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Abstract: We mainly deal with the problem of admissibility for screen distributions on a lightlike hypersurface of both

a semi-Riemannian manifold and an indefinite S -manifold. In the latter case, we first show that a characteristic screen

distribution is never admissible, and then we provide a characterization for admissible screen distributions on proper

totally umbilical lightlike hypersurfaces. Finally, in studying Osserman conditions, we characterize Osserman totally

umbilical hypersurfaces of a semi-Riemannian manifold, obtaining explicit results on the eigenvalues of the pseudo-

Jacobi operators in the case of lightlike hypersurfaces with Lorentzian screen leaves.
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1. Introduction

The study of sectional curvature has always been one of the most interesting topics, since it can provide

information about the properties of manifolds. The study of Osserman conditions perfectly falls within this

area of interest. In Riemannian geometry, the original problem involving the Osserman conditions is known as

the Osserman Conjecture. Namely, let (M, g) be a Riemannian manifold, with curvature tensor R , and X a

unit vector of TpM , p ∈ M . It is then possible to define the symmetric endomorphism RX : X⊥ → X⊥ such

that RX = Rp(·, X)X , called the Jacobi operator with respect to X at p . A Riemannian manifold (M, g)

whose Jacobi operators have eigenvalues independent of X ∈ TpM and p ∈ M is said to be an Osserman

manifold. In [27], Osserman made the following conjecture.

Osserman Conjecture. Any Osserman manifold is either a locally flat space or a locally rank-one

symmetric space.

During the last years, the interest for this subject has been growing, and many authors have looked for a

complete answer to the conjecture. In [20] the reader can find the developments of this research in Riemannian,

Lorentzian, and semi-Riemannian contexts. For the Lorentzian context, a complete, positive answer to the

conjecture was obtained in a sequence of papers [9, 18, 19]. In the Riemannian context, the conjecture was

solved by Chi [12, 13, 14] for the manifolds with dimensions different from 4m , m ⩾ 1, and it still remained

open for 4m-dimensional manifolds. Recently Nikolayevsky provided results [23, 24, 25] for the manifolds whose

dimensions were left out by Chi.

Recently a generalization of the Osserman conditions to the context of degenerate (or lightlike) geometry
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was proposed (see, for example, [1, 3, 4, 5]). To this end it has been necessary to introduce a suitable new type

of Jacobi operator [3] to work with, since this context is characterized by some unusual features as being not

trivial of the kernel of the metric tensor.

It is worth investigating what happens in the degenerate context allowing the presence of an additional

geometrical structure on the ambient manifold. Hence, in this paper we find conditions for which a lightlike

hypersurface of an indefinite S -manifold is an Osserman manifold.

In Sections 2 and 3 we recall some standard facts on g.f.f -manifolds and give the basic tools on lightlike

geometry needed in the sequel.

In Section 4 we briefly discuss a key point of our study. Namely, since most of the geometrical objects

in lightlike geometry depend on the choice of a screen distribution, we give a detailed investigation of the

problem of admissibility of a screen distribution, in the sense of [3]. In particular, we deal with this problem

for the remarkable subclass of the so-called characteristic screen distributions, very important in the study of

lightlike hypersurfaces of indefinite S -manifolds. Even if sometimes such screen distributions have been used

as admissible, we show that characteristic screen distributions are not admissible.

In Section 5 we continue the study of admissible screen distributions considering the case of lightlike

hypersurfaces of an indefinite S -space form. Looking at the results in [3] and weakening its hypotheses, we

show that any admissible screen distribution on a proper totally umbilical lightlike hypersurface is integrable.

Then, extending Theorem 4.2 in [3], we obtain a characterization for admissible screen distributions in the case

of lightlike hypersurfaces of an indefinite S -space form.

Finally, in Section 6 we deal with Osserman conditions on lightlike hypersurfaces. At first, following [1, 3],

we briefly recall the definition of a pseudo-Jacobi operator and that of an Osserman lightlike hypersurface. Then,

after a few remarks that slightly simplify the study of the pseudo-Jacobi operator, we give a characterization of

Osserman totally umbilical lightlike hypersurfaces involving the behaviors of the leaves of its screen distributions.

There we apply the result in the case of lightlike hypersurfaces with Lorentzian screen leaves, obtaining a

characterization that involves explicit results on the eigenvalues of the pseudo-Jacobi operators.

All manifolds, tensor fields, and maps are assumed to be smooth, and we assume that all manifolds are

connected and paracompact. We use the Einstein convention, omitting the sum symbol for repeated indexes.

Following the notation of Kobayashi and Nomizu [22] for the curvature tensors on a (semi)-Riemannian manifold

(M, g), we put R(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z , and R(X,Y, Z,W ) = g(R(Z,W, Y ), X), for any

X,Y, Z,W ∈ Γ(TM).

