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Abstract: A ring R is defined to be nil-semicommutative if ab ∈ N(R) implies arb ∈ N(R) for a, b, r ∈ R , where N(R)

stands for the set of nilpotents of R . Nil-semicommutative rings are generalization of NI rings. It is proved that (1) R

is strongly regular if and only if R is von Neumann regular and nil-semicommutative; (2) Exchange nil-semicommutative

rings are clean and have stable range 1; (3) If R is a nil-semicommutative right MC2 ring whose simple singular right

modules are Y J− injective, then R is a reduced weakly regular ring; (4) Let R be a nil-semicommutative π−regular

ring. Then R is an (S, 2)-ring if and only if Z/2Z is not a homomorphic image of R .
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1. Introduction

All rings considered in this article are associative with identity, and all modules are unital. The symbols J(R),

P (R), N(R), U(R), E(R), Maxr(R), Sl(R), and Sr(R) will stand respectively for the Jacobson radical,

the prime radical, the set of all nilpotent elements, the set of all invertible elements, the set of all idempotent

elements, the set of all maximal right ideals of R , the left socle of R , and the right socle of R . For any

nonempty subset X of a ring R , r(X) = rR(X) and l(X) = lR(X) denote the right annihilators of X and the

left annihilators of X , respectively.

Recall that a ring R is nil-semicommutative [3] if for any a, b ∈ R , ab ∈ N(R) implies that arb ∈ N(R)

holds for each r ∈ R . A ring R is 2 − primal if N(R) = P (R), and R is said to be an NI−ring if N(R)

forms an ideal of R . A ring R is semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R . It is known that

the condition semicommutativity implies 2 − primal , while 2 − primal implies NI , and no reversal holds by

[11]. By [3], NI rings are nil-semicommutative, but whether the converse holds is an open problem posed in

[3]. Proposition 2.4 points out that a ring R is NI if and only if R is nil-semicommutative and (N(R),+)

is a subgroup of (R,+). [3, Example 2.2] implies that nil-semicommutativity is a proper generalization of

semicommutativity. In this paper, many properties of nil-semicommutative rings are introduced and many

known results on semicommutative rings are extended.

An element a of R is called exchange if there exists e ∈ E(R) such that e ∈ aR and 1− e ∈ (1− a)R ,

and a is said to be clean if a is a sum of a unit and an idempotent of R . It is known from [13, Proposition
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1.8] that clean elements are always exchange, and the converse holds when R is an Abelian ring. R is called an

exchange ring if every element of R is an exchange element, and R is said to be clean if every element of R is

clean. Clearly, every clean ring is exchange and the converse is not true unless R satisfies one of the following

conditions: (1) R is an Abelian ring ([13]); (2) R is a left quasi-duo ring ([22]); (3) R is a quasi-normal ring

([18]); (4) R is a weakly normal ring ([20]). In this paper, we shall show that nil-semicommutative exchange

rings are clean.

According to [15], a ring R is called to have stable range 1 if for any a, b ∈ R satisfying aR + bR = R ,

there exists y ∈ R such that a+ by ∈ U(R). [23, Theorem 6] showed that exchange rings with all idempotents

central have stable range 1. In particular, it is proved that left quasi-duo exchange rings have stable range 1.

[18, Theorem 4.8] showed that quasi-normal exchange rings have stable range 1. In this paper, we shall show

that nil-semicommutative exchange rings have stable range 1.

2. Characterizations and properties

Obviously, a ring R is nil-semicommutative if and only if for any n ≥ 2 and a1, a2, · · · , an ∈ R , a1a2 · · · an ∈
N(R) implies a1r1a2r2 · · · an−1rn−1an ∈ N(R) for any r1, r2, · · · , rn−1 ∈ R . In particular, if a ∈ N(R) then

aR,Ra ⊆ N(R). Hence, if R is a nil-semicommutative ring, then N(R) ⊆ J(R). In fact, we have the following

proposition.

Proposition 2.1 The following conditions are equivalent for a ring R :

(1) R is a nil-semicommutative ring;

(2) aR ⊆ N(R) for any a ∈ N(R) ;

(3) Ra ⊆ N(R) for any a ∈ N(R) .

In each case, N(R) ⊆ J(R) .

Proof (1) =⇒ (2) and (1) =⇒ (3) are trivial.

(2) =⇒ (1) Assume that ab ∈ N(R). Clearly, ba ∈ N(R); so, by (2), baR ⊆ N(R). Hence for any

r ∈ R , bar ∈ N(R); this leads to arb ∈ N(R). Therefore, R is a nil-semicommutative ring.

Similarly, we can show (3) =⇒ (1). 2

A ring R is called directly finite if for any a, b ∈ R , ab = 1 implies ba = 1. [3, Proposition 2.8] showed

that nil-semicommutative rings are directly finite. By Proposition 2.1, we give another proof as follows.

Corollary 2.2 Nil-semicommutative rings are directly finite. In particular, both NI rings and 2 − primal

rings are directly finite.

