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Abstract: If there exists a set of canonical classes on a compact Hamiltonian-T -space in the sense of R Goldin and

S Tolman, we derive some formulas for certain equivariant structure constants in terms of other equivariant structure

constants and the values of canonical classes restricted to some fixed points. These formulas can be regarded as a

generalization of Tymoczko’s results.
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1. Introduction

Let T be a compact torus with its Lie algebra t and lattice l ⊂ t . For a compact symplectic manifold (M,ω)

equipped with a Hamiltonian-T -action, we have a moment map ϕ : M → t∗ , where t∗ is the dual of t . Then

we have the following equation:

ιXξ
ω = −dϕξ, ∀ξ ∈ t,

where Xξ denotes the vector field on M generated by the action and ϕξ : M → R is defined by ϕξ(x) = ⟨ϕ(x), ξ⟩ .
Here, ⟨., .⟩ is the natural pairing of t∗ and t . M is called a compact Hamiltonian-T -space.

ϕξ is called the component of the moment map ϕ corresponding to the chosen element ξ ∈ t . Suppose

that the component of the moment map is generic; that is, ⟨η, ξ⟩ ̸= 0 for each weight η ∈ l∗ ⊂ t∗ in the

symplectic representation TpM for every p in the T -fixed point set MT , and then ψ = ϕξ : M → R is a Morse

function with the critical set MT . Under this situation, the Morse index of ψ at each p ∈ MT is even. Let

λ(p) be half of the index of ψ at p . Let ∧−
p be the product of all the individual weights of this representation.

For each p ∈ MT , the natural inclusion map ip : p → M induces a map i∗p : H
∗
T (M) → H∗

T (p) in

equivariant cohomology. Letting α ∈ H∗
T (M), we use the notation α(p) for the image of α under the map i∗p .

i∗p is called the localization at p.

Definition 1.1 ([1]) Let M be a compact Hamiltonian-T -space with the moment map ϕ : M → t∗ and let

ψ = ϕξ : M → R be a generic component of the moment map for some ξ ∈ t ; then a cohomology class

αp ∈ H
2λ(p)
T (M ;Q) is a canonical class at the fixed point p with respect to ψ if

1. αp(p) = ∧−
p ,
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2. αp(q) = 0 for all q ∈MT \{p} such that λ(q) ≤ λ(p) .

Canonical classes do not always exist; see Example 2.2 in [1]. However, if canonical classes exist for all

p ∈MT , then {αp}p∈MT form a basis of H∗
T (M) as a module over H∗

T (pt)
∼= H∗(BT ).

Supposing that a set of canonical classes exists, the equivariant structure constants for H∗
T (M) are the

elements crpq ∈ H∗
T (pt) given by the following equation:

αpαq =
∑

r∈MT

crpqαr. (1.1)

In [5], explicit formulas for the equivariant structure constants of H∗
T (CP

n) are computed in terms

of the localizations of canonical classes at various fixed points in (CPn)T . This paper is concerned with

the generalization of these formulas to compact Hamiltonian-T -spaces, under the assumption that the set of

canonical classes exists.

Given a directed graph with vertex set V and edge set E ⊂ V × V , a path from a vertex p to a vertex

q is a (k + 1)-tuple r = (r0, ..., rk) ∈ V k+1 so that r0 = p, rk = q and (ri−1, ri) ∈ E for all 1 ≤ i ≤ k .

Definition 1.2 ([1]) Define an oriented graph with the vertex set V =MT and the edge set

E = {(r, r′) ∈MT ×MT | λ(r′)− λ(r) = 1, αr(r
′) ̸= 0}.

Let
∑q

p be the set of paths from p to q in (V,E) .

From now on, we call this graph a moment graph. Note that if no path connects p and q , i.e.
∑q

p is an

empty set, then αp(q) = 0.

The realization of the image of a moment map as a graph has been known for a while; see [2], for example.

Some useful information about the equivariant cohomology of a Hamiltonian-T -space can be extracted by using

such a graph.

