∈ ℑ1
0(Mn) be a projectable vector field [7] with projection X = Xα(xα)∂α i.e. X̃ = X̃a(xa, xα)∂a+

Xα(xα)∂α . On putting

ccX̃ =

 X̃a

Xα

−pε(∂αX
ε)

 , (5.1)

we easily see that ccX̃ ′ = A(ccX̃). The vector field ccX̃ is called the complete lift of X̃ to the semi-cotangent

bundle t∗(Bm).

A vector field X on a semi-cotangent bundle t∗(Bm) with the degenerate symplectic structure ω = dp is

called a Hamiltonian vector field if ιXω = dH for same C
∞
-function H on t∗(Bm), i.e. if the interior product

ιXω is exact. X is called a symplectic vector field if LXω = 0, i.e. if ιXω is closed. It is well known that,

locally, symplectic vector fields are Hamiltonian. Using LX = d◦ ιX + ιX ◦d (Cartan’s magic formula), we have

LccXdp = (d ◦ ιccX) dp+ (ιccX ◦ d) dp = dccX (ι (dp)) + ιccX(d2p) = d (ιccX (dp))

for complete lift ccX . From here we see that ccX is a Hamiltonian vector field (only locally) if LccXdp = 0,

i.e.

ccXA∂AωKL + (∂K(ccXA))ωAL + (∂L(
ccXA))ωKA = 0.

Using (5.1) and coordinates of ω = dp , from the last equation, we have the identity 0 = 0. Thus, we have:

Theorem 3 The complete lift ccX̃ of projectable vector field X̃ to a semi-cotangent bundle is Hamiltonian

with the degenerate symplectic structure ω = dp.

We have from (5.1)

ccX̃ vvf =vv (Xf)

for any f ∈ ℑ0
0(Bm) and projectable vector field X̃ ∈ ℑ1

0(Mn).

We also have from (3.2) and (5.1)

cc(X̃ + Ỹ ) = ccX̃ +cc Ỹ ,

cc(fX̃) = vvf(ccX̃)− (γX)vv(df),

for any f ∈ ℑ0
0(Bm) and X̃, Ỹ ∈ ℑ1

0(Mn).
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Theorem 4 Let X̃ and Z̃ be projectable vector fields on Mn with projections X and Z on Bm , respectively.

If f ∈ ℑ0
0(Bm), ω ∈ ℑ0

1(Bm), and F ∈ ℑ1
1(Bm) , then

(i) vvωvvf = 0,

(ii) vvω(γZ) =vv (ω(Z)),

(iii) (γF )(vvf) = 0,

(iv) (γF )γZ = γ(FZ),

(v) ccX̃(γZ) = γ[X,Z],

(vi) ccX̃ vvf = vv(Xf).

Proof (i) If ω ∈ ℑ0
1(Bm), then, by (3.1) and (3.2), we find

vvωvvf = vvωI∂I(
vvf)

= vvωa∂a(
vvf) +vv ωα∂α(

vvf) +vv ωα∂α(
vvf)

= 0.

Thus, we have (i) of Theorem 4.

(ii) If ω ∈ ℑ0
1(Bm) and Z̃ is a projectable vector field on Mn with projection Z ∈ ℑ1

0(Bm), then we

have by (3.2) and (4.1):

vvω(γZ) = vvωI∂I(γZ)

= vvωa∂a(pβZ
β) +vv ωα∂α(pβZ

β) +vv ωα∂α(pβZ
β)

= ωαZ
α =vv (ω(Z)).

Thus, we have vvω(γZ) =vv (ω(Z)).

(iii) If F ∈ ℑ1
1(Bm), then we have by (3.1) and (4.2):

(γF )(vvf) = (γF )I∂I(
vvf)

= (γF )a∂a(
vvf) + (γF )α∂α(

vvf) + (γF )α∂α(
vvf)

= 0.

Thus, we have (iii) of Theorem 4.

(iv) If F ∈ ℑ1
1(Bm), and Z̃ is a projectable vector field on Mn , then we have by (4.1) and (4.2):

(γF )γZ = (γF )I∂I(γZ)

= (γF )a∂a(pβZ
β) + (γF )α∂α(pβZ

β) + (γF )α∂α(pβZ
β)

= pβF
β
α∂α(pβZ

β)

= pβF
β
αZ

α = pβ(FZ)β = γ(FZ),
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and hence equation (iv) of Theorem 4.