Proof Let a, b ∈ R and ab = 1. Set e = ba ; then ae = a . Write h = a−ea . Then he = h , eh = 0, and h2 = 0.

Since R is a nil-semicommutative ring, hb ∈ N(R) by Proposition 2.1, that is 1− e = (a− ea)b = hb ∈ N(R).

Thus ba = e = 1 and so R is directly finite. 2

Recall that a ring R is NCI [6] if either N(R) = 0 or N(R) contains a nonzero ideal of R . Clearly, NI

rings are NCI . According to [6], NCI rings need not be directly finite. Hence, by Corollary 2.2, NCI rings

need not be nil-semicommutative.

[6, Remark 2] pointed out that the subring of NCI rings need not be NCI , but Proposition 2.1 implies

that the subrings of nil-semicommutative rings are nil-semicommutative.
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Recall that a ring R is right quasi-duo if every maximal right ideal of R is an ideal of R . According to [9,

Theorem 3.2], a ring R is right quasi-duo if and only if for any a, b ∈ R , aR+(ba− 1)R = R . [9, Example 5.5]

gave a reduced ring that is not right quasi-duo. Hence, nil-semicommutative rings need not be right quasi-duo

by Corollary 2.2.

According to [10], a ring R is called weakly semicommutative if ab = 0 implies arb ∈ N(R) for all

a, b ∈ R . Clearly, nil-semicommutative rings are weakly semicommutative, but the converse is not true by [3,

Example 2.2]. The following corollary is an immediate result of Proposition 2.1 for a nil-semicommutative ring.

In fact, the reviewer points out that it also holds for weakly semicommutative rings. Hence we have

Corollary 2.3 If R is a weakly semicommutative ring and e ∈ E(R) , then

(1) eR(1− e) ⊆ J(R) .

(2) If ReR = R , then e = 1 .

(3) If M ∈ Maxr(R) and e ∈ E(R) , then either e ∈ M or 1− e ∈ M

Proof (1) and (2) are trivial.

(3) Let M ∈ Maxr(R) and e ∈ E(R). By (1), (1 − e)Re ⊆ M . If e /∈ M , then eR +M = R . Thus

R(1− e) = eR(1− e) +M(1− e) ⊆ M , which implies 1− e ∈ M . 2

With the help of Proposition 2.1, we can give a characterization of NI rings.

Proposition 2.4 A ring R is NI if and only if R is nil-semicommutative and (N(R),+) is a subgroup of

(R,+) .

[7, Proposition 2] showed that semiprimitive right quasi-duo rings are reduced. By Proposition 2.1, we

have:

Proposition 2.5 Let R be a nil-semicommutative ring. Then

(1) For b ∈ N(R) and a ∈ R , (ba− 1)R = R .

(2) eRe is nil-semicommutative for each e ∈ E(R) .

(3) If R is a semiprimitive ring, then R is reduced.

(4) If x, z ∈ R satisfy x+ z ∈ N(R)xz , then Rx = Rz .

Proof (1) Let b ∈ N(R) and a ∈ R . If (ba − 1)R ̸= R , then there exists M ∈ Maxr(R) containing

(ba − 1)R . Since R is a nil-semicommutative ring and b ∈ N(R), by Proposition 2.1, b ∈ J(R), this leads to

ba ∈ J(R) ⊆ M . Since ba− 1 ∈ M , 1 ∈ M , which is a contradiction. Thus (ba− 1)R = R .

(2) and (3) are evident.

(4) Let x+ z = yxz for some y ∈ N(R). Then x = (yx− 1)z . Since R is a nil-semicommutative ring,

R = (yx− 1)R by (1). Hence by Corollary 2.2, yx− 1 is invertible; this gives Rx = R(yx− 1)z = Rz . 2

Proposition 2.6 A ring R is nil-semicommutative if and only if for any a, b, c ∈ R , abc ∈ N(R) implies

ar1cr2b ∈ N(R) for any r1, r2 ∈ R .

Proof Assume that R is nil-semicommutative and abc ∈ N(R). Hence acbac ∈ N(R). By Proposition 2.1,

acbacb ∈ N(R), that is (acb)2 ∈ N(R). Hence acb ∈ N(R); this implies ar1cr2b ∈ N(R) for any r1, r2 ∈ R .
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Conversely, if ab ∈ N(R), then ab1 ∈ N(R), and so arb = ar11b ∈ N(R) by hypothesis. Hence R is

nil-semicommutative. 2

According to [18], a ring R is called quasi-normal if for any a ∈ R and e ∈ E(R), ae = 0 implies

eaRe = 0. Clearly, Abelian rings are quasi-normal. [18, Theorem 2.1] shows that a ring R is quasi-normal if

and only if eR(1− e)Re = 0 for any e ∈ E(R).