A formula for αp(q) in terms of the values of a moment map at the points in MT and the restriction

of canonical classes to points of index exactly 2 higher was derived in [1]. Based on that idea, more formulas

were derived in [6]. The goal of this paper is totally different: formulas for some equivariant structure constants

are written in terms of other equivariant structure constants and the restriction of canonical classes to the

T -fixed point set MT . These are the main results in Section 2. The complexity of computations involved in

our formulas depends heavily on the structure of the moment graph. In some special cases, if the structure of

the moment graph is exceptionally simple, our formulas are greatly simplified. We will look at an example in

Section 3. Note that we do not make use of any extra assumption on the Hamiltonian-T -spaces except the

existence of a set of canonical classes.

2. Main results

Let (M,ω) be a compact Hamiltonian-T -space and ψ = ϕξ be a generic component of the moment map.

Assuming that a set of canonical classes αp ∈ H
2λ(p)
T (M ;Q) exists for all p ∈ MT , define an oriented graph

(V,E) as in Definition 1.2. In this section we compute the equivariant structure constants ckpq for any p, q in

the vertex set of the moment graph. We do the computations following the values of λ(k) in ascending order.
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Lemma 2.1

ckpq = 0

for λ(k) < λ(p) ≤ λ(q) , where p, q, k ∈MT .

Proof We begin by writing the equation

αpαq =
∑

r∈MT

crpqαr. (2.2)

Without loss of generality, we assume that λ(p) ≤ λ(q). Let t be an element in MT such that λ(t) is the

minimum value in the set S = {λ(x) | x ∈ MT } . Since λ(t) < λ(q), we have αq(t) = 0. Localizing (2.2) at t

gives ∑
r∈MT

crpqαr(t) = 0. (2.3)

Since αr(t) = 0, ∀r ∈MT \{t} , (2.3) implies

ctpqαt(t) = 0.

But αt(t) ̸= 0, and thus we get

ctpq = 0. (2.4)

In the set S = {λ(x) | x ∈MT } , pick u ∈MT \{q} such that λ(u) ≤ λ(q) and λ(u) attains the minimum

value in the set S\{λ(t)} , where t ∈ MT still satisfies the same property as above that λ(t) = minx∈MT λ(x).

Then αq(u) = 0 and hence localizing (2.2) at u gives

∑
r∈MT

crpqαr(u) = 0. (2.5)

However, we know that αr(u) = 0 when u ̸= r and λ(u) ≤ λ(r). Also, ctpq = 0 by (2.4). Hence, (2.5) gives

cupqαu(u) = 0.

Since αu(u) ̸= 0, we have

cupq = 0. (2.6)

By using the same method inductively on the set of values in S that are smaller than λ(p), we conclude

that

ckpq = 0 (2.7)

for all k ∈MT such that λ(k) < λ(p) ≤ λ(q). 2

Lemma 2.2

cppq = 0

for λ(p) ≤ λ(q) , where p, q ∈MT .
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Proof Note that αq(p) = 0. Localizing (2.2) at p gives∑
r∈MT

crpqαr(p) = 0. (2.8)

For all k ∈ MT \{p} such that λ(k) < λ(p), ckpq = 0 by Lemma 2.1. For all k′ ∈ MT \{p} such that

λ(k′) ≥ λ(p), αk′(p) = 0. Hence, by (2.8),

cppqαp(p) = 0.

Since αp(p) ̸= 0, we have

cppq = 0. (2.9)

2

Lemma 2.3

ckpq = 0

for k ∈MT \{p, q} such that λ(p) ≤ λ(k) ≤ λ(q) .

Proof Note that αq(k) = 0. Localizing (2.2) at k gives∑
r∈MT

crpqαr(k) = 0. (2.10)

If λ(p) = λ(k), then cupq = 0 for u ∈ MT such that λ(u) < λ(p) = λ(k) by Lemma 2.1, and αk′(k) = 0 for

k′ ∈MT \{k} such that λ(k′) ≥ λ(k). (2.10) becomes

ckpqαk(k) = 0. (2.11)

Since αk(k) ̸= 0, we get ckpq=0. By using the same localization method inductively on the set S′ ⊂ S = {λ(x) |

x ∈MT } that contains all values between λ(p) and λ(q), we get the result. 2

Lemma 2.4
cqpq = αp(q)

for λ(p) ≤ λ(q) , where p, q ∈MT .

