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Abstract: We consider the class T (r) of typically real functions with the normalization f(0) = 0 and f(r) = r for

a fixed r ∈ (0, 1). In the limiting case, when r tends to 0, the class T (r) coincides with the class T of typically real

functions normalized by f(0) = f ′(0) − 1 = 0. In 1980, Lewandowski and Miazga determined the Koebe domain for

T (r) , i.e. the set of the form
∩

f∈T (r) f(∆). They used the method applied earlier by Goodman. In this paper we

present a new, complete method of determining this set. As a corollary, we obtain the Koebe set for T .
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1. Introduction

In this paper we focus on typically real functions. Recall that an analytic function in the unit disk ∆ = {z ∈
C : |z| < 1} is called typically real if Im z Im f(z) ≥ 0 for z ∈ ∆. One usually considers the class T consisting

of typically real functions, which satisfy the normalization condition

f(0) = 0 and f ′(0) = 1 . (1.1)

A different type of normalization was suggested by Montel in [7], namely

f(0) = 0 and f(r) = 1 (1.2)

or
f(0) = 0 and f(r) = r . (1.3)

In these conditions it is assumed that r ∈ (0, 1).

The class of typically real functions with the normalization (1.3) is denoted by T (r). This class was

discussed by Pi lat in [8]. She gave the representation formula for a function in T (r) and proved various

distortion properties in this class.

Our main goal is to determine the Koebe set for T (r), i.e. the set of the form
∩

f∈T (r) f(∆). The sets

of this type for various classes of analytic functions have been discussed since the 1960s. Mainly, functions

normalized by (1.1) were considered, but one can also find papers concerning functions under Montel’s nor-

malization; see, for example [11, 10, 3, 6, 5, 9]. It occurred that in majority of cases, these sets are domains;
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however, sometimes a Koebe set is the union of disjoint domains (compare, for example, [3, 10]). We shall

prove that the Koebe set for T (r) is simply connected and starlike; hence, it is a domain. The idea of the proof

of the main result is similar to that in [2], which was applied to determine the Koebe set for T in a different

way than Goodman had done it in [1]. In the paper by Goodman, so-called universal typically real functions

appeared. However, these functions are not univalent. The author applied them as majorants in subordination

on the Riemann surfaces. Lewandowski and Miazga repeated in their work [4] the ideas of Goodman. In our

new method we find extremal functions directly from the geometric properties of functions in T (r). Due to

this method, we can exchange subordination on the Riemann surfaces by typical subordination to a univalent

majorant.

2. Main results

Let r ∈ (0, 1) be arbitrarily fixed.

Theorem 2.1 A function f ∈ T (r) omits 2 values, ϱeiθ and ϱe−iθ , where ϱ > 0 , θ ∈ (0, π) if and only if

there exists a function h analytic in ∆ such that

1. h is typically real in ∆ ,

2. h(0) = 2θ , h(r) = −2 arccot r−ϱ cos θ
ϱ sin θ ,

3. 0 < h(x) < 2π for −1 < x < 1 ,

4. f(z) = ϱ eiθ−e−iθeih(z)

1−eih(z) .

Proof (⇒)

Let f ∈ T (r) omit 2 values, ϱeiθ and ϱe−iθ , where ϱ > 0, θ ∈ (0, π). Let us discuss the function

h(z) =
1

i
log

f(z) − ϱeiθ

f(z) − ϱe−iθ
. (2.1)

This function is properly defined since f(z)−ϱeiθ

f(z)−ϱe−iθ is an analytic function omitting points 0 and 1. In (2.1) we

take the branch of the logarithm, which z = 0 associates with 2iθ . Hence

h(0) = 2θ . (2.2)

From Montel’s normalization of f , it follows that

h(r) =
1

i
log

r − ϱeiθ

r − ϱe−iθ
= −2 Arg(r − ϱe−iθ) ,

and hence

h(r) = −2 arccot
r − ϱ cos θ

ϱ sin θ
. (2.3)

From (2.1) we derive

f(z) = ϱ
eiθ − e−iθeih(z)

1 − eih(z)
. (2.4)
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For θ ∈ (0, π), the numerator and the denominator of the right-hand side of (2.4) cannot vanish at the same

time. Indeed, if there existed z0 such that 1− eih(z0) = 0, then the numerator eiθ − e−iθeih(z0) = 2i sin θ would

be different from 0. Hence, the analytic function f has no removable singularities. Thus, the denominator in

(2.4) is different from 0. Consequently,

h(z) ̸= 2kπ, k ∈ Z . (2.5)

Taking (2.4) into account, one can obtain

Im f(z) =
ϱ

|1 − eih(z)|2
(

1 − e−2 Imh(z)
)

sin θ . (2.6)

This means that h is a typically real function satisfying the normalization conditions of (2.2) and (2.3).

