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Abstract: We give necessary and sufficient conditions for warped product manifolds (M, g) , of dimension ⩾ 4, with

1-dimensional base, and in particular, for generalized Robertson–Walker spacetimes, to satisfy some generalized Einstein

metric condition. Namely, the difference tensor R·C−C ·R , formed from the curvature tensor R and the Weyl conformal

curvature tensor C , is expressed by the Tachibana tensor Q(S,R) formed from the Ricci tensor S and R . We also

construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S−αg) ⩽ 1, for

some α ∈ R , or non-quasi-Einstein.
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1. Introduction

A semi-Riemannian manifold (M, g), n = dimM ⩾ 3, is said to be an Einstein manifold if at every point its

Ricci tensor S is proportional to the metric tensor g , i.e. on M we have

S =
κ

n
g , (1)

where κ is the scalar curvature of (M, g). In particular, if S vanishes identically on M then (M, g) is called

a Ricci flat manifold. If at every point of M its Ricci tensor satisfies rankS ⩽ 1 then (M, g) is called a

Ricci-simple manifold (see, e.g., [31, 41]).

Let (M, g), n ⩾ 3, be a semi-Riemannian manifold and let US be the set of all points of M at which

S ̸= κ
n g . The manifold (M, g), n ⩾ 3, is said to be quasi-Einstein (see, e.g., [56] and [22] and references

therein) if at every point of US ⊂M we have rank (S − α g) = 1, for some α ∈ R .

For the curvature tensor R and the Weyl conformal curvature tensor C of (M, g), n ⩾ 4, we can define

on M the (0, 6)-tensors R ·C and C ·R . For precise definition of the symbols used, we refer to Sections 2 and

3 of this paper, as well as to [5, 22, 24, 32]. It is obvious that for any Ricci flat, as well as conformally flat,

semi-Riemannian manifold (M, g), n ⩾ 4, we have R ·C −C ·R = 0. For non-Ricci flat Einstein manifolds the
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tensor R · C − C ·R is nonzero. Namely, any Einstein manifold (M, g), n ⩾ 4, satisfies ([32], Theorem 3.1)

R · C − C ·R =
κ

(n− 1)n
Q(g,R) =

κ

(n− 1)n
Q(g, C) , (2)

i.e. at every point of M the difference tensor R · C − C · R and the Tachibana tensor Q(g,R), or Q(g, C),

are linearly dependent. We also mention that for any semi-Riemannian manifold (M, g), n ⩾ 4, we have

some identity (see Eq. (32)) that expresses the tensor R · C − C · R by some (0, 6)-tensors. In particular, by

making use of that identity we can express the difference tensor of some hypersurfaces in space forms by a linear

combination of the Tachibana tensors Q(g,R) and Q(S,R) ([24], Theorem 3.2; see also our Theorem 6.1(ii)

and Proposition 4.1).

We can also investigate semi-Riemannian manifolds (M, g), n ⩾ 4, for which the difference tensor

R · C − C · R is expressed by one of the following Tachibana tensors: Q(g,R), Q(g, C), Q(S,R), or Q(S,C).

In this way we obtain 4 curvature conditions. The first results related to those conditions are given in [32]. We

refer to [22] for a survey on this subject. Since these conditions are satisfied on any semi-Riemannian Einstein

manifold, they can be named generalized Einstein metric conditions (cf. [6], Chapter 16). In particular, (2) is

also a condition of this kind and in Section 2 we present results on manifolds satisfying

R · C − C ·R = L1Q(g,R) . (3)

In this paper we restrict our investigations to non-Einstein and nonconformally flat semi-Riemannian manifolds

(M, g), n ⩾ 4, satisfying on U = {x ∈M : Q(S,R) ̸= 0 at x} the condition

R · C − C ·R = LQ(S,R) , (4)

where L is some function on this set. We recall that at all points of a semi-Riemannian manifold (M, g), n ⩾ 3,

at which its Ricci tensor S is nonzero and Q(S,R) = 0, we have ([9], Theorem 4.1)

R ·R = 0 , (5)

i.e. such a manifold is semisymmetric. We also recall that if

R · S = 0 (6)

holds on a semi-Riemannian manifold then it is called Ricci-semisymmetric. The condition (4), under some

additional assumptions, was considered in [45] (see Theorem 2.2 of this paper).

Our main results are related to warped products M ×F Ñ with 1-dimensional base manifold (M, ḡ)

satisfying (4). Evidently, generalized Robertson–Walker spacetimes are warped products of this kind. We inves-

tigate separately 2 cases where the fiber (Ñ , g̃) is either non-Einstein or Einstein manifold. In the first case, in

Section 4, we prove that the associated function L satisfies L = 1
n−2 and we show that the warping function F

is a polynomial of the second degree. Moreover, (Ñ , g̃) satisfies some curvature condition presented by (46) (see

Theorems 4.1 and 4.2). Furthermore, in the second case (see Section 5), i.e. when M ×F Ñ is a quasi-Einstein

manifold, we show that also L = 1
n−2 and F is a polynomial of the second degree (see Theorem 5.1). Based

on these results, in Section 6 we give examples of warped products satisfying (4). In particular, we construct
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an example of a warped product manifold satisfying (4) having non-Einstein fiber realizing (46). Finally, we

mention that recently hypersurfaces in space forms having the tensor R ·C−C ·R expressed by some Tachibana

tensors were investigated in [26].

2. Preliminaries

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of class C∞ . Let

(M, g) be an n-dimensional semi-Riemannian manifold and let ∇ be its Levi-Civita connection and X(M) the

Lie algebra of vector fields on M . We define on M the endomorphisms X ∧A Y and R(X,Y ) of X(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y ,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z ,

respectively, where A is a symmetric (0, 2)-tensor on M and X,Y, Z ∈ X(M). The Ricci tensor S , the

Ricci operator S , and the scalar curvature κ of (M, g) are defined by S(X,Y ) = tr{Z → R(Z,X)Y } ,

g(SX,Y ) = S(X,Y ), and κ = tr S , respectively. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
(X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y )Z ,

assuming that n ⩾ 3. Now the (0, 4)-tensor G , the Riemann-Christoffel curvature tensor R , and the Weyl

conformal curvature tensor C of (M, g) are defined by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4) ,

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4) ,

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4) ,

respectively, where X1, X2, . . . ∈ X(M). Furthermore, we define the following sets: UR = {x ∈ M : R ̸=
κ

(n−1)nG at x} , US = {x ∈ M : S ̸= κ
ng at x} , and UC = {x ∈ M : C ̸= 0 at x} . It is easy to see that

US ∪ UC = UR .

