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Abstract: Let G be a finite group and let H be a subgroup of G . H is said to be an NR∗ -subgroup of G if there

exists a normal subgroup T of G such that G = HT and if whenever K � H and g ∈ G , then Kg ∩ H ∩ T ≤ K .

A number of new characterizations of a group G are given, under the assumption that all Sylow subgroups of certain

subgroups of G are NR∗ -subgroups.
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1. Introduction

All groups considered in this paper are finite. Throughout the following, G always stands for a finite group and

if H and K are subgroups of G and K normalizes H then we shall use the notation [H]K to indicate that

H ∩K = 1, i.e the product HK is a split extension of the normal subgroup H by the complement K . Other

unexplained notations and terminology are standard, as in [6, 7]. A topic of some interest is to investigate the

structure of G under certain restrictions on its certain subgroups (see [1-3, 8-10]). Following Berkovich [2], a

subgroup H of G is called an NR -subgroup in G if whenever K � H , then KG ∩ H = K . NR -subgroups

play an important role in the following result of Berkovich (see [2, Proposition 11]).

Theorem 1.1 If all Sylow subgroups of a group G are NR -subgroups, then G is supersoluble.

The following example indicates that it is not necessary that all Sylow subgroups of a supersolvable group

G are NR -subgroups of G .

Example 1.1. Let H be an elementary abelian 3-group of order 32 and L be a cyclic group of order 2. Denote

G = [H]L to be the corresponding semidirect product, where H = ⟨a, b|a3 = b3 = 1 = [a, b]⟩ , L = ⟨x⟩ , and
bx = b, ax = a−1 . Observe that a chief series 1� ⟨a⟩� ⟨a, x⟩�G implies that G is supersoluble. However, H

is not an NR -subgroup of G . As an illustration, let K = ⟨ab⟩ be a maximal subgroup of H , and it is easy to

see that K ̸= H = KG ∩H.

We hope to weaken the conditions on Sylow subgroups of G to generalize Theorem 1.1. In this article

we work in this direction. We first analyze the counterexample G above. Note that ⟨b, x⟩ is an NR -subgroup

of prime index in G . This is the case that Tong-Viet studied (see [8, 9]). In fact, Tong-Viet in [9] proved that if
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G has an NR -subgroup H of prime index in G and H is supersolvable, then G is supersolvable. On the other

hand, notice that {⟨a⟩, ⟨b⟩, ⟨ab⟩, ⟨a−1b⟩} is the set of nontrivial normal subgroups of H . Moreover, if L = ⟨ab⟩
or ⟨a−1b⟩ , then there exists a normal subgroup T = ⟨b, x⟩ of G such that G = LT and Lg ∩H ∩ T = 1 for

all g ∈ G , and if L = ⟨a⟩ or ⟨b⟩ , then there exists a normal subgroup T = G of G such that G = LT and

Lg ∩H ∩ T = L for all g ∈ G .

We start with the following new concept.

Definition 1.1. Let G be a group and let K �H ≤ G . A triple (G,H,K) is said to be quasispecial in G if

there exists a normal subgroup T of G such that G = KT and Kg ∩H ∩T ≤ K for all g ∈ G . A subgroup H

is said to be an NR∗ -subgroup of G if, whenever K is normal in H , the triple (G,H,K) is quasispecial in G .

It is clear that every NR -subgroup of G is an NR∗ -subgroup. The converse is not true in general. For

instance, let G = [H]L , where H = ⟨a, b|a3 = b3 = 1 = [a, b]⟩ , L = ⟨x⟩ , and bx = b, ax = a−1 . Then H is an

NR∗ -subgroup in G . However, we know that H is not an NR -subgroup.

We extend the former result by replacing conditions on “NR -subgroups” by conditions referring to only

some “NR∗ -subgroups”. Furthermore, we work within the framework of formation theory and use NR∗ -

subgroup conditions on the Sylow subgroups of F ∗(G) to characterize the structure of a group G . Our main

results are Theorems 3.7 and 3.8 (see Section 3). These results generalize some classical and recent results as

particular cases.

2. Preliminaries

The following 2 lemmas will be used frequently and without comment.

Lemma 2.1. Let K be a subgroup and let H be an NR∗ -subgroup of G . Then the following holds:

(1) If H ≤ K , then H is an NR∗ -subgroup of K .