Proof Localizing (2.2) at q gives

αp(q)αq(q) =
∑

r∈MT

crpqαr(q). (2.12)

By Lemmas 2.1, 2.2, and 2.3, ckpq = 0 for all k ∈ MT \{q} such that λ(k) ≤ λ(q), and αk′(q) = 0 for all

k′ ∈MT such that λ(k′) > λ(q). Hence, by (2.12),

αp(q)αq(q) = cqpqαq(q). (2.13)

We then divide both sides by αq(q), which is nonzero, to get the desired result. 2

Next, we will consider the equivariant structure constants czpq such that λ(z) = 1 + λ(q).
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Theorem 2.5 By the same notations and assumptions as in Lemma 2.1,

czpq =
αq(z)

αz(z)
(αp(z)− αp(q)),

where λ(z) = 1 + λ(q) .

Proof Let z ∈MT such that λ(z) = 1 + λ(q). Localizing (2.2) at z gives

αp(z)αq(z) =
∑

r∈MT

crpqαr(z)

= cqpqαq(z) + czpqαz(z). (2.14)

The second equality holds because ckpq = 0 for k ∈ MT \{q} such that λ(k) ≤ λ(q) by Lemmas 2.1, 2.2, and

2.3. Also, αk′(z) = 0 for all k′ ∈MT \{z} such that λ(k′) ≥ λ(z). By (2.14),

czpq =
αp(z)αq(z)− cqpqαq(z)

αz(z)
=
αp(z)αq(z)− αp(q)αq(z)

αz(z)
=
αq(z)

αz(z)
(αp(z)− αp(q)). (2.15)

2

Remark 2.6 We note that if (q, z) /∈ E , which means that there is no edge connecting q and z in the moment

graph, then αq(z) = 0 and hence czpq = 0 by (2.15).

We will then consider the equivariant structure constants cypq such that λ(y) = 2 + λ(q).

Definition 2.7 In the directed graph defined in Definition 1.2, define the negative valency, V −
p , at p ∈ V by

V −
p = {v ∈ V | (v, p) ∈ E}.

Define the positive valency, V +
p , at p ∈ V by

V +
p = {v ∈ V | (p, v) ∈ E}

and let |Vp| be the number of elements in Vp .

Definition 2.8 Let the rank of torus T be n . Let I ⊂ Q[t0, t1, ..., tn] denote the subring generated by αp(q)

for all p, q ∈MT . Define a shifting operator sba : I → I by

sba(αp(a)) = αp(b)

for any p ∈MT .

Note that the definition of sba can be extended to the ring of fractions of I . Now we are in the right

place to state our next result.
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Theorem 2.9 By the same notations and assumptions as in Lemma 2.1,

cypq =

|V −
y |∑

i=1

αzi(y)

αy(y)
(

1

|V −
y |

syzic
zi
pq − czipq),

where y ∈MT such that λ(y) = 2 + λ(q) and zi are the elements in V −
y , for i = 1, 2, ..., |V −

y | .

Proof Let y ∈MT such that λ(y) = 2 + λ(q). Localizing (2.2) at y gives

αp(y)αq(y) =
∑

r∈MT

crpqαr(y). (2.16)

Note that ckpq = 0 if λ(k) ≤ λ(q) and k ̸= q . Also, αk′(y) = 0 if λ(k′) ≥ λ(y) and k′ ̸= y . For z ∈ MT such

that λ(z) = 1 + λ(q) but z /∈ V −
y , αz(y) = 0. Hence, (2.16) is simplified as

αp(y)αq(y) = cqpqαq(y) +
∑

z∈V −
y

czpqαz(y) + cypqαy(y)

= αp(q)αq(y) +
∑

z∈V −
y

czpqαz(y) + cypqαy(y). (2.17)

By rearranging terms in (2.17), we get

cypq =
αp(y)αq(y)− αp(q)αq(y)

αy(y)
−

∑
z∈V −

y
czpqαz(y)

αy(y)
. (2.18)

Denote the elements in V −
y by z1, z2, ..., z|V −

y | . By Theorem 2.5,

czipq =
αq(zi)

αzi(zi)
(αp(zi)− αp(q))

for all zi in V −
y . By the shifting operators defined in Definition 2.8, we have

syzic
zi
pq =

αq(y)

αzi(y)
(αp(y)− αp(q)). (2.19)

By (2.18), we have

cypq =
αzi(y)

αy(y)
syzic

zi
pq −

∑|V −
y |

i=1 czipqαzi(y)

αy(y)
=
αzi(y)

αy(y)
(syzic

zi
pq −

|V −
y |∑

i=1

czipq) (2.20)

for each zi ∈ V −
y . Adding all these |V −

y | equations together, and then dividing the sum by |V −
y | , we have

cypq =

|V −
y |∑

i=1

αzi(y)

αy(y)
(

1

|V −
y |

syzic
zi
pq − czipq). (2.21)

2
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Remark 2.10 If there is no path connecting q and y in (V,E) when λ(y) − λ(q) = 2 , then αq(y) = 0 .