Let F be a field and R =

 F F F
0 F F
0 0 F

 . Consider the idempotent e = e11 + e33 ; by computing, we

can see that eR(1 − e)Re =

 0 0 F
0 0 0
0 0 0

 ̸= 0, and so R is not quasi-normal by [18, Theorem 2.1]. Since

N(R) =

 0 F F
0 0 F
0 0 0

 is an ideal of R , R is NI ; this implies R is nil-semicommutative. Hence there exists

a nil-semicommutative ring that is not quasi-normal. Therefore nil-semicommutative rings need not be Abelian.

Let F be a field, F < X, Y > the free algebra on X,Y over F and S = F < X, Y > /(X2), where

(X2) is the ideal of F < X, Y > generated by (X2). By [1, Example 4.8], S is an Armendariz ring and so S

is an Abelian ring, but S is not nil-semicommutative by [3, Example 2.2]. Hence there exists a quasi-normal

ring that is not nil-semicommutative.

Let R be a ring. Write MEr(R) = {e ∈ E(R)| eR is a minimal right ideal of R} . Similarly, we can

define MEl(R). A ring R is called right min-abelian if every element of MEr(R) is right semicentral in R , a

ring R is said to be strongly right min-abelian if every element of MEr(R) is left semicentral, and a ring R is

said to be right MC2 if MEr(R) ⊆ MEl(R). Abelian rings are strongly right min-abelian. [16, Theorem 1.8]

showed that a ring R is strongly right min-abelian if and only if R is right min-abelian and right MC2. [16,

Theorem 1.2] showed that a ring R is right quasi-duo if and only if R is right min-abelian and MERT . Now,

we can show the following proposition.

Proposition 2.7 Nil-semicommutative rings are right min-abelian.

Proof Let e ∈ MEr(R) and a ∈ R . Write h = ea − eae . Then eh = h , he = 0, and h ∈ N(R). If h ̸= 0,

Then hR = eR because eR is minimal right ideal of R . By Proposition 2.1, eR = hR ⊆ N(R), which is a

contradiction. Hence ea = eae for all a ∈ R , which implies that R is right min-abelian. 2

Clearly, for any ring R , the polynomial ring R[x] is always right min-abelian. However, [3, Theorem 2.6]

gave a ring R such that the polynomial ring R[x] is not nil-semicommutative. Hence the converse of Proposition

2.7 is not true, in general.

Let F be a field and S =

(
F F
0 F

)
. Then S is a right quasi-duo ring and so S is right min-abelian.

Consider the idempotent e =

(
0 0
0 1

)
; by computing, we can see that e ∈ MEr(S) and e is not left

semicentral. Hence S is not strongly right min-abel. Since N(S) =

(
0 F
0 0

)
is an ideal of S , S is a nil-

semicommutative ring. Hence there exists a nil-semicommutative ring that is not strongly right min-abelian

and so there exists a nil-semicommutative ring that is not right MC2 by Proposition 2.7.
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Let R be an algebra over a commutative ring S . Recall that the Dorroh extension of R by S is the

ring R×S with operations (r1; s1)+(r2; s2) = (r1+ r2; s1+s2) and (r1; s1)(r2; s2) = (r1r2+s1r2+ r1s2; s1s2);

where ri ∈ R and si ∈ S .

Theorem 2.8 Let R be an algebra over a commutative reduced ring S , and D be the Dorroh extension of R

by S . If R is nil-semicommutative, then D is also nil-semicommutative.

Proof Let x = (a; s) ∈ N(D). Assume that n ≥ 1 such that xn = 0; then sn = 0. Since S is reduced, s = 0.

Hence a ∈ N(R) because xn = (an; 0). Since R is nil-semicommutative, aR ⊆ N(R). For any y = (b; t) ∈ D ,

xy = (ab + at; 0). Since at + ab = a(1t + b) ∈ aR ⊆ N(R), xy ∈ N(D). Hence xD ⊆ N(D); by Proposition

2.1, D is nil-semicommutative. 2

Proposition 2.9 Let R be a quasi-normal ring and e ∈ E(R) . If eRe and (1 − e)R(1 − e) are nil-

semicommutative rings and (N(R),+) is a subgroup of (R,+) , then R is a NI ring.

Proof Let ab ∈ N(R). Then there exists n ≥ 1 such that (ab)n = 0. Since R is quasi-normal,

eabe = eaebe and (eabe)n = e(ab)ne = 0 by [18, Corollary 2.2]. Hence (eae)(ebe) ∈ N(eRe). Since

eRe is nil-semicommutative, (eae)(ere)(ebe) ∈ N(eRe) for each r ∈ R . Thus, by [18, Corollary 2.2],

earbe ∈ N(eRe) ⊆ N(R) for each r ∈ R . Similarly, (1 − e)arb(1 − e) ∈ N(R) because (1 − e)R(1 − e)

is nil-semicommutative. Since earb(1 − e), (1 − e)arbe ∈ N(R) and (N(R),+) is a subgroup of (R,+),

earbe+earb(1−e)+(1−e)arbe+(1−e)arb(1−e) ∈ N(R), that is, arb ∈ N(R). Hence R is nil-semicommutative;

by Proposition 2.4, R is NI . 2

Proposition 2.10 If R is a subdirect product of a finite family of nil-semicommutative rings {Ri|1 ≤ i ≤ n} ,
then R is nil-semicommutative.