(2) If N �G and N ≤ H , then H/N is an NR∗ -subgroup of G/N .

Proof (1) Let L be any normal subgroup of H . Since H is an NR∗ -subgroup of G , the triple (G,H,K) is

quasispecial in G , and hence there exists a normal subgroup T of G such that G = LT and Lg ∩H ∩ T ≤ L

for all g ∈ G . Note that H ≤ K ; we have K = K ∩LT = L(K ∩ T ) by Dedekind’s law and hence K ∩ T �K .

This implies that H is an NR∗ -subgroup of K .

(2) Let L be any normal subgroup of H . Since H is an NR∗ -subgroup of G , there exists a normal sub-

group T of G such that G = LT and Lg∩H ∩T ≤ L for all g ∈ G . It follows that G/N = (L/N)(TN/N) and

whenever L/N�H/N and g ∈ G , then (L/N)gN∩H/N∩TN/N = (Lg∩H∩TN)/N = (Lg∩H∩T )N/N ≤ L/N .

Thus, H/N is an NR∗ -subgroup of G/N . 2

Lemma 2.2. Let H be a p-subgroup of G and let N be a normal p′ -subgroup. Then H is an NR∗ -subgroup

of G if and only if HN/N is an NR∗ -subgroup of G/N .

Proof Let L be any normal subgroup of H . Assume that H is an NR∗ -subgroup of G and the triple (G,H,K)

is quasispecial in G ; hence, there exists a normal subgroup T of G such that G = LT and Lg∩H∩T ≤ L for all

g ∈ G . By the assumption that H is a p -group and N is a p′ -group, we have N ≤ T , since (|N |, |G/T |) = 1,

and hence G/N = (LN/N)(T/N). Let M/N be a normal subgroup of HN/N. Then there exists a normal
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subgroup L of H such that M = LN. Note that Mg ∩ HN ∩ T = LgN ∩ (H ∩ T )N = (LgN ∩ H ∩ T )N.

Let P be a Sylow p -subgroup of LgN . Since LgN ∩ H ∩ T is a p -group of LgN and LgN contains a

Sylow p -subgroup Lg , we have (LgN ∩ H ∩ T )n1 ≤ P ≤ Lgn2 for suitable n1, n2 ∈ N. Then it follows that

LgN ∩ H ∩ T ≤ Lgn2n
−1
1 ∩ H ∩ T, and hence (LgN ∩ H ∩ T )N ≤ (Lgn2n

−1
1 ∩ H ∩ T )N ≤ LN = M. Thus,

(M/N)gN ∩ (HN/N) ∩ T/N = (Lg ∩H ∩ T )N/N ≤ M/N. Therefore, HN/N is an NR∗ -subgroup of G/N.

Conversely, assume that HN/N is an NR∗ -subgroup of G/N. Let L be a normal subgroup of H ; then

LN/N �HN/N and hence there exists a normal subgroup T/N of G/N such that G/N = (LN/N)(T/N) and

(LN/N)gN ∩HN/N ∩ T/N ≤ LN/N . It follows that Lg ∩H ∩ T ≤ (LgN ∩H ∩ T )N ≤ LN , so G = LT and

Lg ∩H ∩ T ≤ LN ∩H = L(N ∩H) = L , since N ∩H = 1. This follows easily from the assumption that H is

a p-group and N is a p′ -group. Thus, H is an NR∗ -subgroup of G . 2

Recall that a subgroup H of a group G is an H -subgroup in G if Hg ∩NG(H) ≤ H for all g in G . A

subgroup H of G is called weakly H -subgroup in G [1] if there exists a normal subgroup T of G such that

G = HT and H ∩ T is an H -subgroup in G . For groups H ≤ T ≤ G we say that H is strongly closed in T

with respect to G if Hg ∩ T ≤ H for all g ∈ G. Noting if H is a p -subgroup of G , then H is an H -subgroup

of G if and only if H is strongly closed in P with respect to G for some Sylow p -subgroup P of G containing

H . We obtain the next result.

Lemma 2.3. Let N be a normal subgroup of G . Assume that p is a prime dividing |G| and P is a Sylow

p-subgroup of N . If H is normal in P and (G,P,H) is quasispecial in G , then H is a weakly H -subgroup of

G .

