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Abstract: Let R be a 2-torsion free prime ring with center Z(R) , J be a nonzero Jordan ideal also a subring of R ,

and F be a generalized derivation with associated derivation d . In the present paper, we shall show that J ⊆ Z(R)

if any one of the following properties holds: (i) [F (u), u] ∈ Z(R) , (ii) F (u)u = ud(u) , (iii) d(u2) = 2F (u)u , (iv)

F (u2)− 2uF (u) = d(u2)− 2ud(u) , (v) F 2(u) + 3d2(u) = 2Fd(u) + 2dF (u) , (vi) F (u2) = 2uF (u) for all u ∈ J .
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1. Introduction

Let R denote an associative ring with center Z(R). For any x, y ∈ R , we write the commutator [x, y] = xy−yx ,

and the Jordan product x ◦ y = xy+ yx . We recall that a ring R is called prime if for any a, b ∈ R , aRb = (0)

implies that either a = 0 or b = 0; it is called a semiprime if aRa = (0) implies that a = 0. A prime ring

is clearly a semiprime ring. An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)

holds for all x, y ∈ R . An additive mapping F : R → R is called a generalized derivation if there exists

a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R . A ring R is said to be

n-torsion free, where n ̸= 0 is a positive integer, if whenever na = 0, with a ∈ R , then a = 0. An additive

subgroup J is said to be a Jordan ideal of R if uor ∈ J , for all u ∈ J and r ∈ R . One may observe that

every ideal of R is a Jordan ideal of R but the converse need not be true. An additive subgroup U of R is

said to be a Lie ideal of R if [u, r] ∈ U , for all u ∈ U and r ∈ R . It is clear that if charR = 2, then the

Jordan ideal and Lie ideal of R are the same. In [4] Huang proved: Let R be an associative prime ring with

charR ̸= 2, U a Lie ideal of R such that u2 ∈ U for all u ∈ U , and F a generalized derivation associated

with d ̸= 0. If any one of the following conditions holds: (1) [d(x), F (y)] = 0, (2) d(x) ◦ F (y) = 0, (3) either

d(x) ◦ F (y) = x ◦ y or d(x) ◦ F (y) + x ◦ y = 0, (4) either [d(x), F (y)] = [x, y] or [d(x), F (y)] + [x, y] = 0, (5)

either [d(x), F (y)] = (x ◦ y) or [d(x), F (y)] + (x ◦ y) = 0, (6) either d(x) ◦ F (y) = [x, y] or d(x) ◦ F (y) + [x, y] ,

(7) either d(x) ◦F (y)+xy ∈ Z(R) or d(x) ◦F (y)−xy ∈ Z(R)for all x, y ∈ U , then either d = 0 or U ⊆ Z(R).

Motivated by the results of Huang, we continue this line of investigation. In this paper, we study

generalized derivation F with derivation d if any one of the following conditions holds: (i) [F (u), u] ∈ Z(R),

(ii) F (u)u = ud(u), (iii) d(u2) = 2F (u)u , (iv) F (u2) − 2uF (u) = d(u2) − 2ud(u), (v) F 2(u) + 3d2(u) =

2Fd(u) + 2dF (u), (vi) F (u2) = 2uF (u) for all u in a Jordan ideal that is also a subring of R .
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2. Preliminaries

Throughout the present paper, we shall make use of the following 2 basic identities without any specific mention:

[xy, z] = x[y, z] + [x, z]y, for allx, y, z ∈ R. (2.1)

[x, yz] = y[x, z] + [x, y]z, for allx, y, z ∈ R. (2.2)

We begin with the following known results, which will be used to prove our theorems.

Lemma 2.1 [[5], Lemma 2.7]. Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal of R . If

J is a commutative Jordan ideal, then J ⊆ Z(R) .

Lemma 2.2 [[5], Lemma 2.5]. Let R be a prime ring and J a nonzero Jordan ideal of R . If a ∈ R and

aJ = (0) (or Ja = (0)), then a = 0 .

Lemma 2.3 [[5], Lemma 2.6]. Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal of R . If

a, b ∈ R and aJb = (0) , then either a = 0 or b = 0 .

Lemma 2.4 [[1], Lemma 2.5]. Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal of R .

Suppose that θ, ϕ are automorphisms of R . If R admits a (θ, ϕ)-derivation d such that d(J) = (0) , then either

d = 0 or J ⊆ Z(R) .