If p ∈ M , for any nondegenerate 2-plane π = span{X,Y } in TpM , that is a 2-plane such that

∆(π) = g(X,X)g(Y, Y )− g(X,Y )2 ̸= 0, we denote by Kp(X,Y ) the sectional curvature of M with respect to

π at p , defined by

Kp(X,Y ) =
Rp(X,Y,X, Y )

∆(π)
=

gp(Rp(X,Y, Y ), X)

∆(π)
=

gp(RY (X), X)

∆(π)
.

2. Preliminaries

A globally framed f -manifold (briefly g.f.f -manifold) is a manifold M2n+s endowed with a nowhere vanishing

(1, 1)-tensor field φ of constant rank with a parallelizable kernel such that φ3 + φ = 0. This means that φ is

an f -structure on M and there exist s global vector fields ξi and s 1-forms ηi , i ∈ {1, . . . , s} , satisfying φ2 =

−I+ηi⊗ξi and ηi(ξj) = δij . A g.f.f -manifold (M2n+s, φ, ξi, η
i), i ∈ {1, . . . , s} , is said to be an indefinite g.f.f -
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manifold if it is endowed with a semi-Riemannian metric g satisfying g(φX,φY ) = g(X,Y ) − εiη
i(X)ηi(Y ),

for any tangent vector fields X and Y , where εi = ±1, according to whether ξi is spacelike or timelike.

An indefinite S -manifold is, by definition, an indefinite g.f.f -manifold that is normal, that is, N =

Nφ+2dηi⊗ ξi = 0, where Nφ is the Nijenhuis torsion of φ , and satisfies the condition dηi(X,Y ) = Φ(X,Y ) =

g(X,φY ) for any i ∈ {1, . . . , s} and X,Y ∈ Γ(TM).

In an indefinite S -manifold one has (∇Xφ)Y = g(φX,φY )ξ̄ + η̄(Y )φ2X , where η̄ =
∑s

i=1 εiη
i and

ξ̄ =
∑s

i=1 ξi , which implies that ∇Xξi = −εiφX and that ker(φ) is an integrable flat distribution. We remark

that an indefinite S -manifold is never flat since K(X, ξi) = εi for any X ∈ Dp , where D denotes the distribution

Im(φ) [10].

The reader can find more details about these structures in the Riemannian case, for example in [7, 8, 21]

and in [17], where the notion of almost S -manifolds was introduced, while one can principally find in [10] the

extension of this theory to the semi-Riemannian context.

Every S -manifold is subject to the following topological condition: it has to be either noncompact or

compact with a vanishing Euler characteristic, since it admits never vanishing vector fields. This implies that

such a manifold always admits semi-Riemannian metrics, and in particular Lorentz metrics.

Let (M2n+s, φ, ξα, η
α, g), α ∈ {1, . . . , s} , be an indefinite S -manifold. The curvature tensor R satisfies

the following formulas, for any X,Y ∈ D and any α, β, γ, δ ∈ {1, . . . , s} (see [10]):

R(X, ξα, X, Y ) = 0, R(ξα, X, ξβ , Y ) = εαεβg(X,Y ),

R(ξα, X, ξβ , ξγ) = 0, R(ξα, ξδ, ξβ , ξγ) = 0.
(2.1)

If p ∈ M , for any non-lightlike vector X ∈ Dp the 2-plane π = span{X,φX} is said to be a φ-plane, and its

sectional curvature Hp(X) is called the φ-sectional curvature of M at p with respect to X . If the φ-sectional

curvature Hp(X) is independent of both the non-lightlike vector X and the point p , then M is said to be an

indefinite S -space form, denoted by M(c), c ∈ R being the constant value of the φ-sectional curvature. In [10]

it was proven that an indefinite S -manifold is an indefinite S -space form M(c) if, and only if, the Riemannian

(0, 4)-type curvature tensor field R is given by

R(X,Y, Z,W ) = −c+ 3ε

4
{g(φY, φZ)g(φX,φW )− g(φX,φZ)g(φY, φW )}

− c− ε

4
{Φ(W,X)Φ(Z, Y )− Φ(Z,X)Φ(W,Y )

+ 2Φ(X,Y )Φ(W,Z)} − {η̄(W )η̄(X)g(φZ,φY )

− η̄(W )η̄(Y )g(φZ,φX) + η̄(Y )η̄(Z)g(φW,φX)

− η̄(Z)η̄(X)g(φW,φY )},

(2.2)

for any X,Y, Z,W ∈ Γ(TM), where η̄ =
∑s

α=1 εαη
α and ε =

∑s
α=1 εα .

3. Lightlike hypersurfaces

We briefly recall some basic elements of lightlike geometry. Standard references are the books [15] and [16].