Proof By the hypotheses, for any normal subgroup H of P , there exists a normal subgroup T of G such

that G = HT and Hg ∩ P ∩ T ≤ H for all g ∈ G . Let S be a Sylow p -subgroup of G containing P . Observe

that N ∩S = P implies that (H ∩T )g ∩S = Hg ∩T ∩N ∩S = Hg ∩T ∩P ≤ H for every g ∈ G. Thus, H ∩T

is an H -subgroup of G . This ends the proof. 2

Lemma 2.4. Let N be a minimal normal subgroup of G and let H be a subgroup of N . If H is an NR∗ -

subgroup of G , then H is an NR -subgroup of G .

Proof By our hypotheses, for any normal subgroup L of H , there exists a normal subgroup T of G such

that G = LT and Lg ∩H ∩ T ≤ L for all g ∈ G . Since N = L(N ∩ T ) by Dedekind’s law and N ∩ T �G, the

minimality of N implies that N ≤ T or N ∩ T = 1. If N ≤ T , then G = T and so H is an NR -subgroup in

G . If N ∩T = 1, then N = L ≤ H and hence H = N is normal in G and, of course, an NR -subgroup in G . 2

We shall need the following lemma.

Lemma 2.5 ([10, Lemma 3.1]). Let P be a Sylow p-subgroup of a group G and let T be a normal subgroup

G . If NG(P ) is p-nilpotent, then ⟨T ∩ P ∩ (P ′)g|g ∈ G⟩ = T ∩ P ∩ ⟨(P ′)g|g ∈ G⟩.

3. Main results

Our main result in this section gives detailed information about the NR∗ -subgroup conditions of certain

subgroups of G .

Theorem 3.1 Let p be a prime dividing |G| and let P be a Sylow p-subgroup of G . Then G is p-nilpotent if

and only if P is an NR∗ -subgroup of G and NG(P ) is p-nilpotent.
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Proof Suppose, first, that G is p -nilpotent. Then there exists a normal subgroup T of G such that G = PT

and P ∩ T = 1. Let P1 be any normal subgroup of P and let g ∈ G . Then g = at with a ∈ P and t ∈ T .

Clearly, P g
1 = P t

1 and P1T is a normal subgroup of G . Observe that P1�NP1T (P1) and P1 ∈ Sylp(NP1T (P1))

implies that P t
1 ∩ P ≤ P1 and P1 is NR∗ -subgroup of G . Clearly, NG(P ) is p-nilpotent.

Conversely, suppose that NG(P ) is p-nilpotent and P is an NR∗ -subgroup of G . Let P1, P2, . . . , Ps

be maximal subgroups of P such that ∩s
i=1Pi = Φ(P ). Then there exists a normal subgroup Ti of G

such that G = PiTi and P g
i ∩ Ti ∩ P ≤ Pi for all i ∈ {1, 2, . . . , s} and all g ∈ G , respectively, since

P ∩ (P ′)g ≤ (P ′)g ≤ (Φ(P ))g ≤ P g
i . Let N = ∩s

i=1Ti , a normal subgroup of G . Then we have N ∩P ∩ (P ′)g ≤
∩s
i=1(Ti ∩ P g

i ∩ P ) ≤ ∩s
i=1Pi = Φ(P ) for all g ∈ G . By Grun’s Theorem [7, IV, Theorem 3.7], we obtain

N ∩ P ∩ G′ = N ∩ ⟨P ∩ (P ′)g, P ∩ (NG(P ))′|g ∈ G⟩ . Since NG(P ) is p -nilpotent, Lemma 2.5 implies that

N ∩ P ∩ G′ = N ∩ ⟨P ∩ (P ′)g|g ∈ G⟩ = N ∩ P ∩ ⟨(P ′)g|g ∈ G⟩ = ⟨N ∩ P ∩ (P ′)g|g ∈ G⟩ ≤ Φ(P ). By

applying Tate’s Theorem [7, IV, Theorem 4.7 ], we get that N ∩ G′ is p -nilpotent. Let B be a normal p -

complement of (N ∩G′)p in N ∩G′ . If B > 1, then B is normal in G . Consider the quotient group G/B. Since