Combining it with (2.5), we get

0 < h(x) < 2π for − 1 < x < 1 .

(⇐)

If a function h analytic in ∆ satisfies conditions 1 through 4, then f is typically real and has Montel’s nor-

malization. Therefore, f ∈ T (r) and f does not take the values ϱeiθ and ϱe−iθ . 2

Lemma 2.1 If f ∈ T (r) omits ϱeiθ and ϱe−iθ , where ϱ > 0 , θ ∈ (0, π) , then h defined by (2.1) is subordinated

to Hθ given by

Hθ(z) = 2θ + 8θ

(
1 − θ

π

)
z

(1 − z)2 + 4 θ
π z

. (2.7)

Proof From the assumptions of Lemma 2.1 and Theorem 2.1 we conclude that

h(∆) ⊂ C \ {x ∈ R : x ≤ 0 ∨ x ≥ 2π} .

Moreover,

Hθ(∆) = C \ {x ∈ R : x ≤ 0 ∨ x ≥ 2π} ,

which means that h is subordinated to Hθ . 2

Observe that Hθ is a composition of a univalent starlike function and an affine function, and has real

coefficients. Thus, Hθ is typically real.

Now we can state the main result.

Theorem 2.2 The Koebe domain for the class T (r) , r ∈ (0, 1) , is a bounded domain, symmetric with respect

to the real axis. Its boundary in the upper half plane is given by the polar equation w = ϱ(θ)eiθ , θ ∈ [0, π] ,

where

ϱ(θ) =


1
4 (1 + r)2 , θ = 0

r sin(θ+Ψ(θ))
sin(Ψ(θ)) , θ ∈ (0, π)

1
4 (1 − r)2 , θ = π

(2.8)

and

Ψ(θ) = 4θ

(
1 − θ

π

)
r

(1 − r)2 + 4r θ
π

. (2.9)
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Proof Assume that f ∈ T (r), r ∈ (0, 1), and f omits 2 values, ϱeiθ and ϱe−iθ , ϱ > 0, θ ∈ (0, π). Although,

at the beginning, we do not make any assumption about omitted points, later on we find a correspondence

between ϱ and θ , which is essentially important in the proof.

The coefficients of f are real. For this reason, the Koebe set for T (r) is symmetric with respect to the

real axis and it is enough to find the upper half of this set.

Firstly, we shall find a typically real function that omits only 2 conjugated values having arguments θ

and −θ , respectively. We associate with f the function h of the form (2.1). From Theorem 2.1 the function h

satisfies conditions 1–4 of this theorem. By Lemma 2.1, h ≺ Hθ , where Hθ is a typically real function defined

by (2.7). If, additionally, we assume the same Montel normalization of h and Hθ , i.e.

h(r) = Hθ(r) , (2.10)

then, combining (2.7) and (2.3), we obtain the following relation connecting ϱ and θ :

ϱ = r
sin

(
θ + 4θ

(
1 − θ

π

)
r

(1−r)2+4r θ
π

)
sin

(
4θ

(
1 − θ

π

)
r

(1−r)2+4r θ
π

) . (2.11)

Applying Theorem 2.1 once again, we can see that there exists a function Fθ ∈ T (r) such that Fθ omits ϱeiθ

and ϱe−iθ , with ϱ = ϱ(θ) given by (2.8). The formula connecting Fθ and Hθ is of the form

Fθ(z) = ϱ(θ)
eiθ − e−iθeiHθ(z)

1 − eiHθ(z)
, (2.12)

or equivalently,

Fθ(z) = ϱ(θ)

(
cos θ − sin θ cot

(
1

2
Hθ(z)

))
.

Since Hθ(∆) is the complement of 2 horizontal rays with endpoints in 0 and 2π , the function cot
(
1
2Hθ(z)

)
maps ∆ onto the whole plane without 2 points i and −i . Hence

Fθ(∆) = C \
{
ϱ(θ)eiθ, ϱ(θ)e−iθ

}
. (2.13)

Moreover, Fθ is locally univalent in ∆ and univalent on (−1, 1).

Let us denote by K a domain containing the origin, which is symmetric with respect to the real axis,

and its boundary in the upper half plane is given in polar coordinates by (2.8). We claim that K is the Koebe

domain for T (r).