(v) If X̃ and Z̃ are projectable vector fields on Mn , then taking account of (4.1) and (5.1), we have:

ccX̃(γZ) = ccXI∂I(γZ)

= ccXa∂a(pβZ
β) +cc Xα∂α(pβZ

β) +cc Xα∂α(pβZ
β)

= Xα∂α(pβZ
β)− pβ(∂αX

β)Zα

= pβ(X
α∂αZ

β − Zα∂αX
β)

= pβ [X,Z]β = γ[X,Z],

which proves (v) of Theorem 4.

(vi) We shall prove the last equation. If X̃ is a projectable vector field on Mn , then we have by (3.1)

and (5.1):

ccX̃ vvf = ccXI∂I(
vvf)

= ccXa∂a(
vvf) +cc Xα∂α(

vvf) +cc Xα∂α(
vvf)

= Xα∂αf =vv (Xf),

which gives equation (vi) of Theorem 4. 2

Theorem 5 Let X̃ and Ỹ be projectable vector fields on Mn with projection X ∈ ℑ1
0(Bm) and Y ∈ ℑ1

0(Bm) .

For the Lie product, we have

(i) [vvω,vv θ] = 0,

(ii) [vvω, γF ] =vv (ω ◦ F ),

(iii) [γF, γG] = γ[F,G],

(iv) [ccX̃,vv ω] =vv (LXω),

(v) [ccX̃, γF ] = γ(LXF ),

(vi) [ccX̃,cc Ỹ ] =cc [̃X,Y ]

for any ω, θ ∈ ℑ0
1(Bm) and F,G ∈ ℑ1

1(Bm) , where ω ◦ F is a 1 -form defined by (ω ◦ F )(Z) = ω(FZ) for any

Z ∈ ℑ1
0(Bm) and LX is the operator of Lie derivation with respect to X .

Proof (i) If ω, θ ∈ ℑ0
1(Bm) and

 [vvω,vv θ]b

[vvω,vv θ]β

[vvω,vv θ]
β

 are components of [vvω,vv θ]J with respect to the coordinates
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(xb, xβ , xβ) on t∗(Bm), then we have

[vvω,vv θ]J = vvωI∂I(
vvθJ)−vv θI∂I(

vvωJ)

= vvωa∂a(
vvθJ) +vv ωα∂α(

vvθJ) +vv ωα∂α(
vvθJ )

−vvθa∂a(
vvωJ)−vv θα∂α(

vvωJ)−vv θα∂α(
vvωJ )

= ωα∂α(
vvθJ)− θα∂α(

vvωJ ).

Firstly, if J = b , we have

[vvω,vv θ]b = ωα∂α
vvθb − θα∂α

vvωb = 0

because of (3.2). Secondly, if J = β , we have

[vvω,vv θ]β = ωα∂α
vvθβ − θα∂α

vvωβ = 0

because of (3.2). Thirdly, let J = β . Then we have

[vvω,vv θ]β = ωα∂α
vvθβ − θα∂α

vvωβ

= ωα∂αθβ − θα∂αωβ = 0

by (3.2). Thus, we have (i) of Theorem 5.

(ii) If ω ∈ ℑ0
1(Bm), F ∈ ℑ1

1(Bm) and

 [vvω, γF ]b

[vvω, γF ]β

[vvω, γF ]
β

 are components of [vvω, γF ]J with respect to

the coordinates (xb, xβ , xβ) on t∗(Bm) , then we have by (3.2) and (4.2)

[vvω, γF ]J = vvωI∂I(γF )J − (γF )I∂I(
vvω)J

= vvωa∂a(γF )J +vv ωα∂α(γF )J +vv ωα∂α(γF )J

−(γF )a∂a(
vvω)J − (γF )α∂α(

vvω)J − (γF )α∂α(
vvω)J

= vvωα∂α(γF )J − (γF )α∂α(
vvω)J

= ωα∂α(γF )J − pεF
ε
β∂α(

vvω)J .

Firstly, if J = b , we have

[vvω, γF ]b = ωα∂α(γF )b − pεF
ε
β∂α

vvωb = 0

because of (3.2) and (4.2). Secondly, if J = β , we have

[vvω, γF ]β = ωα∂α(γF )β − pεF
ε
β∂α

vvωβ = 0

because of (3.2) and (4.2). Thirdly, let J = β . Then we have

[vvω, γF ]β = ωα∂α(γF )β − pεF
ε
β∂α(

vvω)β

= ωα∂αpεF
ε
β − pεF

ε
β∂αωβ

= ωαF
α
β = (ω ◦ F )β
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by (3.2) and (4.2). On the other hand, the vertical lift vv(ω ◦ F ) of (ω ◦ F ) has components of the form

vv(ω ◦ F ) =

 0
0

(ω ◦ F )β


with respect to the coordinates (xb, xβ , xβ) on t∗(Bm). Thus, we have (ii) of Theorem 5.