Lemma 2.5 [[5], Theorem 3.1]. Let R be a prime ring with charR ̸= 2 and J be both a Jordan ideal

and a subring of R . If θ is an automorphism of R and G : R → R is an additive mapping satisfying

G(u2) = 2θ(u)G(u) for all u ∈ J , then either J ⊆ Z(R) or G(J) = 0 .

Lemma 2.6 [[4], Lemma 2.6]. A group cannot be the union of 2 of its proper subgroups.

Now, we will prove the following 2 lemmas, which will be used to prove our theorems.

Lemma 2.7 Let R be a ring. If R admits a generalized derivation F associated with derivation d ̸= 0 , then

the mapping F − d is a left centralizer on R .

Proof Let G = F − d . It is clear that G is an additive mapping and for all x, y ∈ R , we have

G(xy) = (F − d)(xy) = F (xy)− d(xy)

= F (x)y + xd(y)− d(x)y − xd(y)

= (F (x)− d(x))y = G(x)y.

(2.3)

Therefore, G is a left centralizer on R . 2

Lemma 2.8 Let R be a prime ring and J a nonzero Jordan ideal of R . If G is a left centralizer of R such

that G(u) = 0 for all u ∈ J , then G(r) = 0 for all r ∈ R .
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Proof Since J is a Jordan ideal of R , ur + ru ∈ J for all u ∈ J and r ∈ R . By hypotheses,

F (u) = 0 for allu ∈ J. (2.4)

Replacing u by ur + ru , r ∈ R , in (2.4) and using (2.4), we get G(r)u = 0 ∀u ∈ J, r ∈ R , and hence

G(r)J = (0) for all r ∈ R . Thus, by Lemma 2.2, we get G(r) = (0) for all r ∈ R . 2

Remark 2.9 The assumption that J is both a Jordan ideal and a subring of R seems close to assuming that

J is an ideal of the ring. However, we can see that there exists a Jordan ideal and a subring of R , which is not

an ideal of R .

Example 2.10 [2]. Let R be a ring of all 2 × 2 matrices with entries form GF (2) . Consider J =

{
(

a b
b a

)
|a, b ∈ GF (2)} we can verify that J is both a Jordan ideal and a subring of R , but it is not

an ideal of R .

3. Main results

We start by the following theorem, which is the proposition 3.1 in [3] neglecting the condition subring on a

subset.

Theorem 3.1 Let R be a 2-torsion free semiprime ring, J a nonzero Jordan ideal, and F an additive mapping

on R . If F is centralizing on J , then F is commuting on J .

Proof A linearization of [F (u), u] ∈ Z(R) gives [F (u), v] + [F (v), u] ∈ Z(R) for all u, v ∈ J . In particular,

replacing v by 2u2 , we get 2[F (u), u2] + 2[F (u2), u] ∈ Z(R).

Since [F (u), u] ∈ Z(R), we have [F (u), u2] = 2[F (u), u]u . Thus

4[F (u), u]u+ 2[F (u2), u] ∈ Z(R) for allu ∈ J. (3.1)

By assumption, 4[F (u2), u2] ∈ Z(R) for all u ∈ J . That is,

4[F (u2), u]u+ 4u[F (u2), u] ∈ Z(R) for allu ∈ J. (3.2)

Now fix u ∈ J and let z = [F (u), u] ∈ Z(R), s = [F (u2), u]. By (3.1) we have 0 = [F (u), 4zu + 2s] =

2(2z2 + [F (u), s]) . Thus

[F (u), s] = −2z2 (3.3)

According to (3.2) we have 0 = [F (u), 4su + 4us] = 4([F (u), s]u + s[F (u), u] + [F (u), u]s + u[F (u), s]) , and

applying (3.3), we get −4z
2

u + 2zs = 0. Multiplying (3.3) by z from the left and using the last relation we

obtain −2z3 = z[F (u), s] = [F (u), zs] = [F (u), 2z2u] = 2z3. Hence z3 = 0. Since the center of a semiprime

ring contains no nonzero nilpotent elements, we conclude that z = 0. This proves the theorem. 2

Theorem 3.2 Let R be a prime ring with charR ̸= 2 , and J a nonzero Jordan ideal and a subring of R . If

R admits a generalized derivation F with associated derivation d ̸= 0 such that F is centralizing on J , then