Let f be an arbitrary function in T (r) such that f omits ϱeiθ and ϱe−iθ . From (2.13) we get

ϱ(θ)

ϱ
f ≺ Fθ . (2.14)

This means that there exists an analytic function ω such that |ω(z)| < 1 and

ϱ(θ)

ϱ
f(z) = Fθ(ω(z)) .
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Since f and Fθ are typically real, ω is also typically real. It is known that any typically real function is strictly

increasing on (−1, 1). Hence

ϱ(θ)

ϱ
r =

ϱ(θ)

ϱ
f(r) = Fθ(ω(r)) ≤ Fθ(r) = r , (2.15)

which means that for θ ∈ (0, π) there is

ϱ ≥ ϱ(θ) . (2.16)

Taking into account suitable limits, one can observe that functions Fθ for θ = 0 and θ = π are of the form

F0(z) = z(1+r)2

(1+z)2 and Fπ(z) = z(1−r)2

(1−z)2 , respectively. These functions belong to T (r) and satisfy F0(1) = 1
4 (1+r)2

and Fπ(−1) = − 1
4 (1 − r)2 . Moreover, F0(∆) = C \

[
1
4 (1 + r)2,∞

)
and Fπ(∆) = C \

(
−∞,−1

4 (1 − r)2
]
.

If now f ∈ T (r) omits positive real value ϱ , then (2.14) and (2.15) are still true with θ = 0. Consequently,

ϱ ≥ 1
4 (1 + r)2 . In an analogous way one can show that ϱ ≥ 1

4 (1 − r)2 for θ = π .

We have proven that (2.16) holds for all θ ∈ [0, π] . This means that every function f ∈ T (r) omitting

ϱeiθ and ϱe−iθ takes each value from K .

Finally, observe that a function

gp,θ(z) =
ϱ

ϱ(θ)
Fθ(pz) , p ∈ [0, 1] ,

for a fixed θ ∈ [0, π] and ϱ > ϱ(θ), is typically real and gp,θ(r) = ϱ
ϱ(θ)Fθ(pr). This expression takes all values

in the interval [0, ϱ
ϱ(θ)Fθ(r)] = [0, ϱ

ϱ(θ)r] , while p varies in [0, 1], because Fθ is typically real and univalent in

(−1, 1). Therefore, there exists p0 ∈ (0, 1) such that gp0,θ(r) = r , which means that gp0,θ ∈ T (r). Moreover,

from Fθ(z) ̸= ϱ(θ)eiθ for z ∈ ∆ we obtain gp0,θ(z) ̸= ϱeiθ for z ∈ ∆. From the above we conclude that every

value ϱeiθ , ϱ > ϱ(θ) is omitted by a suitable chosen function gp,θ . This means K is the Koebe domain for

T (r). 2

Remark 2.1 In his book [7], Montel suggested the normalization (1.2) rather than (1.3). In this case the

formula (2.8) in Theorem 2.2 is slightly different:

ϱ(θ) =


1
4r (1 + r)2 , θ = 0
sin(θ+Ψ(θ))
sin(Ψ(θ)) , θ ∈ (0, π)
1
4r (1 − r)2 , θ = π ,

(2.17)

while the formula for Ψ(θ) is the same as in Theorem 2.2, i.e. (2.9).

Observe that

lim
r→0+

Ψ(θ) = 0 and lim
r→0+

sin Ψ(θ)

r
= 4θ

(
1 − θ

π

)
,

and consequently

lim
r→0+

ϱ(θ) = ϱ0(θ) ,
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where

ϱ0(θ) =

{
sin θ

4θ(1− θ
π )

, θ ∈ (0, π)

1
4 , θ = 0 ∨ θ = π .

(2.18)

For this reason from Theorem 2.2 we conclude the known result (see [1]) for the class T .

Corollary 2.1 The Koebe domain for the class T is a bounded domain, symmetric with respect to the real axis.

Its boundary in the upper half plane is given by the polar equation w = ϱ0(θ)eiθ , θ ∈ [0, π] , where ϱ0(θ) is

given by (2.18).

This set and Koebe sets for T (r), when r = 1/4 and r = 2/3, are shown in the Figure.

0.80.60.40.20-0.2

0.4

0.2

0

-0.2

-0.4

Figure. Koebe domains for T (1/4) (green line), T (2/3) (red line), and T (black line).

References

[1] Goodman AW. The domain covered by a typically real function. Proc Amer Math Soc 1977; 64: 233–237.

[2] Koczan L, Zaprawa P. Koebe domains for the classes of functions with ranges included in given sets. J Appl Anal

2008; 14: 43–52.
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