NG/B(PB/B) = NG(P )B/B , by Lemma 2.3(2), G/B is p-nilpotent and so is G . If B = 1, then N ∩G′ ≤ P

and, therefore, N ∩G′ = N ∩P ∩G′ ≤ Φ(P ). By [7, III, Theorem 3.3(a)], N ∩G′ ≤ Φ(G). Observe that G/N

being p -nilpotent implies that G/(N ∩G′) is p -nilpotent. We get that G is p -nilpotent. 2

Corollary 3.2. Let p be a prime dividing |G| and let P be a Sylow p-subgroup of G . Then G is p-nilpotent

if and only if NG(P ) is p-nilpotent and P is an NR -subgroup of G .

Remark 3.3. In Theorem 3.1, the assumption that NG(P ) is p -nilpotent is essential. In order to illustrate

the situation, we consider G = ⟨a, b, c|a9 = b2 = c2 = 1 = [b, c], ac = ba, ca = abc⟩ . Then the unique subgroup

of order 3 is normal in G , but G is not 3-nilpotent. However, if p is the smallest prime dividing the order of a

group, then the result holds. In fact, we obtain the following result.

Theorem 3.4. Let p be the smallest prime dividing |G| and let P be a Sylow subgroup of G . Then G is

p-nilpotent if and only if P is an NR∗ -subgroup of G .

Proof Since P is an NR∗ -subgroup of G , by Lemma 2.1(1), P is an NR∗ -subgroup of NG(P ). If NG(P ) < G ,

then, by induction, NG(P ) is p -nilpotent. By Theorem 3.1, G is p-nilpotent. Thus, P is normal in G . Let

H be a maximal subgroup of P ; then, by Lemma 2.3, H is a weakly H -subgroup of G . By [1, Theorem 3.1],

G is p -nilpotent. 2

Recall that a class F of groups is called a formation provided that (i) G ∈ F and N is normal in G

imply G/N ∈ F , and (ii) if both G/N and G/M are in F , then G/(N ∩M) ∈ F . If, in addition, G/Φ(G) ∈ F
implies G ∈ F , then we say that F is saturated. Note that, for a class F of groups, a chief factor H/K of G is

called F -central if [H/K](G/CG(H/K))) ∈ F . The symbol ZF (G) denotes the F -hypercenter of G , that is,

the product of all such normal subgroups H of G whose G -chief factors are F -central. We refer to [4, 5] for

notation and terminology about the theory of formations. The following lemma plays a key role in the proof of

Theorem 3.7.

Lemma 3.5. Let P be a normal p-subgroup of G . If P is an NR∗ -subgroup of G , then P ≤ ZU (G) .

Proof Let H be an arbitrary maximal subgroup of P . Observe that P being an NR∗ -subgroup of G implies

that H is a weakly H -subgroup of G by Lemma 2.3. We conclude by [1, Lemma 3.3] that P ≤ ZU (G). 2
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We now prove the following main results.

Theorem 3.6. If all Sylow subgroups of G are NR∗ -subgroups of G , then G is supersolvable.

Proof Assume that the result is not true and let G be a counterexample of minimal order. By Theorem 3.4,

we can conclude that G has a Sylow tower of supersolvable type. Let p be the largest prime dividing the order

of G and P a Sylow p -subgroup of G . Then P �G . If N is a nontrivial normal subgroup of G contained in

P , then as G/N satisfies the hypothesis of the theorem by Lemmas 2.1(2) and 2.2, the minimality of G yields

that G/N is supersolvable. Set L = P ∩ Φ(G). Observe that L ̸= 1 implies that G/L is supersolvable, and

hence G must be supersolvable, which is a contradiction. Hence, L must be 1. Then P is the direct product

of minimal normal subgroups of G , which are contained in P . Now we wish to show that P is the unique

minimal normal subgroup of G . Otherwise, let N1 and N2 be 2 distinct minimal normal p-subgroups of G ;

arguing as above, we conclude that G/Ni are supersolvable and so G is supersolvable, which is a contradiction

and our claim holds. Let P1 be any maximal subgroup of P . By Lemma 2.3, P1 is weakly H -subgroup in G .