Let (M̄n+2, ḡ) be a semi-Riemannian manifold and M a (connected) hypersurface of M̄ . Rather

differently from the Riemannian context, the induced metric g = ḡ|M on M can be degenerate. To point
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out these particular features, for any p ∈ M , one considers the radical (or null) space of M at p (see [26, page

53]), that is

RadTpM = TpM
⊥ ∩ TpM = {V ∈ TpM | gp(V,W ) = 0 for all W ∈ TpM}.

The metric g is nondegenerate if and only if RadTpM = {0} , for any p ∈ M , and, on the contrary, we

say that M is a lightlike hypersurface if RadTpM ̸= {0} at any p ∈ M . It is easy then to prove that

RadTM : p ∈ M 7−→ RadTpM is a rank-one distribution over M , called the radical distribution. More

precisely, for a lightlike hypersurface, it is RadTM = TM⊥ .

Let M be a lightlike hypersurface of (M̄n+2, ḡ). Any complementary vector space S(TpM) of the radical

space RadTpM in TpM is nondegenerate ([15, page 5], [16, page 5]) and, supposing M to be paracompact, it is

possible to choose a nondegenerate distribution S(TM) : p ∈ M 7−→ S(TpM) of rank n on M , called a screen

distribution of M . We remark that the choice of a screen distribution is not unique, but it is always possible

to find one and after making the choice of the screen distribution the lightlike hypersurface will be denoted by

the triple (M, g, S(TM)). Thus, one has the decomposition

TM = RadTM⊥S(TM) = TM⊥⊥S(TM),

where the symbol ⊥ used instead of ⊕ stands for an orthogonal direct sum. A very important tool in the

theory of lightlike geometry is provided by the following fundamental theorem ([15, page 79], [16, page 44]).

Theorem 3.1 Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, ḡ) . There

then exists a unique rank-one vector subbundle ltr(M) of TM̄ , with base space M , such that for any nonzero

section E of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of ltr(M) on U
satisfying ḡ(N,E) = 1 , ḡ(N,N) = 0 , and ḡ(N,W ) = 0 for any W ∈ Γ(S(TM)|U ) .

The vector bundle ltr(M) is called the lightlike transversal vector bundle of M with respect to S(TM). As a

consequence we have the following decomposition:

TM̄ |M = S(TM)⊥{Rad(TM)⊕ ltr(M)} = TM ⊕ ltr(M). (3.1)

Let {E,N} be a pair of local sections on U as in Theorem 3.1. We can write the local form of the Gauss and

Weingarten equations for the lightlike hypersurface (M, g, S(TM)) as follows: for any X,Y ∈ Γ(TM |U ),

∇̄XY = ∇XY +B(X,Y )N, ∇̄XN = −ANX + τ(X)N, (3.2)

where ∇̄ is the Levi-Civita connection of M̄ ; ∇ is a torsion-free linear connection on M , called the induced

connection on M ; B is a symmetric (0, 2)-type tensor field on M , called the local lightlike second fundamental

form of M ; AN is a (1, 1)-type tensor field, called the shape operator of M in M̄ ; and τ is a 1-form on M .

Remark 3.2 It is important to point out that, in general, the induced connection ∇ is not metric, and that

the local lightlike second fundamental form B is independent of the choice of the screen distribution, since

B(X,Y ) = ḡ(∇̄XY,E) . Moreover, B(X,E) = 0 , for any X ∈ Γ(TM) .

A lightlike hypersurface (M, g, S(TM)) is said to be totally umbilical if, for any coordinate neighborhood

U ⊂ M , there exists a local function ρ ∈ F(U) such that B(X,Y ) = ρg(X,Y ), for any X,Y ∈ Γ(TM |U ), and
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totally geodesic when ρ = 0, which means B = 0 ([15, 16]). A totally umbilical hypersurface that is not totally

geodesic (ρ ̸= 0) is called proper totally umbilical. Clearly, these definitions are independent of the choice of the

screen distribution.

Considering the decomposition TM = RadTM⊥S(TM), we can also write the local form of the Gauss

and Weingarten equations with respect to the screen distribution S(TM). Indeed, if P : Γ(TM) → Γ(S(TM))

is the projection morphism, we have

∇XPY = ∇∗
XPY + C(X,PY )E, ∇XE = −A∗

EX − τ(X)E, (3.3)

for any X,Y ∈ Γ(TM |U ). Here the (0, 2)-type tensor field C on M is called the local screen fundamental form

for S(TM).

Remark 3.3 In general, the local screen fundamental form C is not symmetric. It is symmetric on Γ(S(TM))

if and only if the screen distribution is integrable.

A screen distribution S(TM) is said to be totally umbilical if, for any coordinate neighborhood U ⊂ M ,

there exists a local function λ ∈ F(U) such that C(X,PY ) = λg(X,Y ), for any X,Y ∈ Γ(TM |U ), and totally

geodesic when λ = 0, that is C = 0 [15, 16].