(iii) If F,G ∈ ℑ1
1(Bm) and

 [γF, γG]b

[γF, γG]β

[γF, γG]
β

 are components of [γF, γG]J with respect to the coordinates

(xb, xβ , xβ) on t∗(Bm), then we have by (4.2)

[γF, γG]J = (γF )I∂I(γG)J − (γG)I∂I(γF )J

= (γF )a∂a(γG)J + (γF )α∂α(γG)J + (γF )α∂α(γG)J

−(γG)a∂a(γF )J − (γG)α∂α(γF )J − (γG)α∂α(γF )J

= (γF )α∂α(γG)J − (γG)α∂α(γF )J

= pεF
ε
α∂α(γG)J − pεG

ε
α∂α(γF )J .

Firstly, if J = b , we have

[γF, γG]b = pεF
ε
α∂α(γG)b − pεG

ε
α∂α(γF )b = 0

because of (4.2). Secondly, if J = β , we have

[γF, γG]β = pεF
ε
α∂α(γG)β − pεG

ε
α∂α(γF )β = 0

by (4.2). Thirdly, let J = β . Then we have

[γF, γG]β = pεF
ε
α∂α(γG)β − pεG

ε
α∂α(γF )β

= pεF
ε
α∂αpεG

ε
β − pεG

ε
α∂αpεF

ε
β

= pεF
ε
αG

α
β − pεG

ε
αF

α
β

= pε(F
ε
αG

α
β −Gε

αF
α
β )

= pε[F,G]εβ

because of (4.2). It is well known that γ[F,G] have components

γ[F,G] =

 0
0

pε[F,G]εβ


with respect to the coordinates (xb, xβ , xβ) on t∗(Bm). Thus, we have (iii) of Theorem 5.

(iv) If ω ∈ ℑ0
1(Bm), X̃ is a projectable vector field on Mn with projection X ∈ ℑ1

0(Bm), and [ccX̃,vv ω]b

[ccX̃,vv ω]β

[ccX̃,vv ω]
β

 are components of [ccX̃,vv ω]J with respect to the coordinates (xb, xβ , xβ) on t∗(Bm), then
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we have

[ccX̃,vv ω]J = (ccX̃)I∂I(
vvω)J − (vvω)I∂I(

ccX̃)J .

Firstly, if J = b , we have

[ccX̃,vv ω]b = (ccX̃)I∂I(
vvω)b − (vvω)I∂I(

ccX̃)b

= −(vvω)a∂a(
ccX̃)b − (vvω)α∂α(

ccX̃)b − (vvω)α∂α(
ccX̃)b

= −(vvω)α∂αX̃
b

= 0

because of (3.2) and (5.1). Secondly, if J = β , we have

[ccX̃,vv ω]β = (ccX̃)I∂I(
vvω)β − (vvω)I∂I(

ccX̃)β

= −(vvω)a∂a(
ccX̃)β − (vvω)α∂α(

ccX̃)β − (vvω)α∂α(
ccX̃)β

= −(vvω)α∂αX̃
β

= 0

by (3.2) and (5.1). Thirdly, let J = β . Then we have

[ccX̃,vv ω]β = (ccX̃)I∂I(
vvω)β − (vvω)I∂I(

ccX̃)β

= (ccX̃)a∂a(
vvω)β + (ccX̃)α∂α(

vvω)β + (ccX̃)α∂α(
vvω)β

−(vvω)a∂a(
ccX̃)β − (vvω)α∂α(

ccX̃)β − (vvω)α∂α(
ccX̃)β

= (ccX̃)α∂α(
vvω)β − (vvω)α∂α(

ccX̃)β

= Xα∂αωβ + ωα∂αpε(∂βX
ε)

= Xα∂αωβ + (∂βX
α)ωα

= (LXω)β

because of (3.2) and (5.1). On the other hand, the vertical lift vv(LXω) of (LXω) has components of the form

vv(LXω) =

 0
0

(LXω)β


with respect to the coordinates (xb, xβ , xβ) on t∗(Bm). Thus, we have (iv) of Theorem 5.