Let B(X,Y ) be a skew-symmetric endomorphism of X(M) and let B be a (0, 4)-tensor associated with

B(X,Y ) by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4) . (7)

The tensor B is said to be a generalized curvature tensor if

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0 ,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2) .

Let B(X,Y ) be a skew-symmetric endomorphism of X(M) and let B be the tensor defined by (7). We

extend the endomorphism B(X,Y ) to derivation B(X,Y )· of the algebra of tensor fields on M , assuming that

it commutes with contractions and B(X,Y ) · f = 0, for any smooth function f on M . Now for a (0, k)-tensor

field T , k ⩾ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk) .
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In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k+ 2)-tensor Q(A, T ), named a Tachibana

tensor ([26]), by

Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk) .

In this manner we obtain the (0, 6)-tensors B ·B and Q(A,B). Setting in the above formulas B = R or B = C ,

T = R or T = C or T = S , A = g or A = S , we get the tensors R ·R , R ·C , C ·R , R ·S , Q(g,R), Q(S,R),

Q(g, C), and Q(g, S).

Let Bhijk , Thijk , and Aij be the local components of generalized curvature tensors B and T and a

symmetric (0, 2)-tensor A on M , respectively, where h, i, j, k, l,m, p, q ∈ {1, 2, . . . , n} . The local components

(B · T )hijklm and Q(A, T )hijklm of the tensors B · T and Q(A, T ) are the following:

(B · T )hijklm = gpq(TpijkBqhlm + ThpjkBqilm + ThipkBqjlm + ThijpBqklm) ,

Q(A, T )hijklm = AhlTmijk +AilThmjk +AjlThimk +AklThijm

− AhmTlijk −AimThljk −AjmThilk −AkmThijl . (8)

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ⩾ 2, we define their Kulkarni–Nomizu product E∧T
by (see, e.g., [21])

(E ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

−E(X1, X3)T (X2, X4, Y3, . . . , Yk) − E(X2, X4)T (X1, X3, Y3, . . . , Yk) .

According to [26], the tensor E ∧ T is called a Kulkarni–Nomizu tensor. Clearly, the tensors R , C , G , and

E ∧ F , where E and F are symmetric (0, 2)-tensors, are generalized curvature tensors.

A semi-Riemannian manifold (M, g), n ⩾ 3, is said to be locally symmetric if ∇R = 0 holds on M .

It is obvious that the last condition leads immediately to the integrability condition (5). Manifolds satisfying

(5) are called semisymmetric ([58, 59]). Riemannian semisymmetric manifolds were classified in [58] and [59].

Non-Riemannian semi-Riemannian manifolds (M, g), n ≥ 4, with parallel Weyl tensor (∇C = 0), which are

in addition nonlocally symmetric (∇R ̸= 0) and nonconformally flat (C ̸= 0) are called essentially conformally

symmetric manifolds, e.c.s. manifolds, in short ([13]–[18]). E.c.s. manifolds are semisymmetric (see, e.g.,

[13, 14]). In Remark 6.1(v) we present more details related to those manifolds. Another important subclass

of semisymmetric manifolds, investigated recently, form second-order symmetric manifolds [7, 55], i.e. semi-

Riemannian manifolds satisfying ∇∇R = 0. As a weaker condition than (5) there is

R ·R = LRQ(g,R) , (9)

which is considered on UR ⊂M , and hence LR is a function uniquely determined on this set. On M \ UR we

have R · R = Q(g,R) = 0. We note that Q(g,R) = 0 at a point if and only if R = κ
(n−1)nG at this point. A

semi-Riemannian manifold (M, g), n ⩾ 3, is said to be pseudosymmetric if (9) holds on UR ⊂M [5, 19, 28, 43].
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A semi-Riemannian manifold (M, g), n ⩾ 3, is said to be Ricci-symmetric if ∇S = 0 holds on M . It

is obvious that the last condition leads immediately to the integrability condition (6). Manifolds satisfying (6)

are called Ricci-semisymmetric. As a weaker condition than (6) there is

R · S = LSQ(g, S) , (10)

which is considered on US ⊂ M , and hence LS is a function uniquely determined on this set. On M \ US we

have R · S = Q(g, S) = 0. We note that Q(g, S) = 0 at a point if and only if (1) holds at this point (cf. [9],

Lemma 2.1 (i)). A semi-Riemannian manifold (M, g), n ⩾ 3, is said to be Ricci-pseudosymmetric if (10) holds

on US ⊂M [5, 19, 28, 46].

Every locally symmetric, resp. semisymmetric and pseudosymmetric, manifold is Ricci-symmetric, resp.

Ricci-semisymmetric and Ricci-pseudosymmetric. In all cases, the converse statements are not true. We refer

to [5, 22, 28, 44] for a wider presentation of results related to these classes of manifolds.

A geometric interpretation of (9), resp. (10), is given in [43], resp. in [46]. Semi-Riemannian manifolds

for which their curvature tensor R is expressed by a linear combination of the Kulkarni–Nomizu tensors S ∧S ,

g∧S , and G are called Roter-type manifolds; see, e.g., [36] and references therein. Precisely, a semi-Riemannian

manifold (M, g), n ⩾ 4, is said to be a Roter-type manifold if

R =
ϕ

2
S ∧ S + µ g ∧ S + η G (11)

holds on the set U1 of all points of US ∩ UC ⊂ M at which rank (S − α g) ⩾ 2, for every α ∈ R . It is easy

to prove that the functions ϕ , µ , and η are uniquely determined on U1 . Using (11) and suitable definitions

we can verify that on U1 the condition (9) is satisfied (e.g., see [36], Eqs. (7) and (8); [22], Theorem 6.7)

with LR = ϕ−1((n − 2)(µ2 − ϕη) − µ), and that the difference tensor R · C − C · R is expressed on U1 by a

linear combination of the tensors Q(S,R), Q(g,R), and Q(S,G) ([24], Eq. (47)), or, equivalently, by a linear

combination of the tensors Q(g,R) and Q(S,G) ([24], Eq. (48)).

Semi-Riemannian manifolds (M, g), n ⩾ 4, satisfying (3) on US ∩ UC ⊂ M were investigated in [31].