From (3.2) and (3.3), one can easily deduce the following useful formulas:

B(X,Y ) = g(A∗
EX,Y ), C(X,PY ) = g(ANX,PY ), (3.4)

for any X,Y ∈ Γ(TM |U ).

Denote by R̄ and R the Riemann curvature tensors of ∇̄ and ∇ , respectively. Using the local Gauss

and Weingarten equations of M and S(TM), with respect to a pair of local sections {E,N} as in Theorem

3.1, one gets the local Gauss–Codazzi equations ([15, page 94], [16, page 66]). We quote only 3 of them that

will be very useful later:

ḡ(R̄(X,Y )Z,E) = (∇XB)(Y, Z)− (∇Y B)(X,Z) + τ(X)B(Y, Z) (3.5)

− τ(Y )B(X,Z),

ḡ(R̄(X,Y )Z,PW ) = g(R(X,Y )Z,PW ) +B(X,Z)C(Y, PW ) (3.6)

−B(Y, Z)C(X,PW ),

ḡ(R̄(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)− τ(X)C(Y, PZ) (3.7)

+ τ(Y )C(X,PZ),

where we put (∇XC)(Y, PZ) = X(C(Y, PZ))−C(∇XY, PZ)−C(Y,∇∗
Y PZ), for any X,Y, Z,W ∈ Γ(TM |U ).

Each of the above formulas, as most of the geometry of a lightlike hypersurface, is related to the choice of

a screen distribution. Due to these features, which make the geometry of a lightlike hypersurface very different

from the classical case of a nondegenerate hypersurface, it has been necessary to resolve some problems to deal

with the Osserman conditions in this context. More precisely, problems arise about finding a suitable definition

of a Jacobi operator related to the presence of a degenerate metric and regarding the lack of Riemannian

curvature symmetry properties for the screen distribution. In [3] the authors solved these issues.
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4. Admissible and characteristic screen distributions in indefinite S -manifolds

From (3.5), (3.6), and (3.7), it is clear that the induced Riemannian curvature tensor on a non-totally geodesic

lightlike hypersurface may not be an algebraic curvature tensor, i.e. it does not satisfy the usual symmetry

properties

R(X,Y, Z,W ) = R(Z,W,X, Y ),

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = −R(X,Y,W,Z),
(4.1)

which enable us to have a Jacobi operator with good properties. Nevertheless, since each geometrical object on

a lightlike hypersurface, except for the local lightlike second fundamental form B , depends on the choice of the

screen distribution, it is possible to find some suitable screen distributions such that these symmetry properties

hold, and these screen distributions are called admissible. In [3] some fundamental results about conditions to

have an admissible screen distribution were provided (see also [16, pages 146, 147]).

As in [11], we give the following definition.

Definition 4.1 Let (M̄2n+s, φ̄, ξ̄α, η̄
α, ḡ) , α ∈ {1, . . . , s} , be an indefinite g.g.f -manifold, and M a lightlike

hypersurface of M̄ with ker(φ̄) ⊂ TM . On such a lightlike hypersurface, a screen distribution S(TM) is called

characteristic if

(i) ker(φ̄) ⊂ S(TM) ,

(ii) φ̄(E) ∈ Γ(S(TM)|U ) ,

on any coordinate neighborhood U ⊂ M . A lightlike hypersurface (M, g, S(TM)) is said to be characteristic if

ker(φ̄) ⊂ TM and the chosen screen distribution S(TM) is characteristic.

These particular lightlike hypersurfaces have often been used in the related literature, and in fact the

above conditions (i) and (ii) together with (3.1) yield very special formulas and properties of the lightlike

hypersurfaces. Despite their importance, the characteristic screen distributions are not admissible, as we are

going to see. Thus, one does not have to use them when the properties in (4.1) are needed and, in particular,

they can not be used in the study of Osserman conditions in lightlike geometry.

Preliminarily, let us compute the local lightlike second fundamental form B and the local screen funda-

mental form C of a characteristic screen distribution on suitable pairs of elements.

Lemma 4.2 Let (M̄2n+s, φ̄, ξ̄α, η̄
α, ḡ) , α ∈ {1, . . . , s} , be an indefinite S -manifold, and (M, g, S(TM)) a

characteristic lightlike hypersurface. Then, for any α, β ∈ {1, . . . , s} , one has

B(φ̄E, ξ̄α) = 0, C(φ̄E, ξ̄α) = εα, B(φ̄N, ξ̄α) = εα

C(ξ̄α, ξ̄β) = 0, B(ξ̄α, ξ̄β) = 0.
(4.2)

Proof Since M̄ is an indefinite S -manifold, then ∇̄φ̄E ξ̄α = εαE . On the other hand, by (3.2), one gets

∇̄φ̄E ξ̄α = ∇φ̄E ξ̄α + B(φ̄E, ξ̄α)N , and hence B(φ̄E, ξ̄α) = 0. In the same way, using (3.3), one gets the other

formulas. 2
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Remark 4.3 From (4.2) it follows that characteristic lightlike hypersufaces can be neither totally umbilical nor

totally geodesic.