(v) If F ∈ ℑ1
1(Bm), X̃ is a projectable vector field on Mn with projection X ∈ ℑ1

0(Bm), and [ccX̃, γF ]b

[ccX̃, γF ]β

[ccX̃, γF ]
β

 are components of [ccX̃, γF ]J with respect to the coordinates (xb, xβ , xβ) on t∗(Bm), then

we have

[ccX̃, γF ]J = (ccX̃)I∂I(γF )J − (γF )I∂I(
ccX̃)J .
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For J = b , we have

[ccX̃, γF ]b = (ccX̃)I∂I(γF )b − (γF )I∂I(
ccX̃)b

= −(γF )a∂a(
ccX̃)b − (γF )α∂α(

ccX̃)b − (γF )α∂α(
ccX̃)b = 0

because of (4.2) and (5.1). For J = β , we have

[ccX̃, γF ]β = (ccX̃)I∂I(γF )β − (γF )I∂I(
ccX̃)β

= −(γF )a∂aX
β − (γF )α∂αX

β − (γF )α∂αX
β = 0

by (4.2) and (5.1). For J = β we have

[ccX̃, γF ]β = (ccX̃)I∂I(γF )β − (γF )I∂I(
ccX̃)β

= (ccX̃)a∂a(γF )β + (ccX̃)α∂α(γF )β + (ccX̃)α∂α(γF )β

−(γF )a∂a(
ccX̃)β − (γF )α∂α(

ccX̃)β − (γF )α∂α(
ccX̃)β

= X̃a∂apεF
ε
β +Xα∂αpεF

ε
β − pε(∂αX

ε)∂αpεF
ε
β + pεF

ε
α∂αpε(∂βX

ε)

= Xα∂αpεF
ε
β − pε(∂αX

ε)Fα
β + pεF

ε
α(∂βX

α)

= pε(X
α∂αF

ε
β − ∂αX

εFα
β + ∂βX

αF ε
α)

= pε(LXF )εβ

because of (4.2) and (5.1). It is well known that γ(LXF ) have components

γ(LXF ) =

 0
0

pε(LXF )εβ



with respect to the coordinates (xb, xβ , xβ) on t∗(Bm). Thus, we have (v) of Theorem 5.

(vi) If X̃ and Ỹ are projectable vector fields on Mn with projection

X,Y ∈ ℑ1
0(Bm) and

 [ccX̃,cc Ỹ ]b

[ccX̃,cc Ỹ ]β

[ccX̃,cc Ỹ ]
β

 are components of [ccX̃,cc Ỹ ]J with respect to the coordinates

(xb, xβ , xβ) on t∗(Bm) , then we have

[ccX̃,cc Ỹ ]J = (ccX̃)I∂I(
ccỸ )J − (ccỸ )I∂I(

ccX̃)J .
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Firstly, if J = b , we have

[ccX̃,cc Ỹ ]b = (ccX̃)I∂I(
ccỸ )b − (ccỸ )I∂I(

ccX̃)b

= (ccX̃)a∂a(
ccỸ )b + (ccX̃)α∂α(

ccỸ )b + (ccX̃)α∂α(
ccỸ )b

−(ccỸ )a∂a(
ccX̃)b − (ccỸ )α∂α(

ccX̃)b − (ccỸ )α∂α(
ccX̃)b

= (ccX̃)α∂α(
ccỸ )b − (ccỸ )α∂α(

ccX̃)b

= Xα∂αỸ
b − Y α∂αX̃

b

= [̃X,Y ]
b

because of (5.1). Secondly, if J = β , we have

[ccX̃,cc Ỹ ]β = (ccX̃)I∂I(
ccỸ )β − (ccỸ )I∂I(

ccX̃)β

= (ccX̃)a∂a(
ccỸ )β + (ccX̃)α∂α(

ccỸ )β + (ccX̃)α∂α(
ccỸ )β

−(ccỸ )a∂a(
ccX̃)β − (ccỸ )α∂α(

ccX̃)β − (ccỸ )α∂α(
ccX̃)β

= (ccX̃)α∂α(
ccỸ )β − (ccỸ )α∂α(

ccX̃)β

= Xα∂αY
β − Y α∂αX

β

= [X,Y ]β

by (5.1). Thirdly, let J = β . Then we have

[ccX̃,cc Ỹ ]β = (ccX̃)I∂I(
ccỸ )β − (ccỸ )I∂I(

ccX̃)β

= (ccX̃)a∂a(
ccỸ )β + (ccX̃)α∂α(

ccỸ )β + (ccX̃)α∂α(
ccỸ )β

−(ccỸ )a∂a(
ccX̃)β − (ccỸ )α∂α(

ccX̃)β − (ccỸ )α∂α(
ccX̃)β

= −(ccX̃)a∂apε(∂βY
ε)− (ccX̃)α∂αpε(∂βY

ε)− (ccX̃)α∂αpε(∂βY
ε)

