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Abstract: In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular, we
use characteristic classes and the Poincaré duality to study the homology groups of Grassmann manifolds. We show that
for k =2 or n < 8, the cohomology groups H*(G(k,n),R) are generated by the first Pontrjagin class, the Euler classes
of the canonical vector bundles. In these cases, the Poincaré duality: HY(G(k,n),R) = Hy—k)—q(G(k,n),R) can be

expressed explicitly.
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1. Introduction
Let G(k,n) be the Grassmann manifold formed by all oriented k-dimensional subspaces of Euclidean space

R™. For any m € G(k,n), there are orthonormal vectors ej,---,er such that = can be represented by

er A -+ Aeg. Thus G(k,n) becomes a submanifold of the space A"(R™); then we can use moving frame
to study the Grassmann manifolds.

There are 2 canonical vector bundles £ = E(k,n) and F' = F(k,n) over G(k,n) with fibres generated
by vectors of the subspaces and the vectors orthogonal to the subspaces, respectively. Then we have Pontrjagin

classes p;(E) and p;(F) with the relationship
A+p(E)+-)A+p(F) +---) =1L

If k or n— k is an even number, we have Euler class e(E) or e(F).

The oriented Grassmann manifolds are classifying spaces for oriented vector bundles. For any oriented
vector bundle 7: ¢ — M with fibre type R* there is a map g: M — G(k,n) such that ¢ is isomorphic to the
induced bundle ¢g*E. If the maps ¢1,92: M — G(k,n) are homotopic, the induced bundles gfE and g3FE are
isomorphic. Then the characteristic classes of the vector bundle ¢ are the pullback of the characteristic classes
of the vector bundle F.

In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular,
we use characteristic classes and the Poincaré duality to study the homology groups of oriented Grassmann
manifolds. The characteristic classes of the canonical vector bundles can be represented by curvature and
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are the harmonic forms, see [5, 7, 8, 15, 20]. For k = 2 or n < 8, we show that the cohomology groups
H*(G(k,n),R) are generated by the first Pontrjagin class p;(E) and the Euler classes e(E), e(F) if k or n—k
is even. In these cases, the Poincaré duality: H?(G(k,n),R) = Hy(,—)—q(G(k,n),R) can be given explicitly.

In §2, we compute volumes of some homogeneous spaces that are needed in the later discussion. In §3,
we study the Poincaré duality on oriented compact Riemannian manifolds. The results are Theorem 3.1.

The Poincaré polynomials of Grassmann manifolds G(k,n) for k = 2 or n < 8 are listed at the end of
§3, which give the real homology groups of Grassmann manifolds. From [12], we know that the tangent space
of Grassmann manifolds is isomorphic to tensor products of the canonical vector bundles. In §4 we use the
splitting principle of the characteristic class to study the relationship among these vector bundles, and show
that the characteristic classes of the tangent bundle on Grassmann manifolds can be represented by that of

canonical vector bundles.
In §5, we study G(2,N); the main results are Theorem 5.5. In §6, we study the Grassmann manifold

((3,6); the main results are Theorem 6.1.

In §7, §8 we study the Grassmann manifold G(3,7) and G(3,8); the main results are Theorem 7.5 and
8.4. In §9, we study G(4,8); the main results are Theorem 9.4, 9.5.

As an application, in §5 and §9, we consider the Gauss maps of submanifolds in Euclidean spaces. The
results generalize the work by Chern and Spanier [4]. For example, if g: M — G(4,8) is the Gauss map of an
immersion f: M — R® of a compact oriented 4-dimensional manifold, we have

9-[M] = SX(M)[G(, )] + AIG(, 5] + S (MG, 1))

where A = 3 [}, e(F(4,8)) and 7(M) is the signature of M. A =0 if f is an imbedding.

In §10 we use Gysin sequence to compute the cohomology of the homogeneous space ASSOC =
G2/S0(4), which was studied by Borel and Hirzebruch [6].

The cohomology groups of infinite Grassmann manifold G(k,R*°) are simple; they are generated by
Pontrjagin classes and the Euler class (if & is even) of the canonical vector bundle freely; see [13], p.179.

The computations on specific Grassmann manifolds like G(3,7) or G(4,8) have important implications
on the theory of calibrated submanifolds like associative, coassociative, or Cayley submanifolds of Riemannian
7-8-manifolds of G2 or Spin; holonomy. This work has many applications like [1, 11] among potential others.