Proposition 4.4 Let (M̄2n+s, φ̄, ξ̄α, η̄
α, ḡ) , α ∈ {1, . . . , s} , be an indefinite S -manifold, and (M, g, S(TM))

a characteristic lightlike hypersurface. Then S(TM) is not an admissible screen distribution.

Proof It is easy to see that for a characteristic screen distribution φ̄N ∈ Γ(S(TM)) [11]. We compute

separately R(ξ̄α, φ̄E, ξ̄β , φ̄N) and R(ξ̄α, φ̄E, φ̄N, ξ̄β). From (3.6) and (2.1), using (4.2), we have

R(ξ̄α, φ̄E, ξ̄β , φ̄N) = R̄(ξ̄α, φ̄E, ξ̄β , φ̄N) +B(ξ̄α, ξ̄β)C(φ̄E, φ̄N)

−B(φ̄E, ξ̄β)C(ξ̄α, φ̄N)

= R̄(ξ̄α, φ̄E, ξ̄β , φ̄N) = εαεβ

R(ξ̄α, φ̄E, φ̄N, ξ̄β) = R̄(ξ̄α, φ̄E, φ̄N, ξ̄β) +B(ξ̄α, φ̄N)C(φ̄E, ξ̄β)

−B(φ̄E, φ̄N)C(ξ̄α, ξ̄β)

= −εαεβ + εβεα = 0.

Then our statement follows. 2

5. Admissible screen distributions on totally umbilical lightlike hypersurfaces

First, we provide some necessary conditions to have admissible screen distributions on a (noncharacteristic)

lightlike hypersurface of an indefinite S -space form.

Proposition 5.1 Let (M̄(c)2n+s, φ̄, ξ̄α, η̄
α, ḡ) , α ∈ {1, . . . , s} , be an indefinite S -space form, and (M, g, S(TM))

a lightlike hypersurface with ker(φ̄) ⊂ Γ(TM) . If S(TM) is an admissible screen distribution, then either

c = ε =
∑s

α=1 εα or the hypersurface is φ̄-invariant, i.e. φ̄(TM) ⊆ TM .

Proof From (3.6), using Remark 3.2, and from (2.2), for any X ∈ Γ(TM) one gets

R(E,X,E, PX) = R̄(E,X,E, PX)

= 3
c− ε

4
ḡ(PX, φ̄E)g(E, φ̄X) = −3

c− ε

4
ḡ(E, φ̄X)2.

On the other hand, being S(TM) admissible, R(E,X,E, PX) = −R(E,X,PX,E)

= g(R(E,X,PX), E) = 0, since E ∈ Γ(Rad(TM)). Thus, either c = ε or ḡ(φ̄X,E) = 0, that is the component

of φ̄X along ltr(M), and hence φ̄X ∈ Γ(TM). 2

In [3, Th. 4.3], [16, Th. 3.6.24, page 152] one finds a characterization for admissible screen distributions

on proper totally umbilical lightlike hypersurfaces of a semi-Riemannian space form. Here we give a proof of

the necessary condition, i.e. we prove that an admissible screen distribution is totally umbilical. The proof

of this condition is different from that provided in [3, 16] and it generalizes Theorem 4.3 in [3] to the case of

semi-Riemannian manifolds without constant sectional curvature. We then use it to extend the characterization
to proper totally umbilical lightlike hypersurfaces of indefinite S -space forms.
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Lemma 5.2 Let (M̄, ḡ) be a (n+2)-dimensional semi-Riemannian manifold, with n > 1 , and (M, g, S(TM))

a proper totally umbilical lightlike hypersurface of M̄ . If S(TM) is an admissible screen distribution, then it is

integrable.

Proof Put B(X,Y ) = ρg(X,Y ), for any X,Y ∈ Γ(TM |U ), where ρ is a nonvanishing smooth function on a

coordinate neighborhood U ⊂ M . From (3.6), for any X,Y, Z,W ∈ Γ(S(TM)|U ), we have

R(X,Y, Z,W ) = R̄(X,Y, Z,W ) + ρg(X,Z)C(Y,W )− ρg(Y,Z)C(X,W ),

from which, putting Z = X and W = X , by the admissibility of the screen distribution, it follows that

0 = ρg(X,X)C(Y,X)− ρg(Y,X)C(X,X).