Among other results in that paper it was proven that: (i) R ·C = C ·R = 0 and rankS = 1 hold on US ∩UC ,

provided that (M, g) is a quasi-Einstein manifold; and (ii) (11), with some special coefficients ϕ, µ, η such that

R ·R = 0, and C ·R = −L1Q(g,R) hold on US ∩ UC , provided that (M, g) is a non-quasi-Einstein manifold.

We also mention that manifolds satisfying

C ·R = LQ(g,R) (12)

were investigated in [50]. Furthermore, we have

Theorem 2.1 ([32], Theorem 4.1 and Corollary 4.1) Let (M, g) , n ≥ 4 , be a semi-Riemannian mani-

fold. If R ·C −C ·R = LQ(g, C) holds on US ∩ UC ⊂M , for some function L , then R ·R = LQ(g,R) and

C ·R = 0 on this set. In particular, if R ·C = C ·R holds on US ∩ UC then R ·R = R ·C = C ·R = 0 on

this set.

As we remarked in Section 1, manifolds satisfying (4) were investigated in [45]. We have
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Theorem 2.2 ([45], Theorem 3.1 and Proposition 3.1) (i) Let (M, g) , n ⩾ 4 , be a nonconformally flat

and non-Einstein Ricci-semisymmetric manifold satisfying (4). Then on the set consisting of all points of M

at which L is nonzero we have L = 1
n−2 and

R(SX,Y, Z,W ) =
κ

n− 1
R(X,Y, Z,W ) . (13)

(ii) Let (M, g) , n ⩾ 4 , be a semi-Riemannian manifold satisfying (13). Then (M, g) is a Ricci-semisymmetric

manifold fulfilling (4) with L = 1
n−2 .

We mention that hypersurfaces isometrically immersed in spaces of constant curvature having the tensor

R · C expressed by a linear combination of the Tachibana tensors Q(g,R), Q(S,R), and Q(S,G) were

investigated in [40].

Quasi-Einstein hypersurfaces isometrically immersed in spaces of constant curvature were investigated in

[33, 41]; see also the references therein. In particular, in [33] an example of a quasi-Einstein hypersurface in a

semi-Riemannian space of constant curvature was found. More precisely, in that paper it was shown that some

warped product M ×F Ñ , with dimM = 1 and dim Ñ ⩾ 4, can be locally realized as a nonpseudosymmetric

Ricci-pseudosymmetric quasi-Einstein hypersurface in a semi-Riemannian space of constant curvature. The

difference tensor of that hypersurface is expressed by a linear combination of the tensors Q(g,R) and Q(S,R).

3. Warped product manifolds

Warped products play an important role in Riemannian geometry (see, e.g., [49, 51]) as well as in general

relativity theory (see, e.g., [3, 4, 34, 51]). Many well-known spacetimes of this theory, i.e. solutions of the

Einstein field equations, are warped products, e.g., the Schwarzschild, Kottler, Reissner–Nordström, Reissner–

Nordström–de Sitter, and Vaidya, as well as Robertson–Walker, spacetimes. We recall that a warped product

M ×F Ñ of a 1-dimensional manifold (M, ḡ), ḡ11 = −1, and a 3-dimensional Riemannian space of constant

curvature (Ñ , g̃), with a warping function F , is said to be a Robertson–Walker spacetime (see, e.g., [3, 4, 51, 57]).

It is well-known that the Robertson–Walker spacetimes are conformally flat quasi-Einstein manifolds. More

generally, one also considers warped products M ×F Ñ of (M, ḡ), dim M = 1, ḡ11 = −1, with a warping

function F and (n − 1)-dimensional Riemannian manifold (Ñ , g̃), n ⩾ 4. Such warped products are called

generalized Robertson–Walker spacetimes [1, 2, 38, 53, 54]. Curvature conditions of pseudosymmetry type on

such spacetimes have been considered among others in [8, 9, 10, 12, 35, 36, 37, 42, 48]. We also mention that

Einstein generalized Robertson–Walker spacetimes were classified in [2]. From (1) and (2) we immediately get

the following:

Theorem 3.1 On any Einstein manifold (M, g) , n ⩾ 4 we have

R · C − C ·R =
1

n− 1
Q(S,R) . (14)

In particular, (14) holds on any Einstein generalized Robertson–Walker spacetime.

Let now (M, ḡ) and (Ñ , g̃), dim M = p , dim Ñ = n − p , 1 ⩽ p < n , be semi-Riemannian manifolds.

Let F : M → R+ be a positive smooth function on M . The warped product manifold, or in short warped
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product, M ×F Ñ of (M, ḡ) and (Ñ , g̃) is the product manifold M × Ñ with the metric g = ḡ×F g̃ defined by

ḡ ×F g̃ = π∗
1 ḡ + (F ◦ π1)π∗

2 g̃ , where π1 : M × Ñ −→M and π2 : M × Ñ −→ Ñ are the natural projections on

M and Ñ , respectively. With respect to Corollary 3.1, in this paper we consider non-Einstein warped products

M ×F Ñ with 1-dimensional base manifold (M, ḡ) and an (n− 1)-dimensional fiber (Ñ , g̃), n ⩾ 4.

Let {U × Ṽ ;x1, x2 = y1, . . . , xn = yn−1} be a product chart for M × Ñ , where {U ;x1} and {Ṽ ; yα}

are systems of charts on (M, ḡ) and (Ñ , g̃), respectively. The local components of the metric g = ḡ ×F g̃ with

respect to this chart are the following: g11 = ḡ11 = ε = ±1, ghk = F g̃αβ if h = α and k = β , and ghk = 0

otherwise, α, β, γ, · · · ∈ {2, . . . , n} and h, i, j, k . . . ∈ {1, 2, . . . , n} . We will denote by bars (resp., by tildes)

tensors formed from ḡ (resp., g̃ ). It is known that the local components Γh
ij of the Levi-Civita connection ∇

of M ×F Ñ are the following (see, e.g., [49, 35]):

Γ1
11 = 0 , Γα

βγ = Γ̃α
βγ , Γ1

αβ = −ε
2
F ′g̃αβ ,

Γα
aβ =

1

2F
F ′δαβ , Γ1

α1 = Γα
11 = 0 , F ′ = ∂1F =

∂F

∂x1
. (15)

The local components Rhijk of the curvature tensor R and the local components Shk of the Ricci tensor S of