In [1, 11], there are applications to associative, coassociative submanifolds of G2 manifolds.

2. The volumes of homogeneous spaces

For any m € G(k,n), there are orthonormal vectors eq, - ,ex such that 7 can be represented by e; A---Aey.
These give an imbedding of G(k,n) in Euclidean space /\k(R”); see [2, 20]. Let e, eq, - , e, be orthonormal
frame fields on R™ such that G(k,n) is generated by e; A --- A e locally. The vectors eq,es, - ,e, can be

n
viewed as functions on Grassmann manifolds. Let des = Y. wZ®ep, wf = (dea,ep) be 1 forms on G(k,n).
B=1
n
From d’es = 0, we have dwf = 3 w§ Awf. By
C=1

k n
d(el/\u-/\ek)zz Z W?Eiou

1=1 a=k+1
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Eio=e1---e_1eq€i41- €, t=1,---  k, a=k+1,--- n,

we know E;, forms a basis of Te,....,G(k,n) and w{ is their dual basis.

ds? = (d(ex A+ Aep),d(er A Aer)) = D (wf)?

1,

is the induced metric on G(k,n). Differential F;, = e1---e;_1eq€iy1 - €k, by Gauss equation, we get the

Riemannian connection V on G(k,n),
k ) n
VE;, = Z WgEja + Z ngw-
j=1 B=k+1
Grassmann manifold G(k,n) is oriented; the orientation is given by the volume form
WL A WETEA AR A AW AWE A AW

For later use we compute the volumes for some homogeneous spaces. We first compute the volume of
special orthogonal group SO(n).

Let gl(n,R) be the set of all n x n real matrices with the inner product

(X,Y)=tr(XY")=>" XapYap, X =(Xap),Y = (Yop) € gl(n,R).
A,B

Then gl(n,R) is a Euclidean space and SO(n) is a Riemannian submanifold of gl(n,R). Represent the elements
of SO(n) by G = (e1, -+ ,en)t, where en is the A-th row of G. The vectors ey, -+ ,e, can be viewed as
functions of SO(n); then wf = (dea,ep) = dea - €% are 1 forms on SO(n), wf +ws = 0. Let Epc be the

matrix with 1 in the B-th row, C-th column, the others being zero. We have

dGG™" = (Wh) =Y whEap, dG= > wi(Eap— Epa)G.
A,B A<B

Then {(Eap — Epa)G} is a basis of TgSO(n) and

ds® = (dG,dG) =2 ) " wf @ wf
A<B

is a Riemannian metric on SO(n).
Proposition 2.1 The volume of SO(n) is

V(SO(n)) = 22Dy (S YV (SO(n — 1)) = 25Dy (g7~ 1) ...V (§1).
Proof Let &, = (0,---,0,1) be a fixed vector. The map 7(G) = &,G = e, defines a fibre bundle
7: SO(n) — S™~1 with fibres SO(n —1). By de, =Y. wiea,

AVgn-1 =Wl -+ w
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is the volume element of S™~1. The volume element of SO(n) can be represented by

AVso(m) = (V2)7" =D [T wh =280 (v2)z=D0=2) T W Vg,
A<B A<B<n

restricting (\/i)%(”_l)("_m [Tacpen wh on the fibres of 7 are the volume elements of the fibres. Integration

dVso(n) along the fibre of 7 first, then on Sn=1 . shows

V(SO(n)) = 22DV (" 1YV (SO(n — 1)).

O
m1
As we know V(S™) = ??il) )
2
27 22n+Iplgn
V(§2n—1y — V(s =" "
ST =G VT =

To compute the volume of G(k,n), we use principle bundle SO(n) — G(k,n) with the Lie group
SO(k) x SO(n — k) as fibres.

Proposition 2.2 The volume of Grassmann manifold G(k,n) is

V(50(n)) _v(smth - v(sth)

VIGkn)) = BV (50 V(S0m =)~ VE=1) - V(51

The proof is similar to that of Proposition 2.1. By simple computation, we have

V(G(2,n+2)) = 2(3;)71, V(G(3,6)) = %WSv
V(G(377)) _ £W67 V(G(3,8)) _ %WS7 V(G(4,8)) = %WS.