Choosing X,Y ∈ Γ(S(TM)|U ) both non-lightlike and X⊥Y we get C(Y,X) = 0, since ρ ̸= 0. Now, let

(Wi)1⩽i⩽n be a local orthonormal frame for S(TM)|U . Let U, V ∈ Γ(S(TM)|U ), and writing U = uiWi and

V = viWi , with ui, vi ∈ F(U), we get

C(U, V ) = uiviC(Wi,Wi) = viuiC(Wi,Wi) = C(V,U);

thus, C is symmetric on Γ(S(TM)) and, by Remark 3.3, S(TM) is integrable. 2

Let us recall the following definition ([2, 16]).

Definition 5.3 A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian manifold is said to be locally

screen conformal if the shape operators AN and A∗
E of M and S(TM) , respectively, are related by AN = fA∗

E ,

where f is a nonvanishing smooth function on a coordinate neighborhood U ⊂ M .

Remark 5.4 From (3.4) one easily deduces that the above definition is equivalent to the condition C(X,PY ) =

fB(X,Y ) , for any X,Y ∈ Γ(TM) . It follows that any locally screen conformal hypersurface has integrable

screen distribution and that the geometry of M is equivalent to the geometry of the leaves of S(TM) . More

precisely, M is totally umbilical (resp.: totally geodesic) if and only if S(TM) is totally umbilical (res.: totally

geodesic) (see also [2, Th. 2], [16, Th. 2.2.9, page 56]).

In [3, Th. 3.2], [16, Th. 3.6.17, page 147] the following fundamental result, which links the admissibility

of a screen distribution to the fact of being locally screen conformal, was provided.

Theorem 5.5 Let (M̄, ḡ) be a semi-Riemannian manifold and (M, g, S(TM)) a lightlike hypersurface of M̄

with non-totally geodesic, integrable screen distribution. Then S(TM) is admissible if, and only if, at least one

of the following conditions holds:

(i) M is totally geodesic;

(ii) M is locally screen conformal, and R̄(X,PY )(Rad(TM)) ⊂ Rad(TM) , for any X,Y ∈ Γ(TM) (ambient

holonomy condition).

By Lemma 5.2, Theorem 5.5, and Remark 5.4, one easily gets the following result.
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Proposition 5.6 Let (M̄, ḡ) be a (n+2)-dimensional semi-Riemannian manifold and (M, g, S(TM)) a proper

totally umbilical lightlike hypersurface of M̄ , with non-totally geodesic screen distribution. If S(TM) is admis-

sible, then it is totally umbilical.

Now we can prove the following characterization for admissible screen distributions of proper totally

umbilical lightlike hypersurfaces of an indefinite S -space form, which generalizes that in [3, 16].

Theorem 5.7 Let (M̄(c)2n+s, φ̄, ξ̄α, η̄
α, ḡ) , α ∈ {1, . . . , s} , be an indefinite S -space form, and (M, g, S(TM))

a proper totally umbilical lightlike hypersurface with ker(φ̄) ⊂ Γ(TM) . Assume either that c = ε =
∑s

α=1 εα or

that M is φ̄-invariant. Then a screen distribution is admissible if and only if it is totally umbilical.

Proof By Proposition 5.6, we have that an admissible screen distribution is totally umbilical.

Conversely, put C(X,PY ) = λg(X,PY ) and B(X,Y ) = ρg(X,Y ) for any X,Y ∈ Γ(TM), where λ

and ρ are smooth functions on a coordinate neighborhood U ⊂ M . We are going to show that the induced

Riemannian curvature tensor R on M is an algebraic curvature tensor, i.e. it satisfies (4.1) on M . For any

X,Y, Z,W ∈ Γ(TM), since W = PW + ḡ(W,N)E , from (3.6) we have

R(X,Y, Z,W ) = R̄(X,Y, Z, PW ) + ρλ{g(X,Z)g(Y, PW )− g(Y,Z)g(X,PW )}.

Since either M is a φ̄-invariant hypersurface or M̄ has φ̄ -sectional curvature c = ε , by (2.2) a straightforward

calculation shows that R̄(X,Y, Z,E) = 0 for any X,Y, Z ∈ Γ(TM). Moreover, since g(X,PY ) = g(X,Y ) for

any X,Y ∈ Γ(TM), we have

R(X,Y, Z,W ) = R̄(X,Y, Z,W ) + ρλ{g(X,Z)g(Y,W )− g(Y,Z)g(X,W )},

for any X,Y, Z,W ∈ Γ(TM). The right side of the above identity is clearly an algebraic curvature tensor on

M , i.e. it satisfies (4.1), and this finishes the proof. 2

6. Osserman lightlike hypersurfaces

It is known that in a semi-Riemannian manifold (M̄, ḡ), using the (1, 3)-curvature tensor field R̄ , one can

define the Jacobi operator J̄z w.r.t. an element z of the unit spacelike (resp.: timelike) tangent sphere

S−
p (M̄) = {z ∈ TpM̄ | ḡ(z, z) = 1} (resp. S+

p (M̄) = {z ∈ TpM̄ | ḡ(z, z) = −1}) at a point p ∈ M̄ . It

is, by definition, the endomorphism J̄z : z⊥ → z⊥ such that

J̄z(x) = R̄p(x, z)z. (6.1)

It is evident that J̄z(x) is the only tangent vector in TpM̄ such that, for any y ∈ z⊥ , ḡ(J̄z(x), y) = −R̄(x, z, z, y).