Proof Let {Ii|i = 1, 2, · · · , n} be ideals of R such that ∩n
i=1Ii = 0 and each R/Ii is nil-semicommutative. As-

sume that ab ∈ N(R) and r ∈ R . Then, for each i , in R̄ = R/Ii , āb̄ ∈ N(R̄). Since R̄ is nil-semicommutative,

ār̄b̄ ∈ N(R̄), that is, there exists ni ≥ 1 such that (arb)ni ∈ Ii . Set m = max{n1, n2, · · · , nn} . Then

(arb)m ∈ ∩n
i=1Ii = 0. Hence arb ∈ N(R); this implies R is nil-semicommutative. 2

Theorem 2.11 Let R and S be rings and RWS be a (R,S)−bimodule. Let E = T (R,S,W ) =

(
R W
0 S

)
.

Then E is nil-semicommutative if and only if R and S are nil-semicommutative.

Proof (=⇒) Take e1 =

(
1 0
0 0

)
and e2 =

(
0 0
0 1

)
. Then clearly e1 and e2 are idempotents of E . Since

e1Ee1 ∼= R and e2Ee2 ∼= S , by Proposition 2.5(2), R and S are nil-semicommutative.

(⇐=) Let A =

(
x m
0 s

)
, B =

(
y n
0 t

)
, C =

(
z w
0 l

)
∈ E and AB ∈ N(E) =

(
N(R) W
0 N(S)

)
.

Then xy ∈ N(R) and st ∈ N(S). Since R and S are nil-semicommutative, xzy ∈ N(R) and slt ∈

N(S). Therefore ACB =

(
xzy xzn+ xwt+mlt
0 slt

)
∈

(
N(R) W
0 N(S)

)
= N(E) and so E is nil-

semicommutative. 2
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Let R be a ring and write L3(R) = {

 0 a1 a2
0 a3 a4
0 0 0

 |a1, a2, a3, a4 ∈ R} . Then L3(R) is a ring and

N(L3(R)) = {

 0 a1 a2
0 a3 a4
0 0 0

 |a1, a2, a4 ∈ R and a3 ∈ N(R)} . By Theorem 2.11, we have the following

corollary.

Corollary 2.12 (1) The following conditions are equivalent for a ring R :

(a) R is nil-semicommutative;

(b) The n× n upper triangular matrices rings Tn(R) are nil-semicommutative for any n ≥ 2 ;

(c) L3(R) is nil-semicommutative.

(2) Let R be a ring and e ∈ E(R) be left semicentral in R . If eRe and (1 − e)R(1 − e) are nil-

semicommutative, then R is nil-semicommutative.

Let R be a ring and W a bimodule over R . Write T (R,W ) = {
(

c x
0 c

)
|c ∈ R, x ∈ W} . Then

T (R,W ) is a subring of T (R,R,W ). Let R ∝ W = {(a,m)|a ∈ R,m ∈ W} with the addition componentwise

and multiplication defined by (a1,m1)(a2,m2) = (a1a2, a1m2 + m1a2). Then R ∝ W is a ring that is called

the trivial extension of R by W . Clearly, R ∝ W is isomorphic to the ring T (R,W ) and T (R,R) is also

isomorphic to the ring R[x]/(x2). Hence by Theorem 2.11, we have the following corollary that appeared partly

in Proposition 2.5 of [3].

Corollary 2.13 Let W be a (R,R)−bimodule. Then the following conditions are equivalent:

(1) R is nil-semicommutative;

(2) R ∝ W is nil-semicommutative;

(3) T (R,W ) is nil-semicommutative;

(4) R ∝ R is nil-semicommutative;

(5) T (R,R) is nil-semicommutative;

(6) R[x]/(x2) is nil-semicommutative.

Let R be a ring and W a bimodule over R . Let

R ▷◁ W = {(a,m, b, n)|a, b ∈ R,m, n ∈ W}

with the addition componentwise and multiplication defined by

(a1,m1, b1, n1)(a2,m2, b2, n2) = (a1a2, a1m2 +m1a2, a1b2 + b1a2, a1n2 +m1b2 + b1m2 + n1a2)

Then R ▷◁ W is a ring that is isomorphic to the ring (R ∝ W ) ∝ (R ∝ W ). Let

BT (R,W ) = {


a m b n
0 a 0 b
0 0 a m
0 0 0 a

 |a, b ∈ R,m, n ∈ M}
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Then, as rings, BT (R,W ) ∼= T (T (R,W ), T (R,W )). Moreover, we have the following isomorphism as rings:

R[x, y]/(x2, y2) −→ BT (R,R)

a+ bx+ cy + dxy 7−→


a b c d
0 a 0 c
0 0 a b
0 0 0 a


Corollary 2.14 Let R be a ring and W a bimodule over R . Then the following conditions are equivalent:

(1) R is a nil-semicommutative ring;

(2) R ▷◁ W is a nil-semicommutative ring;

(3) BT (R,R) is a nil-semicommutative ring;

(4) BT (R,W ) is a nil-semicommutative ring;

(5) R[x, y]/(x2, y2) is a nil-semicommutative ring;

(6) R ▷◁ R is a nil-semicommutative ring.