J ⊆ Z(R) .
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Proof By Theorem 3.1 we have

[F (u), u] = 0 for allu ∈ J. (3.4)

Linearizing (3.4) and using (3.4), we obtain

[F (u), v] + [F (v), u] = 0 for allu, v ∈ J. (3.5)

Replacing v by vu in (3.5) and using (3.5) we obtain

[F (u), v]u+ [F (v), u]u+ v[d(u), u] + [v, u]d(u)

= v[d(u), u] + [v, u]d(u) = 0 for allu, v ∈ J.
(3.6)

Again replacing v by wv in (3.6) and using (3.6), we get [w, u]vd(u) = 0 for all u, v, w ∈ J , and hence

[w, u]Jd(u) = (0). Thus, by Lemma 2.3, we find that for each u ∈ J either [w, u] = 0 or d(u) = 0. Now let

J1 = {u ∈ J | d(u) = 0} and J2 = {u ∈ J | [w, u] = 0, for allw ∈ J} . Thus, J1 and J2 are additive subgroups

of J and J = J1
∪
J2 . However, a group cannot be the union of 2 of its proper subgroups; hence J1 = J or

J2 = J . If J1 = J , then d(u) = 0 for all u ∈ J . Thus, by Lemma 2.4, we get J ⊆ Z(R). On the other hand,

if [w, u] = 0 for all w, u ∈ J , then, by Lemma 2.1, we get J ⊆ Z(R). 2

Theorem 3.3 Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal and a subring of R . If

R admits a generalized derivation F with associated derivation d ̸= 0 such that F (u)u = ud(u) for all u ∈ J ,

then J ⊆ Z(R) .

Proof By hypothesis we have

F (u)u = ud(u) for allu ∈ J. (3.7)

Linearizing the above equation gives

F (u)v + F (v)u = ud(v) + vd(u) for allu, v ∈ J. (3.8)

Replace v by vu and use (3.8) to get

2vd(u)u = (u ◦ v)d(u) for allu, v ∈ J. (3.9)

Replacing v by wv in (3.9) and using (3.9), we have [u,w]vd(u) = (0) for all u, v, w ∈ J , so [u,w]Jd(u) = (0).

Thus by Lemma 2.3, we find that for each u ∈ J either [u,w] = 0 or d(u) = 0 for all w ∈ J . Now using similar

arguments as used in the proof of Theorem 3.2, we get J ⊆ Z(R). 2

Theorem 3.4 Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal and a subring of R . If R

admits a generalized derivation F with associated derivation d ̸= 0 such that F (u2)− 2uF (u) = d(u2)− 2ud(u)

for all u ∈ J , then either J ⊆ Z(R) or F = d .

Proof By hypothesis we have

F (u2)− 2uF (u) = d(u2)− 2ud(u) for allu ∈ J. (3.10)
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Since F and d are additive mappings, (3.10) could be rewritten as

(F − d)(u2) = 2u(F − d)(u) for allu ∈ J. (3.11)

Let G = F − d we get G(u2) = 2uG(u) for all u ∈ J . By Lemma 2.5 (taking θ = I ), either J ⊆ Z(R) or

G(J) = 0. If G(J) = 0, by Lemma 2.7 G is a left centralizer. Using Lemma 2.8 we get G(r) = F (r)− d(r) = 0

for all r ∈ R ; thus F (r) = d(r) for all r ∈ R . 2

Theorem 3.5 Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal and a subring of R . If R

admits a generalized derivation F with associated derivation d ̸= 0 such that F 2(u)+3d2(u) = 2Fd(u)+2dF (u)

for all u ∈ J , then either J ⊆ Z(R) or F = d .

Proof By hypothesis we have

F 2(u) + 3d2(u) = 2Fd(u) + 2dF (u) for allu ∈ J. (3.12)

Replacing u by uv in (3.12) we get

F (F (u)v + ud(v)) + 3d(d(u)v + ud(v)) = 2F (d(u)v + ud(v)) + 2d(F (u)v + ud(v))

for allu, v ∈ J.
(3.13)

The above equation gives

2F (u)d(v) = 2d(u)d(v) for allu, v ∈ J. (3.14)

However, charR ̸= 2; hence

(F (u)− d(u))d(v) = 0 for allu, v ∈ J. (3.15)

Again replacing v by vw and using (3.15) we get

(F (u)− d(u))vd(w) = 0 for allu, v, w ∈ J. (3.16)

Thus, we get (F (u)−d(u))Jd(w) = (0) for all u,w ∈ J . By Lemma 2.3 we have either d(w) = 0 for all w ∈ J or

F (u)−d(u) = 0 for all u ∈ J . If d(w) = 0 for all w ∈ J , hence d(J) = 0. Thus by Lemma 2.4 we get J ⊆ Z(R).