In other words, using the natural musical isomorphisms related to the metric ḡ , (6.1) is equivalent to

J̄z(x) = −R̄p(x, z, z, ·)♯. (6.2)

When the metric is degenerate, due to the above equivalence, (6.1) completely fails, since we cannot use the

musical isomorphisms. Nevertheless, the equivalence between (6.1) and (6.2) suggests one way to introduce a

new kind of Jacobi operator, defining a new kind of musical isomorphism adapted to degenerate metrics. This
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was the way followed in [1] and [3], where this new kind of Jacobi operator was introduced and studied [4]. The

construction was generalized to the case of lightlike submanifolds in [16, 6].

Namely, let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, ḡ) and {E,N}
a pair of local sections on a coordinate neighborhood U ⊂ M , as in Theorem 3.1. One may consider the 1-form

n on M defined by

n(X) = ḡ(X,N) ∀ X ∈ Γ(TM).

A new metric g̃ on M is then defined putting

g̃(X,Y ) = g(X,Y ) + n(X)n(Y ),

for any X,Y ∈ Γ(TM). It is easy to verify that g̃ is a nondegenerate semi-Riemannian metric on M such that

g̃(E,E) = 1, g̃(E,W ) = 0, g̃(X,W ) = g(X,W ),

for any X ∈ Γ(TM) and W ∈ Γ(S(TM)). Having a nondegenerate metric allows us to consider the musical

isomorphisms ♭ and ♯ naturally associated with it, and pseudo-Jacobi operators can be introduced on the

lightlike hypersurface as in (6.2).

Namely, according to the notation of [1, 3, 6, 16, 20], let S−
p (M), S+

p (M) and Sp(M) denote the sets of

unit timelike, unit spacelike, and nonnull vectors in TpM , p ∈ M , respectively:

S−
p (M) = {X ∈ TpM | gp(X,X) = −1},

S+
p (M) = {X ∈ TpM | gp(X,X) = 1},

Sp(M) = S−
p (M) ∪ S+

p (M).

Definition 6.1 ([3, 6, 16]) Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold

(M̄, ḡ) such that S(TM) is an admissible screen distribution. If p ∈ M and X ∈ Sp(M) , the self-adjoint

endomorphism JR(X) : X⊥ → X⊥ such that JR(X)Y = −Rp(Y,X,X, ·)♯ is called the pseudo-Jacobi operator

with respect to X , where R is the induced Riemannian curvature tensor on M , and the orthogonal space X⊥

is computed with respect to the metric g .

Remark 6.2 By definition, JR(X)Y is the unique tangent vector to M at p such that g̃p(JR(X)Y,Z) =

Rp(X,Y,X,Z) , for any Y, Z ∈ X⊥ . It follows that JR(X)E = 0 , and hence JR(X)|Γ(Rad(TM)) = 0 and

JR(X)(X⊥) ⊂ Γ(S(TpM)) , for any X ∈ Sp(M) ([3]). Moreover, for any Z ∈ Γ(S(TM)) we have

g(JR(X)Y, Z) = g̃(JR(X)Y, Z) = R(X,Y,X,Z) = g(R(Y,X)X,Z).

Hence,

JR(X)Y = P (R(Y,X)X), (6.3)

for any X ∈ Sp(M) and any Y ∈ X⊥ , where P : Γ(TM) → Γ(S(TM)) is the canonical projection morphism.

Now, we set up the Osserman condition for lightlike hypersurfaces.
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Definition 6.3 ([3, 16]) A lightlike hypersurface M of a semi-Riemannian manifold (M̄, ḡ) is called timelike

(resp.: spacelike) Osserman at a point p ∈ M if, for each admissible screen distribution S(TM) , the charac-

teristic polynomial of JR(X) is independent of X ∈ S−
p (M) (resp.: X ∈ S+

p (M)). Moreover, if this condition

holds at each p ∈ M , then M is called pointwise timelike (resp.: spacelike) Osserman.

In [3] the authors showed that M being a timelike Osserman lightlike hypersurface at a point p ∈ M

is equivalent to M being spacelike Osserman at p ∈ M , so that it can be simply said “Osserman lightlike

hypersurface” at a point. Moreover, in the same paper it was pointed out that the above definition is independent

of the choice of the admissible screen distribution.