Let R be a ring and write GT3(R) = {

 a1 0 a3
0 a2 0
0 0 a4

 |a1, a2, a3, a4 ∈ R} . Then GT3(R) is a subring

of T3(R).

Let CT9(R) = {



a11 0 a13 0 0 0 a14 0 a15
0 a21 0 0 0 0 0 a22 0
0 0 a31 0 0 0 0 0 a32
0 0 0 a41 0 a42 0 0 0
0 0 0 0 a51 0 0 0 0
0 0 0 0 0 a61 0 0 0
0 0 0 0 0 0 a71 0 a72
0 0 0 0 0 0 0 a81 0
0 0 0 0 0 0 0 0 a91


|aij ∈ R} . Then CT9(R) is a ring

and CT9(R) ∼= GT3(GT3(R)).

Corollary 2.15 The following conditions are equivalent for a ring R :

(1) R is a nil-semicommutative ring;

(2) GT3(R) is a nil-semicommutative ring;

(3) CT9(R) is a nil-semicommutative ring.

3. Regularity of nil-semicommutative rings

Let R be a ring and a ∈ R . Then a is called π−regular, if there exists n ≥ 1 and b ∈ R such that an = anban ;

in the case of n = 1, a is called von Neumann regular, and a is said to be strongly π−regular, if an = an+1b ,

and in case of n = 1, a is called strongly regular. A ring R is called von Neumann regular, strongly regular,

π−regular and strongly π−regular, if every element of R is von Neumann regular, strongly regular, π−regular,

and strongly π−regular, respectively. According to [17], a ring R is called n−regular if every element of N(R)

is von Neumann regular.
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Proposition 3.1 Let R be a nil-semicommutative ring and x ∈ R . Then:

(1) If x is von Neumann regular, then x is strongly regular.

(2) If x is π−regular, then there exists e ∈ E(R) such that ex is strongly regular and (1− e)x ∈ N(R) .

Proof (1) Let x = xyx for some y ∈ R and put e = xy ; so xR = eR . As (1 − e)x = 0, the nil-

semicommutative hypothesis implies that the element x(1 − e)ye = e − xeye is nilpotent, and since e minus

any power of e− xeye lies in xeR = x2R , we obtain xR = eR = x2R . Hence x is strongly regular.

(2) By hypothesis, there exists a positive integer n such that xn is regular. By (1), xn is strongly regu-

lar. By [12], xn = xnuxn and xnu = uxn for some u ∈ U(R). Let e = xnu . Then e ∈ E(R), xn = exn = xne ,

and xn = ev , where v = u−1 . Since (ex)(xn−1u)(ex) = exnuex = evuex = ex , ex is von Neumann regular.

By (1), ex is strongly regular. Since ex = uxnx = (ux)xn = (ux)xne and xe = xxnu = xn(xu) = exn(xu),

ex = exe = xe . Hence ((1− e)x)n(1− e) = (1− e)xn(1− e) = 0; this gives (1− e)x ∈ N(R). 2

A ring R is called right universally mininjective if every minimal right ideal of R is a direct summand,

and R is said to be strongly right DS if for any minimal right ideal I of R , N(R) ∩ I = 0. [19, Theorem

3.2] showed that a ring R is strongly right DS if and only if R is right universally mininjective and right

min-abelian. By Proposition 3.1, we have the following corollary.

Corollary 3.2 Let R be a ring. Then

(1) R is strongly regular if and only if R is von Neumann regular and nil-semicommutative.

(2) R is reduced if and only if R is n−regular and nil-semicommutative.

(3) If R is nil-semicommutative, then R is π−regular if and only if R is strongly π−regular.

(4) If R is nil-semicommutative, then R is strongly right DS if and only if R is right universally

mininjective.

(5) If R is nil-semicommutative, then R is strongly right min-abelian if and only if R is right MC2 .

Right R−module M is called Wnil− injective [17] if for any 0 ̸= a ∈ N(R) there exists n ≥ 1 such

that an ̸= 0 and any right R−homomorphism anR −→ M can be extended R −→ M . Clearly, Y J− injective

modules are Wnil− injective, since semicommutative rings are nil-semicommutative and right MC2. Hence

the following proposition generalizes Lemma 3 of [8].

Proposition 3.3 A ring R is reduced if and only if R is right MC2 , nil-semicommutative, and every simple

singular right R−module is Wnil− injective.