Then there exists a normal subgroup K of G such that G = P1K and P1 ∩K is H -subgroup in G . Clearly,

P1 ∩K is subnormal in G . By [3, Theorem 6(2)], P1 ∩K �G . It follows that P1 ∩K = 1 and so P = P ∩K

is a cyclic group of order p , which implies that G is supersolvable, a final contradiction, and the proof of the

theorem is now complete. 2

Theorem 3.7. Let F be a saturated formation containing the class of supersolvable groups U . Then G ∈ F if

and only if G has a normal subgroup H such that G/H ∈ F and all Sylow subgroups of H are NR∗ -subgroups

of G .

Proof We need only to prove the “if” part. We use induction on |G| . By our hypothesis and Lemma 2.1(1),

every Sylow subgroup of H is an NR∗ -subgroup in H . Then H is supersolvable by Theorem 3.6. Let p be the

largest prime dividing |H| and P a Sylow p -subgroup of H . Then P is characteristic in H and so is normal in

G . So, first by applying Lemma 2.1(2) and Lemma 2.2, all maximal subgroups of every Sylow subgroup of H/P

are NR∗ -subgroups in G/P . We get that (G/P,H/P ) satisfies the hypothesis of Theorem 3.7 and so G/P ∈ F
by induction on |G| . Now, Lemma 3.5 applies, yielding that P ≤ ZU (G). Observe that ZU (G) ≤ ZF (G) by

[4, Proposition 3.11] implies that P ≤ ZF (G) and so G ∈ F . 2

For a group G , the generalized Fitting subgroup F ∗(G) of G is the set of all elements of G that induce

an inner automorphism on every chief factor of G . If G ̸= 1, then F ∗(G) ̸= 1. If N�G , then F ∗(N) ≤ F ∗(G).

In particular we have CG(F
∗(G)) ≤ F (G), and the solvability of F ∗(G) implies that F ∗(G) = F (G) (see [1,

Lemma 2.7], see also [4, 6]). With these results, now we can prove the next theorem.

Theorem 3.8. Let F be a saturated formation containing the class of supersolvable groups U . Then G ∈ F
if and only if G has a normal subgroup H such that G/H ∈ F and all Sylow subgroups of F ∗(H) are NR∗ -

subgroups of G .

Proof We need only to prove the “if” part. By Lemma 2.2(1), we have that every Sylow subgroup of F ∗(H)

is an NR∗ -subgroup in F ∗(H). By Theorem 3.6 with respect to F ∗(H), we have that F ∗(H) is supersolvable

and, hence, F ∗(H) = F (H). Since any subgroup that is characteristic in F (G) is normal in G , by Lemma 3.5,

F (H) ≤ ZU (G). Observe that ZU (G) ≤ ZF (G) implies that F (H) ≤ ZF (G). Hence, G/CG(F (H)) ∈ F by

[4, Theorem 6.10]. Since G/H and G/CG(F (H)) are in F , we have that G/CH(F (H)) = G/(H ∩CG(F (H)))

is in F . Finally, note that CH(F ∗(H)) ≤ F (H) and the fact that F ∗(H) = F (H). Then G/F (H) is an
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epimorphic image of G/CH(F (H)), and thus G/F (H) ∈ F . Now, by applying Theorem 3.7, we get G ∈ F ,

which completes the proof. 2

Theorem 3.8 immediately implies the following corollaries.

Corollary 3.9. Let F be a saturated formation containing the class of supersolvable groups U . Then G ∈ F
if and only if G has a solvable normal subgroup H such that G/H ∈ F and if all Sylow subgroups of F (H)

are NR∗ -subgroups of G .

Corollary 3.10. Let G be a group with a normal subgroup H such that G/H is supersolvable. If all Sylow

subgroups of F ∗(H) are NR∗ -subgroups of G , then G is supersolvable.

Corollary 3.11. Let G be a group. If all Sylow subgroups of F ∗(G) are NR∗ -subgroups of G , then G is

supersolvable.

Corollary 3.12. Let G be a group with a solvable normal subgroup H such that G/H is supersolvable. If all

Sylow subgroups of F (H) are NR∗ -subgroups of G , then G is supersolvable.

Corollary 3.13. Let G be a solvable group. If all Sylow subgroups of F (G) are NR∗ -subgroups of G , then G

is supersolvable.

Corollary 3.13 is not true if the solvability of G is omitted, as the nonabelian simple groups show.
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