+(ccỸ )a∂apε(∂βX
ε) + (ccỸ )α∂αpε(∂βX

ε) + (ccỸ )α∂αpε(∂βX
ε)

= −(ccX̃)α∂αpε(∂βY
ε)− (ccX̃)α(∂βY

α) + (ccỸ )α∂αpε(∂βX
ε) + (ccỸ )α(∂βX

α)

= −Xα∂αpε(∂βY
ε) + pε∂αX

ε(∂βY
α) + Y α∂αpε(∂βX

ε)− pε∂αY
ε(∂βX

α)

= pε(−Xα∂α∂βY
ε + ∂βY

α∂αX
ε + Y α∂α∂βX

ε − ∂βX
α∂αY

ε)

= −pε(∂β(X
α∂αY

ε − Y α∂αX
ε))

= −pε(∂β [X,Y ]ε)

because of (5.1). It is well known that cc [̃X,Y ] have components

cc [̃X,Y ] =

 [̃X,Y ]
b

[X,Y ]β

−pε(∂β [X,Y ]ε)


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with respect to the coordinates (xb, xβ , xβ) on t∗(Bm). Thus, we have (vi) of Theorem 5. 2

Theorem 6 Let X̃ be a projectable vector field on Mn . If ω ∈ ℑ0
1(Bm) , F ∈ ℑ1

1(Bm), and S, T ∈ ℑ1
2(Bm) ,

then

(i) (γS)
cc

X̃ = γ(SX),

(ii) (γS)(vvω) = 0,

(iii) (γS)(γF ) = 0,

(iv) (γS)(γT ) = 0,

where SX is tensor field of type (1,1) on Bm defined by SX(Z) = S(X,Z) for any Z ∈ ℑ1
0(Bm) .

Proof (i) Using (4.3) and (5.1), we have

(γS)
cc

X̃ =

 0 0 0
0 0 0
0 pσS

σ
βα 0

 X̃a

Xα

−pε(∂αX
ε)


=

 0
0

pσS
σ
βαX

α

 =

 0
0

pσ(SX)σβ

 = γ(SX).

Similarly, we have

(γS)(vvω) = 0, (γS)(γF ) = 0, (γS)(γT ) = 0.

2

6. Complete lift of affinor fields

Let F̃ ∈ ℑ1
1(Mn) be a projectable affinor field [7] with projection F = Fα

β (x
α)∂α⊗dxβ , i.e. F̃ has components

F̃ = (F̃ i
j ) =

(
F̃ a
b (x

a, xα) F̃ a
β (x

a, xα)

0 Fα
β (x

α)

)

with respect to the coordinates (xa, xα). On putting

cc

F̃ = (
cc

F̃ I
J ) =

 F̃ a
b F̃ a

β 0

0 Fα
β 0

0 pσ(∂βF
σ
α − ∂αF

σ
β ) F β

α

 , (6.1)

we easily see that ccF̃ I′

J ′ = AI′

I AJ
J ′

ccF̃ I
J .

We call ccF̃ the complete lift of the tensor field F̃ of type (1,1) to t∗(Bm).

Proof For simplicity we take only ccFα′

β′ . In fact,
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ccFα′

β′ = Aα′

α Aβ
β′ (

cc
Fα
β ) +Aα′

α Aβ
β′ (

cc
Fα
β ) +Aα′

α Aβ
β′(

ccFα
β
)