M ×F Ñ , which may not vanish identically, are the following (see, e.g., [20, 35]):

Rα11β = −1

2
T11 g̃αβ = − tr T

2
g11g̃αβ , Rαβγδ = F (R̃αβγδ −

∆1F

4F
G̃αβγδ) , (16)

S11 = −n− 1

2F
T11 , Sαβ = S̃αβ −

( tr T

2
+ (n− 2)

∆1F

4F

)
g̃αβ , (17)

T11 = F ′′ − (F ′)2

2F
, tr T = ḡ11T11 = ε

(
F ′′ − (F ′)2

2F

)
,

∆1F = ∆1ḡF = ḡ11(F ′)2 = ε(F ′)2 . (18)

The scalar curvature κ of M ×F Ñ satisfies the following relation:

κ =
1

F

(
κ̃− (n− 1)

(
tr T + (n− 2)

∆1F

4F

))
. (19)

Using (8), (16), and (17) we can check that the local components Q(g,R)hijklm and Q(S,R)hijklm of

the Tachibana tensors Q(g,R) and Q(S,R), which may not vanish identically, are the following:

Q(g,R)1βγδ1µ = Fg11
(
R̃µβγδ + (

tr T

2
− ∆1F

4F
)G̃µβγδ

)
, (20)

Q(g,R)αβγδλµ = F 2Q(g̃, R̃)αβγδλµ , (21)
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Q(S,R)1βγδ1µ = − tr T

2
g11

(
(n− 1)R̃µβγδ − g̃βγ S̃δµ + g̃βδS̃γµ

+ (
tr T

2
− ∆1F

4F
)G̃µβγδ

)
, (22)

Q(S,R)1β1δλµ = − tr T

2
g11Q(g̃, S̃)βδλµ , (23)

Q(S,R)αβγδλµ = F Q(S̃, R̃)αβγδλµ − ∆1F

4
Q(S̃, G̃)αβγδλµ

− F
( tr T

2
+

(n− 2)∆1F

4F

)
Q(g̃, R̃)αβγδλµ . (24)

Let V be the (0, 4)-tensor with the local components

Vhijk = glmShlRmijk = S l
h Rlijk . (25)

Using (16) and (17) we can verify that the only nonzero components of this tensor are the following:

V1βγ1 =
n− 1

4F
(tr T )T11g̃βγ =

n− 1

4F
(tr T )2 g11g̃βγ ,

Vα11δ = − tr T

2F
g11

(
S̃αδ −

( tr T

2
+

(n− 2)∆1F

4F

)
g̃αδ

)
,

Vαβγδ = S̃ ϵ
α R̃ϵβγδ −

( tr T

2
+

(n− 2)∆1F

4F

)
R̃αβγδ −

∆1F

4F
(g̃βγ S̃αδ − g̃βδS̃αγ)

+
( tr T

2
+

(n− 2)∆1F

4F

)∆1F

4F
G̃αβγδ . (26)

The last equality yields

Vαβγδ + Vβαγδ = S̃ ϵ
α R̃ϵβγδ + S̃ ϵ

β R̃ϵαγδ

−∆1F

4F
(g̃βγ S̃αδ − g̃βδS̃αγ + g̃αγ S̃βδ − g̃αδS̃βγ)

= (R̃ · S̃)αβγδ −
∆1F

4F
Q(g̃, S̃)αβγδ . (27)

Let P be a (0, 6)-tensor with local components

Phijklm = ghlVmijk − ghmVlijk − gilVmhjk + gimVlhjk + gjlVmkhi − gjmVlkhi

− gklVmjhi + gkmVljhi − gij(Vhklm + Vkhlm) − ghk(Vijlm + Vjilm)

+ gik(Vhjlm + Vjhlm) + ghj(Viklm + Vkilm) . (28)
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The local components of P , which may not vanish identically, are the following:

P1β1δλµ = g11
(
(R̃ · S̃)βδλµ + (

tr T

2
− ∆1F

4F
)Q(g̃, S̃)βδλµ

)
, (29)

P1βγδ1µ = g11

(
S̃ ϵ
µ R̃ϵβγδ −

( tr T

2
+

(n− 2)∆1F

4F

)
R̃µβγδ

+ (
tr T

2
− ∆1F

4F
)(g̃βγ S̃δµ − g̃βδS̃γµ)

+
(
(n− 2)(

∆1F

4F
)2 − (tr T )2

4
− (n− 3)tr T

2

∆1F

4F

)
G̃µβγδ

)
, (30)

Pαβγδλµ = F
(
g̃αλVµβγδ − g̃αµVλβγδ − g̃βλVµαγδ + g̃βµVλαγδ + g̃γλVµδαβ

− g̃γµVλδαβ − g̃δλVµγαβ + g̃δµVλγαβ − g̃βγ(Vαδλµ + Vδαλµ)

− g̃αδ(Vβγλµ + Vγβλµ) + g̃βδ(Vαγλµ + Vγαλµ) + g̃αγ(Vβδλµ + Vδβλµ)
)
. (31)

4. Warped products with non-Einsteinian fiber

Since we investigate non-Einstein and nonconformally flat manifolds satisfying (4), we restrict our considerations

to the set U = U ∩ US ∩ UC .

We assume that the warped product M ×F Ñ satisfies (4) and the fiber (Ñ , g̃) is not Einsteinian. Now

we shall use the following identity, which holds on any semi-Riemannian manifold ([24], Section 4):

(n− 2)(R · C − C ·R)hijklm = Q(S,R)hijklm − κ

n− 1
Q(g,R)hijklm + Phijklm . (32)

Thus, in view of (32) and the definition of the tensor P , condition (4) can be written in the following form:

(
(n− 2)L− 1

)
Q(S,R)hijklm = Phijklm − κ

n− 1
Q(g,R)hijklm . (33)

For h = 1, i = β, j = 1, k = δ, l = λ, m = µ , in view of (20)–(24), (33) yields(
(n− 2)L− 1

)
Q(S,R)1β1δλµ = P1β1δλµ . (34)

Substituting (23) and (29) into (34) we obtain

(R̃ · S̃)βδλµ =
(∆1F

4F
− (n− 2)L

2
tr T

)
Q(g̃, S̃)βδλµ . (35)

On the other hand, (4) implies

(R · C − C ·R)(X1, X2, X3, X4;X,Y ) + (R · C − C ·R)(X,Y,X1, X2;X3, X4)

+ (R · C − C ·R)(X3, X4, X, Y ;X1, X2) = 0 ,

which in virtue of Proposition 4.1 of [24] is equivalent to

(R · C)(X1, X2, X3, X4;X,Y ) + (R · C)(X,Y,X1, X2;X3, X4)

+ (R · C)(X3, X4, X, Y ;X1, X2) = 0 .
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Furthermore, we have ([8], Section 3, eq. (3.19)):

(R̃ · S̃)βδλµ = (
∆1F

4F
− tr T

2
)Q(g̃, S̃)βδλµ . (36)

Since (Ñ , g̃), dim Ñ ⩾ 3, is not Einsteinian, the tensor Q(g̃, S̃) is a nonzero tensor. Let Q(g̃, S̃) ̸= 0 at x ∈ U .