Now we compute the volume of complex Grassmann manifold G¢(k,n). Let J be the natural complex
structure on C® = R?" and s;,---,s; be Hermitian orthonormal basis of m € G¢(k,n). Let eg_1, €9 =
Jegi—1 € R?™ be the realization vectors of s;, v/—1s; respectively. Then ejey---ear_1€9x € G(2k,2n), and
Ge(k,n) becomes a submanifold of G(2k,2n).

Let U(n) = {G € ¢gl(n,C) | G- G = I} be the unitary group and the Hermitian inner product of
X = (XaB),Y = (Yep) € gl(n,C) be

(X,Y)=tr(XY) =" Xas¥as.

A,B
Let G = (s1,-++,8,)" € U(n) represented by the rows of G, w% = (dsa, sp) = dsa - 5% be 1 forms on U(n).
Let wh = of +/=1¢%. From w% + @3 =0 we have p§ + ¢34 =0, ¥% — ¢4 =0. Then
dG = Y wiEasG
A,B
= Y VR(Bap—Epa)G+V=1{)_ v5(Eap+Epa)G+)  viEaaG},
A<B A<B A
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and

ds? = (dG,dG) =2 Y (pf @ o + 5 0 vf) + > vi ¢l
A<B A

is a Riemannian metric on U(n). The volume element is

AViy = 22" Dyl gn T oBuh.
A<B

Proposition 2.3 (1) The volume of U(n) is
V(U(n) = 2"V (S* YV (U(n — 1)) = 25Dy (820 y (§2073) .y (1),
(2) As Riemannian submanifold of G(2k,2n), the volume of Ge(k,n) is

V({Un)) :
V(U(k)V(U(n = k)’

V(Ge(k,n)) =

(3) The volume of CP™ = G¢(1,n+1) is

(2m)"
n!

V(CP™) =

Proof Let &, = (0,---,0,1) be a fixed vector. The map 7(G) = &,G = s, defines a fibre bundle
7: U(n) — S?"~! with fibre type U(n — 1). From ds, = Y wiss and w? = @2 + /=192, ¢ =0,

we have the volume element of §2"~1,
dVsen—1 = @197 pp_1¥n_1¥n-
Then the volume element of U(n) can be represented by
AV (ny = 2" ' dVs2n-1 - AV (1)

These prove (1).
As noted above, the map [s1---sk] — ejes---esp_1€9; gives an imbedding of G¢(k,n) in G(2k,2n).
From ds; = wgsj +> wisa, wf = gpg ++v-1 1/1{, wi = & + /=195, we have

desi1 =) (plegj1+dlea) + > (Ffeza1 + U eza),

desi = Y (pleay —Wleaj 1) + Y (pfean — Pfera).

Then
d(erez - eop_1€28) = Y @8 (Fai—120-1 + F2iza) + Y ¥ (Fai-120 — Faiza-1);
el i,0
Ware(omy = 2" Pyt Ry,
The rest is similar to that of Proposition 2.1. O

The symmetric space SLAG = SU(n)/SO(n) can be imbedded in G(n,2n) as follows. Let é3;_1,€2; =
Jéai_1, i =1,--- ,n, be a fixed orthonormal basis of C" = R?"; the subspace {G(é1€3---€2,_1) | G € SU(n) C
SO(2n)} is diffeomorphic to SLAG = SU(n)/SO(n).
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Proposition 2.4 (1) The volume of special unitary group SU(n) is

V(SU(n)) = 2", /%V(SQ”’l)V(SU(n —1));

(2) The volume of SLAG is

V(SU(n))
V(SLAG) = ————=.
SO =V (50m)
Proof The proof is similar to that of Proposition 2.1. Let G = (s1,-++,8,)" € SU(n), wh =ds4 - 55 . From
detG =1 we have Y. w4 =0;then ¥ = — > E. The Riemannian metric on SU(n) is
A=1 B#n
ds? = 2) (el +vievl)+ ) vEeul+yl ey
A<B B#n
= 23 (phoel +vieyl)
A<B
2 1 1 )
. i 1 2 1 1
+(¢1v"'awnfl)
n—1
11 g ) \ Vnoi

Then

1(n_ .
AVspmy = 25" Dy/mpt - wn =) T o5k
A<B

The volume of special unitary group SU(n) is

n

V(SU(n)) =2""1 V(S* YV (SU(n — 1)).