= pεA
γ
αA

ε
γα′Aβ

β′F
α
β +Aα

α′A
β
β′pσ(∂βF

σ
α − ∂αF

σ
β ) +Aα

α′(pε′A
θ
β′Aε′

θ β)F
β
α

= −pε(∂γA
γ
α)A

ε
α′A

β
β′F

α
β + pσA

α
α′A

β
β′(∂βF

σ
α )− pσA

α
α′A

β
β′∂αF

σ
β + pε′A

θ
β′Aε′

θ βF
β
α′

= −pε(∂γA
γ
α)A

ε
α′Fα

β′ + pσA
α
α′∂β′Fσ

α − pσA
β
β′A

α
α′∂αF

σ
β − pε′(∂βA

θ
β′)Aε′

θ F
β
α′

= −pα′(∂γA
γ
α)F

α
β′ + pσ∂β′Fσ

α′ − pσA
β
β′∂α′Fσ

β − pθ(∂βA
θ
β′)F

β
α′

= −pα′∂αF
α
β′ + pσ∂β′Fσ

α′ − pσ∂α′Fσ
β′ − pα′Aα′

θ Aα
βA

α′

β′Aβ
αA

β′

α′(∂βA
θ
β′)F

β
α′

= −pα′∂αF
α
β′ + pσ(∂β′Fσ

α′ − ∂α′Fσ
β′)− pα′Aα′

θ Aβ
αA

β′

α′(∂βA
θ
β′)Fα

β′

= −pα′∂αF
α
β′ + pσ′(∂β′Fσ′

α′ − ∂α′Fσ′

β′ ) + pα′Aα′

θ Aθ
β′A

β′

α′(∂βA
β
α)F

α
β′

= −pα′∂αF
α
β′ + pσ′(∂β′Fσ′

α′ − ∂α′Fσ′

β′ ) + pα′Aα′

θ Aθ
β′A

β′

α′∂αF
α
β′

= −pα′∂αF
α
β′ + pσ′(∂β′Fσ′

α′ − ∂α′Fσ′

β′ ) + pα′∂αF
α
β′

= pσ′(∂β′Fσ′

α′ − ∂α′Fσ′

β′ ).

Thus, we have ccFα′

β′ = pσ′(∂β′Fσ′

α′ − ∂α′Fσ′

β′ ). Similarly, we can easily find other components of ccF̃ I′

J ′ .

2

Theorem 7 Let F̃ , G̃, and X̃ be projectable affinor and vector fields on Mn with projections F,G , and X

on Bm, respectively. If ω ∈ ℑ0
1(Bm), then

(i) ccF̃ (γG) = γ(G ◦ F ),

(ii) ccF̃ vvω =vv (ω ◦ F ),

(iii) ccF̃ ccX̃ = cc(̃FX) + γ(LXF ).

Proof (i) If F̃ and G̃ are projectable affinor fields on Mn , then we have by (4.2) and (6.1)

cc

F̃ (γG) =

 F̃ a
b F̃ a

β 0

0 Fα
β 0

0 pσ(∂βF
σ
α − ∂αF

σ
β ) F β

α

 0
0

pεG
ε
β


=

 0
0

pεG
ε
βF

β
α

 =

 0
0

pε(G ◦ F )εα

 = γ(G ◦ F ).

Thus, we have ccF̃ (γG) = γ(G ◦ F ).

(ii) If ω ∈ ℑ0
1(Bm), and F̃ is a projectable affinor field on Mn , then we get by (3.2) and (6.1):

cc

F̃ vvω =

 F̃ a
b F̃ a

β 0

0 Fα
β 0

0 pσ(∂βF
σ
α − ∂αF

σ
β ) F β

α

 0
0
ωβ


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=

 0
0

ωβF
β
α

 =

 0
0

(ω ◦ F )α

 =vv (ω ◦ F ),

which gives
cc

F̃ vvω =vv (ω ◦ F ).

(iii) If F̃ and X̃ are projectable affinor and vector fields on Mn , respectively.

Then we have by (5.1) and (6.1):

cc

F̃
cc

X̃ =

 F̃ a
b F̃ a

β 0

0 Fα
β 0

0 pσ(∂βF
σ
α − ∂αF

σ
β ) F β

α

 X̃b

Xβ

−pε(∂βX
ε)



=

 F̃ a
b X̃

b + F̃ a
βX

β

Fα
β X

β

pσ(∂βF
σ
α − ∂αF

σ
β )X

β − pε(∂βX
ε)F β

α



=

 (̃FX)
a

(FX)α

−pσ∂α(FX)σ

+

 0
0

pσ(X
β∂βF

σ
α − (∂αX

β)Fσ
β − (∂βX

σ)F β
α )



=

 (̃FX)
a

(FX)α

−pσ∂α(FX)σ

+

 0
0

pσ(LXF )σα

 =
cc

(̃FX) + γ(LXF ),

which gives
cc

F̃
cc

X̃ =
cc

(̃FX) + γ(LXF ). 2
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