Thus, on a coordinate neighborhood V1 ⊂ U of x , in virtue of (35) and (36), we get

(L− 1

n− 2
) tr T = 0 .

We assert that tr T = 0. Supposing that tr T ̸= 0 at y ∈ V1 we have L = 1
n−2 on some neighborhood U1 ⊂ V1

of y . Therefore, (33) reduces on U1 to

P =
κ

n− 1
Q(g,R) . (37)

Evidently, on U1 we also have

∆1F

4F
− tr T

2
= const. (38)

Now (37) gives

P1βγδ1µ =
κ

n− 1
Q(g,R)1βγδ1µ . (39)

Substituting into this equality (19), (22), and (30) we obtain

S̃ ϵ
µ R̃ϵβγδ = (

κ̃

n− 1
− tr T

2
) R̃µβγδ + (

∆1F

4F
− tr T

2
)(g̃βγ S̃µδ − g̃βδS̃µγ)

− (
κ̃

n− 1
− tr T

2
)(

∆1F

4F
− tr T

2
)G̃µβγδ . (40)

Using now (38) and (40) we see that tr T = const. and consequently also ∆1F
4F = const. on U1 . Whence, after

standard calculations, we deduce that F must be of the form

F (x1) = (ax1 + b)2 , a, b ∈ R . (41)

For such F we have tr T = 0 on U1 , a contradiction. Therefore

tr T = 0 (42)

on V1 . Thus, (38) reduces on V1 to

∆1F

4F
= const. = c1 . (43)

Note that (42) and (43), in the same manner as above, imply (41) and we have

tr T = 0 ,
∆1F

4F
= c1 = εa2 . (44)

We prove now that

L =
1

n− 2
(45)
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on V1 . Applying (19), (20), (21), (30), (42), and (43) to

(
(n− 2)L− 1

)
Q(S,R)1βγδ1µ = P1βγδ1µ − κ

n− 1
Q(g,R)1βγδ1µ

we get

S̃ ϵ
µ R̃ϵβγδ =

κ̃

n− 1
R̃µβγδ + εa2(g̃βγ S̃µδ − g̃βδS̃µγ) − εκ̃a2

n− 1
G̃µβγδ . (46)

On the other hand, (26), by (42) and (43), gives

Vαβγδ = S̃ ϵ
α R̃ϵβγδ − (n− 2)c1R̃αβγδ − c1(g̃βγ S̃αδ − g̃βδS̃αγ) + (n− 2)c21G̃αβγδ ,

which by (46) turns into

Vαβγδ =
( κ̃

n− 1
− (n− 2)c1

)
R̃αβγδ + (n− 2)c21G̃αβγδ .

Substituting this into (31) we obtain

Pαβγδλµ = F
( κ̃

n− 1
− (n− 2)c1

)
Q(g̃, R̃)αβγδλµ . (47)

Now (
(n− 2)L− 1

)
Q(S,R)αβγδλµ = Pαβγδλµ − κ

n− 1
Q(g,R)αβγδλµ ,

by making use of (21), (47), and

κ

n− 1
=

1

F

( κ̃

n− 1
− (n− 2)c1

)
,

turns into (
(n− 2)L− 1

)
Q(S,R)αβγδλµ = 0 . (48)

Since V1 ⊂ U and in virtue of (22), (23), and (42) we have

Q(S,R)1βγδ1µ = Q(S,R)1β1δλµ = 0 ,

at least one of the local components of Q(S,R)αβγδλµ must be nonzero. Therefore, (48) implies (45). Thus we

have proven:

Theorem 4.1 Let M ×F Ñ be a warped product manifold with 1-dimensional base manifold (M, ḡ) and non-

Einstein (n − 1)-dimensional fiber (Ñ , g̃) , n ⩾ 4 . If (4) is satisfied on M ×F Ñ then on the set U we have

(46) and

L =
1

n− 2
, F (x1) = (ax1 + b)2 , a, b ∈ R . (49)

Corollary 4.1 Let M ×F Ñ be a generalized Robertson–Walker spacetime with non-Einstein fiber (Ñ , g̃) ,

n ⩾ 4 . If (4) is satisfied on M ×F Ñ then (46) and (49) hold on U .
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Proposition 4.1 Under assumptions of Theorem 4.1 the fiber manifold (Ñ , g̃) is a Ricci-pseudosymmetric

manifold of constant type (see, e.g., [41]), precisely

R̃ · S̃ = εa2Q(g̃, S̃) . (50)

Moreover, if n ⩾ 5 then the difference tensor R̃ · C̃ − C̃ · R̃ of the fiber is expressed by the Tachibana tensors

Q(S̃, R̃) and Q(g̃, R̃) ; precisely, we have

(n− 3)(R̃ · C̃ − C̃ · R̃) = Q(S̃, R̃) − κ̃

(n− 1)(n− 2)
Q(g̃, R̃) . (51)

Proof First we observe that (46) implies (50). Applying the identity (32) to (Ñ , g̃) we have

(n− 3)(R̃ · C̃ − C̃ · R̃) = Q(S̃, R̃) + P̃ − κ̃

n− 2
Q(g̃, R̃) . (52)

Using now (46) we get

Ṽαβγδ + Ṽβαγδ = εa2Q(g̃, S̃)αβγδ

and

P̃ =
κ̃

n− 1
Q(g̃, R̃) − εa2Q(S̃, G̃) − εa2 g̃ ∧Q(g̃, S̃) ,

which by making use of g̃ ∧ Q(g̃, S̃) = −Q(S̃, G̃) (see (28) of [24]) reduces to P̃ = κ̃
n−1 Q(g̃, R̃). Substituting

this equality into (52) we obtain (51). 2

We have also the converse statement to Theorem 4.1.