n—1

Let esa_1, eaa = Jeaa_1 be the realization vectors of s4, v/—1s4 respectively. SLAG is generated by

G(e1é3---Eap—1) =e€1€3--- €271,

d(eres---ezp_1) = Z VB (Eap—128 — Ban—19n) + Z V5 (Baa—198 + Eap_124),
A<B

d? =23 wi@vf+2) JEevE+ D ¢EevE.
A<B B#n B#C<n
Then
AVspac = 2" Dy/mpl-gnt T w5

A<B

Let 7: SU(n) — SLAG be the projection with fibres SO(n). Restricting ds; = . w/s; + 3 ws, on the
fibre of 7, we have w{* = 0 and 1/1? = 0; then dVson) = 21n(n-1) [Tacn gpfj is the volume element of the

fibres. This completes the proof. O
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Let Sp(n) ={G € gl(n,H) | G - G = I} be the symplectic group, and Gy(k,n) = W%_m be the

quaternion Grassmann manifold which can also be imbedded in G(4k,4n). The following proposition can be

proved as Proposition 2.3.
Proposition 2.5 (1) The volume of Sp(n) is
V(Sp(n)) = 4" V(ST THV(Sp(n — 1)) = 2" HV(STTHV($4TR) - V(S7);
(2) As Riemannian submanifold of G(4k,4n), the volume of Gu(k,n) is

2K DV (Sp(n))
(Sp(R)V (Spln — 1))

V(Galk.m) = 5

As HP™ = Gy(1,n + 1), we have
(47.r)2n

V(HP™) = T

3. The Poincaré duality

Let M be a compact oriented Riemannian manifold and H,(M) = H,(M,R) its g-th singular homology
group, and HY(M) = HI(M,R) be the g-th de Rham cohomology group. For any [£{] € H?(M) and
[2] = >0 Aioi] € Hy(M), we can define

)= [ e=X n [ e=3 a0 [ aie

where every singular simplex o;: A? — M is differentiable. If [¢] € HY(M,Z) and [z] € H,(M,Z), we have

[€]([2]) € Z. By universal coefficients theorem, we have
H(M,R) = Hom (H, (M, R),R),

and
HY(M,Z) = Hom (H,(M,Z),Z) & Ext (H;—1(M,Z),Z).

On the other hand, we have Poincaré duality
D: HY(M,R) = H,_4(M,R), n=dimM.

For any [{] € HY(M), D[¢] € H,,—4(M), we have

[W](D[ﬂ)/Dmn/MéAn

for any [n] € H"1(M).
In the following, we use harmonic forms to represent the Poincaré duality. Let @1, , @ be the basis

of H1(M) and [T;] = D(p;) be their Poincaré duals. By Hodge Theorem, we can assume that ¢1,--- , @ are
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all the harmonic forms on M. Then *p1, - ,*@j are also the harmonic forms and form a basis of H"~9(M).
Let

ai; = (s, 05) = / (@i, 05) AV = / ©i N\ x@;
M M

be the inner product of differential forms ¢;, ;. Let t1,--- % be the dual basis of [Th],---,[Tk], also

represented by harmonic forms. Assuming ¢; = >~ *p;b;;, by Poincaré duality,

61":/ 'w:/ SDi/\"/]':/ (pi/\*(plbl‘: a;ibri.
! T 7 M ! MZ ! Z ’

This shows (b;;) = (a;;)~", and we have
(1/]17 e awk) = (*Sola e 7*%0/6)(041']')_1'

Theorem 3.1 Let @1, , o be a basis of the cohomology group HI(M) represented by harmonic forms. Let

[Ta],--+, [Tk] € Ho—g(M) be the dual of (1, ,¥x) = (kp1,- -+, xpx)(aiy) ", where ai; = (pi, ;). The
Poincaré duality D: HY(M) — H,_q(M) is given by

D(p;) = [T3].
Furthermore, if [Si],--- ,[Sk] are the dual basis of 1, , ¢k, then

D(h;) = (=1)1"=9[Sy).
Proof The equations D(v);) = (—1)4=9[S;] follow from x ¢; = (—=1)7" D, and (¢, ;) = (i, *p;). O
Theorem 3.1 can be applied to the Poincaré duality D: HY(M,Z) — H,,_,(M,Z) if we ignore the torsion
elements of HY(M,Z).
The g-th Betti number is the common dimension of the real homology and cohomology groups Hy(G(k,n))
and HY(G(k,n)) (and is also the rank of H,(G(k,n),Z) and H4(G(k,n),Z)). The Poincaré polynomials, with
the Betti numbers as coefficients, are given by the following Table (see [7, 8, 18]).