Remark 6.4 Taking X ∈ Sp(M) , p ∈ M , we write X⊥ = Rad(TM)⊥PX⊥S(TM) , and since g(PX,PX) =

g(X,X) , we can consider another Jacobi-type operator, namely the operator J∗
R(PX) : PX⊥S(TM) → PX⊥S(TM)

such that, for any Y ∈ PX⊥S(TM) , J∗
R(PX)(Y ) = P (R(Y, PX)PX) , which we call the screen Jacobi operator

associated with JR(X) . Due to the admissibility of the screen distribution, we get P (R(X,Y )Z) = 0 anytime

one of the arguments is E . Thus, by (6.3), we have

JR(X)(Y ) = J∗
R(PX)PY, (6.4)

for any X ∈ Sp(M) and any Y⊥X . This clearly implies that M is Osserman at p if and only if the

characteristic polynomial of J∗
R(PX) is independent of X ∈ S+

p (M) (or X ∈ S−
p (M)).

Theorem 6.5 Let (M, g, S(TM)) be a totally umbilical lightlike hypersurface of a semi-Riemannian manifold

(M̄, ḡ) with admissible screen distribution. Then M is Osserman at p if and only if the leaves of S(TM) are

Osserman at this point.

Proof Let R be the Riemannian curvature tensor induced on M , and R∗ the Riemannian curvature tensor on

the leaves of S(TM), defined by the Levi-Civita connection ∇∗ . Straightaway, for any X,Y, Z ∈ Γ(S(TM)),

by (3.3), we have

R(X,Y )Z = R∗(X,Y )Z + [C(X,Z)A∗
EY − C(Y, Z)A∗

EX]

+ [(∇XC)(Y, Z)− (∇Y C)(X,Z)]E

+ [τ(Y )C(X,Z)− τ(X)C(Y,Z)]E.

(6.5)

Since M is totally umbilical, then S(TM) is also totally umbilical, and hence B(X,Y ) = ρg(X,Y ) and

C(X,PY ) = λg(X,Y ), being ρ, λ smooth local functions. Using (3.4), from (6.5) it follows

P (R(X,Z)Z) = R∗(X,Z)Z + ρλ[g(X,Z)Z − g(Z,Z)X], (6.6)

for any X,Y, Z ∈ S(TM). When p ∈ M , it is plain that Z ∈ Sp(M) if and only if PZ ∈ Sp(M
∗) where M∗

is the leaf of S(TM) through p and, by (6.6), (6.4) yields

JR(Z)(X) = R∗
PZ(PX)− εZρλPX, (6.7)

for any X ∈ Z⊥ , where R∗
PZ is the Jacobi operator of the leaf M∗ at p , and εZ = g(Z,Z) = ±1. This, by

Remark 6.4, concludes the proof. 2
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An interesting consequence of the above result is obtained recalling that the Osserman Conjecture is true

in Lorentzian manifolds, as shown in Theorem 3.1.2 [20, pg. 42], which we quote here for the convenience of the

reader.

Theorem 6.6 ([20], Th. 3.1.2, page 42) “If (M, g) is a connected (n ⩾ 3)-dimensional Lorentzian

pointwise Osserman manifold, then (M, g) is a real space form, i.e. (M, g) is of constant sectional

curvature.”

Using this, we get the following characterization.

Theorem 6.7 Under the hypotheses of Theorem 6.5, if dim(M̄) = n + 2 , with n ⩾ 3 , and the index of ḡ is

2 , then the lightlike hypersurface (M, g, S(TM)) is pointwise Osserman if and only if each leaf of S(TM) is a

real space form.

Moreover, for any p ∈ M and any Z ∈ S−
p (M) , the pseudo-Jacobi operator JR(Z) is diagonalizable,

with exactly 2 eigenvalues, k0 = 0 with multiplicity 1 , and k1 = κp + λ(p)ρ(p) with multiplicity n − 2 , where

κp is the sectional curvature of the leaf M∗ at the point p ∈ M , and λ, ρ are local smooth functions on a

coordinate neighborhood U of p .

Proof By (3.1) on a coordinate neighborhood U of p we have the decomposition TM̄ |U = S(TM)⊥{Rad(TM)⊕
ltr(M)} and, by Theorem 3.1, the restriction of ḡ on Rad(TM) ⊕ ltr(M) has index 1. Thus, the index of

g on S(TM) is 1, i.e. its leaves are Lorentzian manifolds. Now our statement follows from Theorem 6.5,

Theorem 6.6, and (6.7), considering that, if Z ∈ S−
p (M), then R∗

PZ is diagonalizable, since it is a self-adjoint

endomorphism of the space PZ⊥S(TM) , on which the metric is positive defined. 2
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