Theorem 4.2 Let (M, ḡ) , ḡ11 = ε , be a 1-dimensional manifold and let (Ñ , g̃) be an (n − 1)-dimensional

non-Einstein manifold, n ⩾ 4 , satisfying (46). If F (x1) = (ax1 + b)2 , then the warped product M ×F Ñ fulfills

(4) with L = 1
n−2 .

Proof As we have seen (cf. (33)), (4) for L = 1
n−2 takes the form

P =
κ

n− 1
Q(g,R) . (53)

Using now (27), (44), and (50) we have

Vαβγδ + Vβαγδ = 0 . (54)

Taking into account (26), (44), and (46), we obtain

Vαβγδ = ϕR̃αβγδ + ψ G̃αβγδ

for some ψ and ϕ = κ̃
n−1 − ε(n− 2)a2 . Substituting the above equality and (54) into (31) we get

Pαβγδλµ = FϕQ(g̃, R̃)αβγδλµ ,
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which in view of (19) and (44) takes the form

Pαβγδλµ =
κ

n− 1
Q(g,R)αβγδλµ .

Using (29), (44), and (50), we have P1β1δλµ = 0, which means that (34) is satisfied. Finally, in the same manner

we obtain (39). Thus we see that (53) is satisfied for all systems of indices. 2

Corollary 4.2 The equality (46) is satisfied on every Einstein manifold (Ñ , g̃) . Thus every warped product

M×F Ñ with 1-dimensional base (M, ḡ) , Einsteinian fiber (Ñ , g̃) , dim Ñ ⩾ 4 , which is not a space of constant

curvature, and the warping function F (x1) = (ax1 + b)2 , εa2 ̸= κ̃
(n−2)(n−1) , satisfies (4) with L = 1

n−2 .

Remark 4.1. Let M ×F Ñ be the warped product manifold with 1-dimensional base (M, ḡ), Einsteinian fiber

(Ñ , g̃), dim Ñ ⩾ 4, and the warping function F (x1) = (ax1 + b)2 , εa2 = κ̃
(n−2)(n−1) . Now (17) yields S = 0,

i.e. M ×F Ñ is a Ricci-flat manifold.

5. Warped products with Einsteinian fiber

In this section we consider non-Einstein warped products M ×F Ñ , dimM = 1, assuming that a fiber (Ñ , g̃)

is an Einstein manifold, i.e.

S̃αβ =
κ̃

n− 1
g̃αβ . (55)

Using (17) we can easily show that such warped product is a quasi-Einstein manifold. It is worth noticing that

R̃ ̸= κ̃
(n−1)(n−2) G̃ on U . Using (23), (29), and (55), we get

Q(S,R)1β1δλµ = P1β1δλµ = 0 . (56)

Analogously, in view of (22), (30), and (55), we have

Q(S,R)1αβγ1δ =
tr T

2
g11

(
−(n− 1)R̃δαβγ +

( κ̃

n− 1
− (

tr T

2
− ∆1F

4F
)
)
R̃δαβγ

)
, (57)

P1βγδ1µ = g11

(
ηR̃µβγδ (58)

+
(
(
tr T

2
− ∆1F

4F
)

κ̃

n− 1
+ (n− 2)(

∆1F

4F
)2 − (tr T )2

4
− (n− 3)

tr T

2

∆1F

4F

)
G̃µβγδ

)
where

η =
κ̃

n− 1
− tr T

2
− (n− 2)∆1F

4F
.

Finally, making use of (26) and (55), we obtain

Vαβγδ = η (R̃αβγδ −
∆1F

4F
G̃αβγδ),
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and next, in virtue of (24) and (31), also

Q(S,R)αβγδλµ = FηQ(g̃, R̃)αβγδλµ , (59)

Pαβγδλµ = FηQ(g̃, R̃)αβγδλµ . (60)

Thus, taking into account (20), (21), and (56)–(60), we see that (33) is equivalent to the following 2 equalities:

(
(n− 2)L− 1

) tr T

2

(
−(n− 1)R̃+

( κ̃

n− 1
− (

tr T

2
− ∆1F

4F
)
)
G̃
)

=
tr T

2

(
R̃+ (

tr T

2
− ∆1F

4F
) G̃

)
, (61)

(
(n− 2)L− 1

)
η Q(g̃, R̃) =

tr T

2
Q(g̃, R̃) . (62)

We consider 2 cases: (i) tr T = 0 and (ii) tr T ̸= 0.

(i) tr T = 0. Since Q(g̃, R̃) ̸= 0 on U , (62) leads to

(
(n− 2)L− 1

)( κ̃

n− 1
− (n− 2)∆1F

4F

)
= 0 .

Supposing that κ̃
(n−2)(n−1) = ∆1F

4F and using (17) we obtain S = 0, a contradiction. Thus we get κ̃
(n−2)(n−1) ̸=

∆1F
4F and L = 1

n−2 . Moreover, solving the differential equation tr T = 0, one can see that the warping function

F must be of the form (41). Thus, we have the situation described in Corollary 4.2.

(ii) tr T ̸= 0. Now (61) leads to

(n− 2)
(
(n− 1)L− 1

)
R̃ =

(
(n− 2)L

( κ̃

n− 1
− (

tr T

2
− ∆1F

4F
)
)
− κ̃

n− 1

)
G̃ ,

whence L = 1
n−1 and

∆1F

4F
− tr T

2
=

κ̃

(n− 1)(n− 2)
. (63)

It is worth noticing that under the above equalities (62) also holds. Applying (63) to (17), after standard

calculations, we get (1), a contradiction. Thus we have proven:

Theorem 5.1 Let M ×F Ñ be a non-Einstein warped product manifold with 1-dimensional base manifold

(M, ḡ) and Einsteinian (n− 1)-dimensional fiber (Ñ , g̃) . If (4) is satisfied on M ×F Ñ , then on the set U we

have:

L =
1

n− 2
, F (x1) = (ax1 + b)2 , a, b ∈ R , εa2 ̸= κ̃

(n− 2)(n− 1)
.