On the other hand, if F (u)−d(u) = 0. Using the same steps in Theorem 3.4 we get F (r) = d(r) for all r ∈ R . 2

Theorem 3.6 Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal and a subring of R . If R

admits a generalized derivation F with associated derivation d ̸= 0 such that d(u2) = 2F (u)u for all u ∈ J ,

then J ⊆ Z(R) .

Proof By hypothesis we have

d(u2) = 2F (u)u for allu ∈ J. (3.17)

This gives

d(u)u+ ud(u) = 2F (u)u for allu ∈ J. (3.18)

Linearizing the above equation gives

d(u)v + d(v)u+ ud(v) + vd(u) = 2F (u)v + 2F (v)u for allu, v ∈ J. (3.19)
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Replace v by vu and use (3.19) to get

uvd(u) + vud(u) = 2vd(u)u for allu, v ∈ J. (3.20)

Thus
(u ◦ v)d(u) = 2vd(u)u, for allu, v ∈ J. (3.21)

Replacing v by wv in (3.21) and using (3.21), we have [u,w]vd(u) = (0) for all u, v, w ∈ J ; hence

[u,w]Jd(u) = (0). Thus, by Lemma 2.3, we find that for each u ∈ J either [u,w] = 0 or d(u) = 0 for

all w ∈ J . Now, using similar arguments as used in the proof of Theorem 3.2, we get J ⊆ Z(R). 2

Theorem 3.7 Let R be a prime ring with charR ̸= 2 and J a nonzero Jordan ideal and a subring of R . If R

admits a generalized derivation F with associated derivation d ̸= 0 such that F (u2) = 2uF (u) for all u ∈ J ,

then J ⊆ Z(R) .

Proof By hypothesis we have

F (u2) = 2uF (u) for allu ∈ J. (3.22)

Using Lemma 2.5 with θ = I , we get either J ⊆ Z(R) or F (J) = 0. If F (J) = 0, then

F (u) = 0 for allu ∈ J. (3.23)

Replacing u by uv in (3.23) we get

F (u)v + ud(v) = 0 for allu ∈ J. (3.24)

Using (3.23) we have ud(v) = 0 for all u, v ∈ J ; thus Jd(v) = 0 for all v ∈ J . By Lemma 2.2 we get d(v) = 0

for all v ∈ J , and by Lemma 2.4 we get J ⊆ Z(R). 2

Corollary 3.8 Let R be a prime ring with charR ̸= 2 and I a nonzero ideal of R . Suppose that R admits a

generalized derivation F associated with a nonzero derivation d such that any one of the following holds:

(i) F (u)u = ud(u) for all u ∈ I ;

(ii) d(u2) = 2F (u)u for all u ∈ I ;

(iii) F (u2) = 2uF (u) for all u ∈ I ;

then R is commutative.
Moreover, if any one of the following holds:

(iv) F (u2)− 2uF (u) = d(u2)− 2ud(u) for all u ∈ I ;

(v) F 2(u) + 3d2(u) = 2Fd(u) + 2dF (u) for all u ∈ I ;

then either R is commutative or F = d .

In Theorem 3.2, if we assume that J is only a subring of R , then J is not central. This can be shown by the

following example.

Example 3.9 Let R be the prime ring of all 2 × 2 matrices over a noncommutative prime ring S with

charS ̸= 2 . Consider J = {
(

a 0
0 d

)
|a, b ∈ S} . Hence U is a subring, but not a Jordan ideal of R .

238



EL-SOUFI and ABOUBAKR/Turk J Math

Let us define mappings F : R → R and d : R → R as follows:

F

(
a b
c d

)
=

(
a 0
0 −d

)
, (3.25)

d

(
a b
c d

)
=

(
0 −b
c 0

)
. (3.26)

Therefore, d is a nonzero derivation on R , and F is a generalized derivation on R satisfying the condition

[F (u), u] ∈ Z(R) for all u ∈ J . But J ⊈ Z(R) .
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