Proof The necessity is clear.

Now let a2 = 0. If a ̸= 0, then there exists M ∈ Maxr(R) such that r(a) ⊆ M . We claim that M is

essential in RR . If not, then M = eR for some 0 ̸= e ∈ E(R). Clearly, 1 − e ∈ MEr(R). Since R is a right

MC2 ring and nil-semicommutative ring, by Corollary 3.2(5), 1 − e is central. Hence a ∈ r(a) ⊆ eR implies

a(1− e) = (1− e)a = 0, and so 1− e ∈ r(a) ⊆ eR , which is a contradiction. Therefore M is essential in RR ;

by hypothesis, R/M is Wnil− injective. Then the well-defined right R−homomorphism

aR −→ R/M

ar 7−→ r +M

can be extended R −→ M , that is, there exists c ∈ R such that 1 − ca ∈ M . Since a ∈ N(R), by

Proposition 2.1, ca ∈ N(R). Hence 1− ca ∈ U(R). This is impossible. Thus a = 0 and so R is reduced. 2
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Recall that a ring R is right idempotent reflexive if eRa = 0 implies aRe = 0 for e ∈ E(R) and a ∈ R .

Clearly, semiprime rings are right idempotent reflexive and right idempotent reflexive rings are right MC2. By

Proposition 3.3, we have the following corollary.

Corollary 3.4 The following conditions are equivalent for a ring R :

(1) R is reduced;

(2) R is semiprime, nil-semicommutative and every simple singular right R−module is Wnil− injective;

(3) R is right idempotent reflexive, nil-semicommutative, and every simple singular right R−module is

Wnil− injective.

Clearly, reduced =⇒strongly right DS =⇒ right universally mininjective. By [14], right universally

mininjective =⇒ right mininjective =⇒ Sr(R) ⊆ Sl(R). Hence, by Proposition 3.3, we have the following

corollary.

Corollary 3.5 The following conditions are equivalent for a ring R :

(1) R is reduced;

(2) R is strongly right DS , nil-semicommutative and every simple singular right R−module is Wnil− injective;

(3) R is right universally mininjective, nil-semicommutative, and every simple singular right R−module

is Wnil− injective;

(4) R is right mininjective, nil-semicommutative, and every simple singular right R−module is Wnil− injective;

(5) R is nil-semicommutative, Sr(R) ⊆ Sl(R) , and every simple singular right R−module is Wnil− injective.

Proof It is only to show (5) =⇒ (1). Let e ∈ MEr(R). For any 0 ̸= a ∈ R , if ae ̸= 0, then we claim that

(aeR)2 ̸= 0. If not, then RaeR ⊆ r(ae). Let I be a complement left ideal of RaeR in R . Then RaeR ⊕ I is

an essential left ideal of R and so Sr(R) ⊆ Sl(R) ⊆ RaeR⊕ I . Clearly, aeI ⊆ I ∩RaeR = 0 and so I ⊆ r(ae);

this gives Sr(R) ⊆ r(ae). Since r(e) = r(ae), e ∈ Sr(R) ⊆ r(e), which is a contradiction. Hence (aeR)2 ̸= 0;

this leads to aeR = gR for some g ∈ MEr(R). Let g = aec for some c ∈ R . Then ae = gae = aecae . Let

h = cae . Then h2 = h and Rae = Rh . Thus Rae = lr(h) = lr(ae) = lr(e) = Re ; this shows that Re is a

minimal left ideal of R , e ∈ MEl(R). Thus R is a right MC2 ring. By Proposition 3.3, R is reduced. 2

The following corollary generalizes [8, Theorem 4].

Corollary 3.6 Let R be a right MC2 ring and nil-semicommutative ring whose simple singular right R−modules

are Y J− injective. Then R is a reduced weakly regular ring.

Proof By Proposition 3.3, R is reduced and so R is semicommutative. Hence, by Theorem 4 of [8], we are

done. 2

It is well known that a ring R is a strongly regular ring if and only if R is a right quasi-duo ring and a

weakly regular ring. Hence, Corollary 3.6 and [16, Theorem 1.2] imply the following corollary.

Corollary 3.7 A ring R is a strongly regular ring if and only if R is a MERT ring, a right MC2 ring, and

a nil-semicommutative ring whose simple singular right R−modules are Y J− injective.
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4. Exchange rings and clean rings

Proposition 4.1 Let R be a weakly semicommutative ring and x ∈ R . If x is exchange, then x is clean.