Under this situation, for z ∈ V −
y , αz(y) ̸= 0 but czpq = 0 (see Remark 2.6) since there does not exist any path

connecting q and z in (V,E) . Thus, czpqαz(y) = 0 for all z ∈ V −
y . By (2.18), we can conclude that cypq = 0 if∑y

q is an empty set.

Finally, we will consider the equivariant structure constants cxpq where λ(x) = 3 + λ(q).

Theorem 2.11 By the same notations and assumptions as in Lemma 2.1,

cxpq =
∑

y∈V −
x

αy(x)

αx(x)
(

1

|V −
x |

sxyc
y
pq − cypq) +

∑
z∈MT \({q,x}∪V −

x )

|V +
z | − |V −

x |
|V −

x |
αz(x)

αx(x)
czpq,

where x ∈MT such that λ(x) = 3 + λ(q) .

Proof For x ∈MT such that λ(x) = 3 + λ(q), localizing (2.2) at x gives

αp(x)αq(x) =
∑

r∈MT

crpqαr(x). (2.22)

Note that ckpq = 0 if λ(k) ≤ λ(q) and k ̸= q . αk′(x) = 0 if λ(k′) ≥ λ(x) and k′ ̸= x . For y ∈ MT such that

λ(y) = 2 + λ(q), the term cypqαy(x) is nonzero only if y ∈ V −
x . By (2.22), we have

αp(x)αq(x) = cqpqαq(x) +
∑

z∈MT \({q,x}∪V −
x )

czpqαz(x) +
∑

y∈V −
x

cypqαy(x) + cxpqαx(x)

= αp(q)αq(x) +
∑

z∈MT \({q,x}∪V −
x )

czpqαz(x) +
∑

y∈V −
x

cypqαy(x) + cxpqαx(x).

The terms included in the second term on the right hand side can be nonzero only when z ∈ V +
q and

∑x
z is a

nonempty set. Hence, by rearranging the terms, we get

cxpq =
αp(x)αq(x)− αp(q)αq(x)−

∑
z∈V +

q
czpqαz(x)

αx(x)
−

∑
y∈V −

x
cypqαy(x)

αx(x)
. (2.23)

For y ∈ V −
x , by (2.18),

αy(x)

αx(x)
sxyc

y
pq =

αp(x)αq(x)− αp(q)αq(x)−
∑

z∈V −
y
czpqαz(x)

αx(x)
. (2.24)

The last term in the numerator on the right side of (2.24) can be nonzero only when z ∈ V +
q and

∑x
z is

nonempty. By (2.23) and (2.24), for each y ∈ V −
x ,

cxpq =
αy(x)

αx(x)
sxyc

y
pq −

∑
z∈V +

q \V −
y

αz(x)

αx(x)
czpq −

∑
y∈V −

x

αy(x)

αx(x)
cypq. (2.25)

Before adding up equations (2.25) for each y ∈ V −
x , let us focus on the second term on the right side of (2.25).

Since we are only interested in those nonzero terms, we only have to take care of all the terms for those z ∈ V +
q
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when there is at least one path connecting q , z , and x . The simplest case is that |V +
z | = 1 for all z ∈ V +

q .