Remark 5.1. Let M ×F Ñ be the warped product manifold with 1-dimensional base (M, ḡ), Einsteinian fiber

(Ñ , g̃), dim Ñ ⩾ 4, and the warping function F .
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(i) We assume that F satisfies (63). As we stated above, now M ×F Ñ is an Einstein manifold. Furthermore,

it is easy to check that (63), in view of (18), takes the form

F F ′′ − (F ′)2 + 2εC1F = 0 , C1 =
κ̃

(n− 1)(n− 2)
. (64)

This is exactly equation (29) of [36]. We can check that the following functions are solutions of (64) (cf. [36],

Lemma 3.1):

F (x1) = εC1 (x1 +
εc

C1
)2 , εC1 > 0 ,

F (x1) =
c

2

(
exp(± b

2
x1) − 2εC1

b2c
exp(∓ b

2
x1)

)2
, c > 0 , b ̸= 0 ,

F (x1) =
2εC1

c

(
1 + sin(cx1 + b)

)
,

εC1

c
> 0 ,

where b and c are constants and x1 belongs to a suitable nonempty open interval of R .

(ii) As was mentioned in Section 3, Einstein generalized Robertson–Walker spacetimes were classified in [2]. As

was stated in [2], if M ×f Ñ is a generalized Robertson–Walker spacetime, with ε = −1, the warping function

f , and the Einsteinian fiber (Ñ , g̃) and ε = −1 is an Einstein manifold, then the differential equations given

in (3) of [2] must be satisfied. Those equations, adopted to our denotations, takes the form

ff ′′ =
κ

(n− 1)n
f2 ,

κ

(n− 1)n
f2 =

κ̃

(n− 2)(n− 1)
+ (f ′)2 ,

respectively. If now we set f =
√
F then the equations presented above lead to (64).

6. Examples

Corollary 4.2 and Theorem 5.1 give rise to examples of warped products satisfying (4) with Einstein fiber. The

problem of finding of a warped product satisfying (4) with non-Einstein fiber reduces, via Theorem 4.2, to the

problem of finding an example of a semi-Riemannian manifold (Ñ , g̃), dim Ñ = n − 1 ⩾ 3, fulfilling (46). To

obtain a suitable example we will use results of [21, 24, 30]. First of all, we adopt results contained in Theorem

3.1 of [21] and in Theorem 3.2 of [24]. Those results we can present in the following:

Theorem 6.1 Let (Ñ , g̃) be a hypersurface isometrically immersed in a semi-Riemannian space of constant

curvature Nn
s (c) , n ⩾ 4 , with signature (s, n− s) , where c = τ

(n−1)n , τ is the scalar curvature of the ambient

space and g̃ is the metric tensor induced on Ñ . Moreover, let the second fundamental tensor H of Ñ satisfy

on some nonempty connected set Ũ ⊂ Ñ the equation

H3 = tr(H)H2 + λH, (65)

where λ is some function on Ũ , and let the constant ε = ±1 be defined by the Gauss equation of Ñ in Nn
s (c) ,

i.e. by

R̃ =
ε

2
H ∧H +

τ

(n− 1)n
G̃ .
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(i) (cf. [21], Theorem 3.1) On Ũ we have

S̃ ϵ
µ R̃ϵβγδ = µ

(
R̃µβγδ −

τ

(n− 1)n
G̃µβγδ

)
+

τ

(n− 1)n
(g̃βγ S̃µδ − g̃βδS̃µγ), (66)

where µ = (n−2)τ
(n−1)n − ε λ .

(ii) (cf. [24], Theorem 3.2) If n ⩾ 5 then on Ũ we have

(n− 3) (R̃ · C̃ − C̃ · R̃) = Q(S̃, R̃) +
( (n− 2)τ

(n− 1)n
− ε λ− κ̃

n− 2

)
Q(g̃, R̃) , (67)

where κ̃ is the scalar curvature of Ñ .

We note that (66) implies immediately that R̃ · S̃ = τ
(n−1)n Q(g̃, S̃). In addition, if we assume that on Ũ

we have

λ = 0 and (n− 2)τ = nκ̃, (68)

then (46) holds on Ũ . The last remark suggests a solution of our problem. Namely, the last 2 conditions are

realized on the hypersurface presented in Example 5.1 of [30]. Let (M, g) be the manifold defined in Example

5.1 of [30]. We denote it by (Ñ , g̃). Clearly (Ñ , g̃) is a manifold of dimension ⩾ 4. However, it is easy to verify

that if we repeat the construction of (Ñ , g̃) for the 3-dimensional case then all curvature properties remain

true, excluding, of course, properties expressed by its Weyl conformal curvature tensor. Thus, without loss of

generality, we can assume that dim Ñ = n− 1 ⩾ 3. In Example 5.1 of [30], among other things, it was shown

that (Ñ , g̃) is locally isometric to a hypersurface in a semi-Riemannian space of nonzero constant curvature.

Since our considerations are local, we can assume that (Ñ , g̃) is a hypersurface isometrically immersed in that

space. Since (Ñ , g̃) fulfils (68), Theorem 4.2 finishes our construction. We note that by making use of (67) and

(68), we obtain (51).

Remark 6.1. (i) The Roter-type warped products M ×F Ñ with 1-dimensional base manifold (M, g) and

non-Einstein (n − 1)-dimensional fiber (Ñ , g̃), n ⩾ 4, were investigated in [36]. Among other results it was

proven that the curvature tensor R̃ of the fiber (Ñ , g̃) is expressed by the Kulkarni–Nomizu tensors S̃ ∧ S̃ ,

g̃∧ S̃ , and G̃ , i.e. the fiber also is a Roter-type manifold, provided that n ⩾ 5. Therefore, if we assume that the

fiber manifold (Ñ , g̃) considered in Theorem 6.1 is a nonpseudosymmetric Ricci-pseudosymmetric hypersurface

(for instance, the Cartan hypersurfaces of dimension 6, 12, or 24 have this property (see, e.g., [41])), then

fibers of both constructions are nonisometric.
(ii) From (12), by a suitable contraction, we get

C · S = LQ(g, S) . (69)

We refer to [47] and [50] for examples of warped products satisfying (69). The condition (69) holds on some

hypersurfaces in semi-Riemannian space forms, and, in particular, on the Cartan hypersurfaces ([21], Theorems

3.1 and 4.3). Hypersurfaces in semi-Euclidean space satisfying (69) were investigated in [52].
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(iii) We also can investigate semi-Riemannian manifolds (M, g), n ⩾ 4, satisfying on UC ⊂ M the following

condition of pseudosymmetric type (see, e.g., [11, 29]):

R ·R−Q(S,R) = LQ(g, C) , (70)

where L is some function on this set. Warped products satisfying (70) were investigated in [11]. Among other

results, in [11] it was shown that this condition is satisfied on every 4-dimensional warped product M×F Ñ with

1-dimensional base. Thus, in particular, every 4-dimensional generalized Robertson–Walker spacetime satisfies

(70). We mention that (70) holds on every hypersurface in a semi-Riemannian space of constant curvature (see,

e.g., [22], eq. (4.4)).