Proof Since x is an exchange element of R , there exists e ∈ E(R) such that e = xy and 1− e = (1−x)z for

some y = ye, z = z(1−e) ∈ R . Then (x−(1−e))(y−z) = 1−ez−(1−e)y . Since (ez)2 = ezez = ez(1−e)ez = 0,

1− ez− (1− e)y = (1− (1− e)y(1+ ez))(1− ez). Since R is a weakly semicommutative ring and y(1− e) = 0,

y(1 + ez)(1 − e) ∈ N(R). Hence (1 − e)y(1 + ez) ∈ N(R), and so 1 − (1 − e)y(1 + ez) ∈ U(R); this implies

(x− (1− e))(y − z) ∈ U(R). By Corollary 2.2, x− (1− e) ∈ U(R); hence x is clean. 2

Recall that a ring R is V NL−ring if for each a ∈ R , either a or 1 − a is von Neumann regular. It is

well known that V NL−rings are exchange. In terms of Proposition 4.1, we can obtain the following corollary.

Corollary 4.2 (1) Let R be a weakly semicommutative ring. Then R is exchange if and only if R is clean.

(2) Let R be a nil-semicommutative ring. Then R is exchange if and only if R is clean.

(3) Let R be a NI ring. Then R is exchange if and only if R is clean.

(4) Nil-semicommutative V NL−rings are clean.

(5) Weakly semicommutative V NL−rings are clean.

Proposition 4.3 Let R be a nil-semicommutative ring and idempotent can be lifted modulo J(R) . Then

(1) If a ∈ R is clean, then ae is clean for any e ∈ E(R) .

(2) If both a and −a are clean, then a+ e is clean for any e ∈ E(R) .

Proof (1) Let a = u + f , where u ∈ U(R) and f ∈ E(R). Since eR(1 − e), (1 − e)Re ⊆ N(R),

eR(1− e), (1− e)Re ⊆ J(R) by Corollary 2.3, ē is contained in central of R̄ = R/J(R). Hence āē = ūē+ f̄ ē ,

where ūē ∈ U(ēR̄ē) and f̄ ē ∈ E(ēR̄ē). Since idempotent can be lifted modulo J(R), there exists g ∈ E(R)

such that g − fe ∈ J(R); this gives āē = ūē + ḡ . Let ae = ue + g + y for some y ∈ J(R). Since

(ūē− (1̄− ē))(ēū−1 − (1̄− ē)) = ūēū−1 + 1̄− ē = ē+ 1̄− ē = 1̄, (ue− (1− e))(eu−1 − (1− e)) = 1+ z for some

z ∈ J(R), this gives (ue− (1− e))(eu−1 − (1− e))(1 + z)−1 = 1. By Corollary 2.2, v = ue− (1− e) ∈ U(R).

Clearly, ae = v+g+(1−e)+y . Since (ḡ+1̄− ē)2 = ḡ+1̄− ē , there exists h ∈ E(R) such that h̄ = ḡ+1̄− ē . Let

h = g+1− e+ t for some t ∈ J(R). Then ae = v+h+(y− t) and y− t ∈ J(R), so ae = v(1+ v−1(y− t))+h ,

where v(1 + v−1(y − t)) ∈ U(R) and h ∈ E(R). Hence ae is clean.

(2) Since −a is clean, 1 + a is clean. Let a = u + f and 1 + a = v + g , where u, v ∈ U(R) and

f, g ∈ E(R). Then a + e = (1 + a)e + a(1 − e) = (ve + u(1 − e)) + (ge + f(1 − e)). In R̄ = R/J(R),

ḡē+ f̄(1̄− ē) ∈ E(R̄), and so there exists h ∈ E(R) such that ge+ f(1− e) = h+ y for some y ∈ J(R). Since

(v̄ē+ ū(1̄− ē) + ȳ)(ēv̄−1 + (1̄− ē)ū−1) = 1̄, (ve+ u(1− e) + y)(ev−1 + (1− e)u−1) = 1+ x for some x ∈ J(R).

This implies ve+ u(1− e) + y ∈ U(R). Clearly, a+ e = (ve+ u(1− e) + y) + h and so a+ e is clean. 2

Proposition 4.4 (1) Let R be a weakly semicommutative ring and x ∈ R . If xn is clean for some n ≥ 2 ,

then x is clean.

(2) Let R be a nil-semicommutative ring and idempotent can be lifted modulo J(R) . If a2 is clean, then

a+ e is clean for any e ∈ E(R) .
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Proof (1) Let xn = u + f for some u ∈ U(R) and f ∈ E(R). Write e = u(1 − f)u−1 . Then e ∈ E(R)

and (xn − e)u = (u + f)u − u(1 − f) = x2n − xn ; this leads to e = xn + (xn − x2n)u−1 ∈ xR and

1 − e = 1 − xn − (1 − xn)xnu−1 ∈ (1 − x)R , and so x is an exchange element. By Proposition 4.1, x is

clean.

(2) It is an immediate result of Proposition 4.3 and (1). 2

In [4], Ehrlich showed that if R is a unit regular ring, then every element in R is a sum of 2 units. A ring

R is called an (S, 2)-ring (cf. [5]) if every element in R is a sum of 2 units of R . In [2, Theorem 6] it is shown

that if R is an Abelian π−regular ring, then R is an (S, 2)-ring if and only if Z/2Z is not a homomorphic

image of R .