That is, z is only connected to one and only one y ∈ V −
x . In this case, the sets V −

y for each y ∈ V −
x are all

disjoint. It implies that V +
q is a disjoint union of V −

y for each y ∈ V −
x . Then by adding (2.25) for all y ∈ V −

x ,

we get

|V −
x |cxpq =

∑
y∈V −

x

αy(x)

αx(x)
sxyc

y
pq −

∑
y∈V −

x

∑
z∈V +

q \V −
y

αz(x)

αx(x)
czpq − |V −

x |
∑

y∈V −
x

αy(x)

αx(x)
cypq. (2.26)

For the second term on the right side, we have

∑
y∈V −

x

∑
z∈V +

q \V −
y

αz(x)

αx(x)
czpq =

∑
y∈V −

x

(
∑

z∈V +
q

αz(x)

αx(x)
czpq −

∑
z∈V −

y

αz(x)

αx(x)
czpq)

= |V −
x |

∑
z∈V +

q

αz(x)

αx(x)
czpq −

∑
y∈V −

x

∑
z∈V −

y

αz(x)

αx(x)
czpq

= |V −
x |

∑
z∈V +

q

αz(x)

αx(x)
czpq −

∑
z∈V +

q

αz(x)

αx(x)
czpq

= (|V −
x | − 1)

∑
z∈V +

q

αz(x)

αx(x)
czpq. (2.27)

We substitute (2.27) into (2.26) to get

|V −
x |cxpq =

∑
y∈V −

x

αy(x)

αx(x)
sxyc

y
pq + (1− |V −

x |)
∑

z∈V +
q

αz(x)

αx(x)
czpq − |V −

x |
∑

y∈V −
x

αy(x)

αx(x)
cypq. (2.28)

Dividing (2.28) by |V −
x | , we get

cxpq =
∑

y∈V −
x

αy(x)

αx(x)
(

1

|V −
x |

sxyc
y
pq − cypq) +

1− |V −
x |

|V −
x |

∑
z∈MT \({q,x}∪V −

x )

αz(x)

αx(x)
czpq, (2.29)

which is our desired formula (when |V +
z | = 1 for all z ∈ V +

q ).

More generally, if |V +
z | > 1 for some z ∈ V +

q , we have to take care of those ‘excessive edges’ coming

out of each z ∈ V +
q . For each of these ‘excessive edges’, we have an extra term −αz(x)c

z
pq/αx(x) in (2.27).

The number of these ‘excessive edges’ for each z ∈ V +
q is |V +

z | − 1. This means that we have an extra term,

−(|V +
z | − 1)αz(x)c

z
pq/αx(x). Hence, (2.27) becomes

∑
y∈V −

x

∑
z∈V +

q \V −
y

αz(x)

αx(x)
czpq =

∑
z∈V +

q

[(|V −
x | − 1)

αz(x)

αx(x)
czpq − (|V +

z | − 1)
αz(x)

αx(x)
czpq]

=
∑

z∈V +
q

(|V −
x | − |V +

z |)αz(x)

αx(x)
czpq. (2.30)

We substitute (2.30) into (2.26) and divide (2.26) by |V −
x | to get the desired formula. 2
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3. An example: complex projective space

A simple example for a compact Hamiltonian-T -space is CPn . The T -action is defined by (t0, ..., tn).[z0, ..., zn] =

[t0z0, ..., tnzn] . The moment polytope is the n-simplex. By suitably choosing a generic component of the mo-

ment map, we get the Morse function. There are n + 1 vertices in the moment graph. We label the vertices

by p0, p1, ..., pn in the ascending order of their indices. |V +
pi
| = |V −

pi
| = 1 for all i except i = 0 and i = n . By

Lemma 3.2 in [5], the classes αpi defined by αpi(pk) =
∏i−1

j=0(tj − tk) for i ≤ k, i = 1, ..., n can be used as the

set of canonical classes for H∗
T (CP

n). Thus, we have αpk−1
(pk)/αpk

(pk) = 1/(tk−1 − tk). By Theorems 2.5,

2.9, and 2.11, we have

cpk
pipj

=
spk
pk−1

c
pk−1
pipj − c

pk−1
pipj

tk−1 − tk
(3.31)

when λ(pi) ≤ λ(pj) and λ(pk)− λ(pj) = 1, 2, 3.

More generally, for λ(pk) − λ(pj) > 3, it is straightforward to check that (3.31) still holds by the

localization method used in the proofs of Theorems 2.5, 2.9, and 2.11. Hence, we have obtained Theorem 4.1

in [5] as a special case of our results.

Remark 3.1 The right side of (3.31) is the same as ∂k−1c
pk−1
pipj where ∂k−1 is the divided difference operator

defined in [5]. Divided difference operators are also defined in Kasparov’s equivariant KK -theory. For the

definitions and some interesting applications of divided difference operators in K -theory and KK -theory, see

[3] and [4].
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