(iv) In [23] (Example 4.1) a warped product M ×F Ñ of an (n − 1)-dimensional base (M, g), n ⩾ 4, and

an 1-dimensional fiber (Ñ , g̃) satisfying rankS = 1, κ = 0, R · R = 0, and C · S = 0 was constructed.

In addition, we can easily check that (4) with L = 1
n−2 and Q(S,C) = Q(S,R) hold on M ×F Ñ ([25]).

Therefore, on M ×F Ñ we also have (n− 2) (R ·C −C ·R) = Q(S,C). Semi-Riemannian manifolds satisfying

R · C − C · R = LQ(S,C), for some function L , were investigated in [25]. An example of a quasi-Einstein

non-Ricci-simple manifold satisfying the last condition was given in Section 6 of [22].

(v) We recall that non-Riemannian semi-Riemannian manifolds (M, g), n ≥ 4, with parallel Weyl tensor

(∇C = 0), which are in addition nonlocally symmetric (∇R ̸= 0) and nonconformally flat (C ̸= 0), are called

essentially conformally symmetric manifolds, or e.c.s. manifolds, in short (see, e.g., [13, 14]). E.c.s. manifolds

are semisymmetric manifolds satisfying ([13], Theorems 7, 8 and 9): Q(S,C) = 0, C(SX,Y, Z,W ) = 0,

S(SX,Y ) = 0, κ = 0. In addition, on every e.c.s. manifold (M, g) we have [14]: rankS ⩽ 2 and

F C = (1/2)S ∧ S , where F is some function on M , called the fundamental function. The local structure

of e.c.s. manifolds is determined [15, 17]. Certain e.c.s. metrics are realized on compact manifolds [16, 18].

Let now (M, g), n ≥ 4, be an e.c.s. manifold satisfying rankS ⩽ 1. Now it is easy to check that at all

points of M at which rankS = 1 the conditions Q(S,C) = 0, C(SX,Y, Z,W ) = 0 turn into Q(S,R) = 0,

R(SX,Y, Z,W ) = 0, respectively. The last equality means that the tensor V , defined by (25), vanishes.

Therefore, (28) reduces to P = 0. Now we see that the identity (32) turns into R · C − C · R = 0, and, in

consequence, at all points of M at which rankS = 1 we have R ·C −C ·R = Q(S,R) = 0. Thus, we can state

that the last condition holds on any Ricci-simple e.c.s. manifold. Finally, we also remark that the last result is

an immediate consequence of Theorem 2.2.

7. Conclusions

Let M ×F Ñ be the warped product of an 1-dimensional manifold (M, g), g11 = ε = ±1, the warping function

F : M → R+ , and an (n− 1)-dimensional, n ⩾ 4, semi-Riemannian manifold (Ñ , g̃).

If (Ñ , g̃) is a semi-Riemannian space of constant curvature then M ×F Ñ is a quasi-Eintein conformally

flat pseudosymmetric manifold. Evidently, the Friedmann–Lemâıtre–Robertson–Walker spacetimes belong to

this class of manifolds. Furthermore, if the fiber (Ñ , g̃), n ⩾ 5, is an Einstein manifold, which is not of constant

curvature, then M ×F Ñ is a quasi-Einstein nonconformally flat nonpseudosymmetric Ricci-pseudosymmetric

manifold. In this case the difference tensor R ·C −C ·R is expressed by a linear combination of the Tachibana

tensors Q(g,R) and Q(S,R) ([8]).
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If the fibre (Ñ , g̃), n ⩾ 4, is a conformally flat Ricci simple manifold such that its scalar curvature κ̃

vanishes then M ×F Ñ is a non-conformally flat pseudosymmetric manifold, provided that F = F (x1) = expx1

([10], Proposition 4.2 and Example 4.1). In addition we have (n− 1) (R · C − C ·R) = Q(S,C) [25].

If the fiber (Ñ , g̃), n ⩾ 4, is some Roter-type manifold and the warping function F satisfies (64), then

M ×F Ñ is a Roter-type manifold and in consequence a nonconformally flat pseudosymmetric manifold ([36],

Theorem 5.1). As was mentioned in Section 2, the tensor R ·C −C ·R is expressed by a linear combination of

some Tachibana tensors.

The above presented facts show that under some conditions imposed on the fiber or the fiber and the

warping function of a generalized Robertson–Walker spacetime, such spacetime is a pseudosymmetric or Ricci-

pseudosymmetric manifold and its difference tensor R ·C −C ·R is expressed by a linear combination of some

Tachibana tensors. In this paper we consider an inverse problem. Namely, if the tensors R·C−C ·R and Q(S,R)

are linearly dependent on a generalized Robertson–Walker spacetime then we determine the warping function,

as well as curvature properties of the fiber of such spacetime. In the case where the considered generalized

Robertson–Walker spacetimes are 4-dimensional manifolds, it is possible to apply the algebraic classification of

spacetimes satisfying some conditions of the pseudosymmetry type given in [27]; see also [39, 42].
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[5] Belkhelfa M, Deszcz R, G logowska M, Hotloś M, Kowalczyk D, Verstraelen L. On some type of curvature conditions.

Banach Center Publ Inst Math Polish Acad Sci 2002; 57: 179–194.

[6] Besse AL. Einstein Manifolds. Berlin, Germany; Springer-Verlag, 1987.

[7] Blanco OF, Sánchez M, Senovilla JMM. Structure of second-order symmetric Lorentzian manifolds. J Eur Math

Soc 2013; 15: 595–634.

370

http://dx.doi.org/10.2748/tmj/1178225107
http://dx.doi.org/10.2748/tmj/1178225107
http://dx.doi.org/10.4171/JEMS/368
http://dx.doi.org/10.4171/JEMS/368


ARSLAN et al./Turk J Math
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