Theorem 4.5 Let R be a nil-semicommutative π−regular ring. Then R is an (S, 2)-ring if and only if Z/2Z
is not a homomorphic image of R .

Proof Since R is a nil-semicommutative π−regular ring, R/J(R) is a strongly π−regular ring by Corollary

3.2(3); this implies R/J(R) is reduced and so R/J(R) is a strongly regular ring. By [2, Theorem 6], R/J(R)

is an (S, 2)-ring if and only if Z/2Z is not a homomorphic image of R/J(R). By [18, Lemma 4.3], we are done.2

5. Stable range one

It is well known that (1) a ring R has stable range 1 if and only if R/J(R) has stable range 1; (2) An

exchange ring R has stable range 1 if and only if every von Neumann regular element of R is unit-regular; (3)

V NL−rings are exchange; (4) π−regular rings and clean rings are exchange. Hence by Proposition 3.1(1), we

have the following proposition.

Proposition 5.1 (1) Nil-semicommutative exchange rings have stable range 1.

(2) NI exchange rings have stable range 1.

(3) Nil-semicommutative V NL−rings have stable range 1.

(4) Nil-semicommutative clean rings have stable range 1.

(5) Nil-semicommutative π−regular rings have stable range 1.

In [21], a ring R is said to satisfy the unit one-stable condition if for any a, b, c ∈ R with ab+c = 1, there

exists u ∈ U(R) such that au+ c ∈ U(R). It is easy to prove that R satisfies the unit one-stable condition if

and only if R/J(R) satisfies the unit one-stable condition. [18, Proposition 4.10] showed that for a quasi-normal

exchange ring R , R is an (S, 2)-ring if and only if R satisfies the unit 1-stable condition.

Proposition 5.2 Let R be a nil-semicommutative exchange ring. Then the following conditions are equivalent:

(1) R is an (S, 2)−ring;

(2) R satisfies the unit one-stable condition;

(3) Every factor ring R1 of R is an (S, 2)−ring;

(4) Z2 is not a homomorphic image of R .

Proof It is trivial. 2

It is well known that an exchange ring R has stable range 1 if and only if for any a, x ∈ R and e ∈ E(R),

ax+ e = 1 implies a+ ey ∈ U(R) for some y ∈ R .
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Proposition 5.3 An exchange ring R has stable range 1 if and only if for every von Neumann regular element

a of R , there exists u ∈ U(R) such that a− aua ∈ J(R) .

Proof The necessity is clear.

Now assume ax+ e = 1, where a, x ∈ R and e ∈ E(R). Then a = axa+ ea . If ea = 0, then a = axa .

By hypothesis, there exists u ∈ U(R) such that a − aua ∈ J(R). Let a = aua + z for some z ∈ J(R). Then

1 − e = ax = auax + zx = au(1 − e) + zx and (au − e)2 = auau − aue − eau + e = au − zu − aue + e =

au(1− e)+ e− zu = 1− e− zx− zu+ e = 1− (zx+ zu) ∈ U(R); this implies au− e ∈ U(R). Let au− e = v for

some v ∈ U(R). Then a−eu−1 = vu−1 ∈ U(R). If ea ̸= 0, then a ̸= axa . Let f = ax = 1−e and r = fa−a .

Then rx = (fa−a)x = (axa−a)x = (ax−1)ax = −e(1−e) = 0 and fr = f2a−fa = 0. Let a/ = a+r . Then

a/x = ax+ rx = ax = f , a/xa/ = fa/ = fa+ fr = fa = r+ a = a/ , and a/x+ e = f + e = ax+ e = 1. Since

ea/ = ea + er = efa = eaxa = e(1 − e)a = 0, by a similar proof of above, there exists w ∈ U(R) such that

a/ − ew = s ∈ U(R). Since fr = 0, r = (1− f)r = er ; this leads to s = a/ − ew = a+ r − ew = a+ e(r −w).

Therefore R has stable range 1 2

Theorem 5.4 Let R be an exchange ring. Then

(1) If eR(1− e) ⊆ J(R) for each e ∈ E(R) , then R has stable range 1.

(2) If R is a weakly semicommutative ring, then R has stable range 1.

Proof Let a be a von Neumann regular element of R . Then a = aba for some a ∈ R . Let e = ba and g = ab .

Then a = ae = ga and e, g ∈ E(R). Since (1−e)a = (1−e)ae ∈ (1−e)Re and a(1−g) = ga(1−g) ∈ gR(1−g),

(1− e)a, a(1− g) ∈ J(R) by hypothesis, that is, a− ba2, a− a2b ∈ J(R). Hence, in R̄ = R/J(R), ā is strongly

regular and so ā is unit regular. Hence there exists u ∈ U(R) such that a − aua ∈ J(R); by Proposition 5.3,

R has stable range 1.

(2) It is an immediate result of (1) and Corollary 2.3. 2
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