Grassmannian Poincaré polynomial
G(1,n+1) 14+t"

G(2,2n+1) L+¢2+ ¢t 4. A2

G(2,2n +2) 1+ 1+ 2+ +t2)
G(3,6) 1+tH(1+¢°)
G(3,7) A+t +5(1 +tY)
G(3,8) (1T+t+ 51 +1¢7)
G(4,8) 1+t +5)(1 + t1)?

4. The vector bundles on G(k,n)

Let 7: E(k,n) — G(k,n) be the canonical vector bundle on Grassmann manifold G(k,n), and the fibre
over m € G(k,n) be the vectors of 7. FE = F(k,n) is a Riemannian vector bundle with the induced

metric. Let ej,- - ,ek, €1, ,€, be orthonormal frame fields on R™, G(k,n) is locally generated by
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er---ex = ey N---Nep. Then ey, ---,e, are local orthonormal sections of the vector bundle 7;. From

k . n .
J— J .. [ L 7, . . .
de; = > w) e; + > weq, we know that Ve, = > w] e; defines a Riemannian connection on 7;. From
j=1 a=k+1

V2= (dw! =3 whA wlj)ej, we have curvature forms
Qg :dwg fz wi/\wlj :Z Wi AW
The total Pontrjagin classes of the vector bundle 71: E — G(k,n) are
PE) = 14 pi(B) + pa(B) + -+ = det(I + 5 (0)).
If k£ is even, we have Euler class

o) - D

(47)2 (

NfF| -

E e(i1ta - ik)iyin Qigiy =+ Qig_1ip-

)l
Tl1, ik

SIES (VB

Similarly, we can define vector bundle mo: F = F(k,n) — G(k,n) on Grassmann manifold G(k,n); the
fibre over e --- e € G(k,n) is the vectors orthogonal to ey, ,er. Then egiq,--- ,e, are local orthonormal
sections of . From de, = > wles+>" wie;, we have Riemannian connection Ve, = Y wPes. The curvature

forms are given by
Ve, = Z DPes, QF = Z W, /\wiﬁ.

The total Pontrjagin classes of the vector bundle o: F — G(k,n) are
P(F) = 14 pi(F) + pa(F) + -+ = det(I + %(Qg)).
The direct sum E(k,n) ® F(k,n) = G(k,n) x R™ is trivial, and we have
(L +p1(E) +pa(E) +---) - (L4 pr(F) +pa(F) +---) = L.
Then Pontrjagin classes of F' are determined by that of E. For example, we have
pi(F) = —pi(E), p2(F) =pi(E) — p2(E), ps(F) = —pi(E) + 2p1(E)pa(E) — ps(E).

Let «: A"(R") — A" "(R"™) be the star operator, *G(k,n) = G(n — k,n), and the canonical vector bundles
E(k,n), F(k,n) are interchanged under the map *.

Proposition 4.1 The tangent space TG(k,n) of a Grassmann manifold is isomorphic to tensor product
E(k,n)® F(k,n). If k(n — k) is even, we have

e(G(k,n)) =e(E(k,n) ® F(k,n)).
Proof Let ey, es,- -, e, be an oriented orthonormal basis of R™, the fibre of E(k,n) over x =e; A---Aey €

G(k,n) is generated by e, -- ,e; and the fibre of F(k,n) over x is generated by epi1,- - ,e,. On the other
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hand, the tangent space T,G(k,n) is generated by E;o =e1 A+ - Aej_1 Aeqg Aeiy1 -+ Aeg. It is easy to see
that the map F;, — e; ® e, gives an isomorphism from tangent bundle TG(k,n) to tensor product £ ® F'.
See also [12].

The isomorphism TG(k,n) — E(k,n) ® F(k,n) preserves the connections on TG(k,n) and E ® F,
respectively, where the connection on £ ® F' is

el®ea qu@ea—&—ZweZ@eﬁ

O
In the following we use the splitting principle of the characteristic class to study the relationship among
these vector bundles. We study the oriented Grassmann manifold G(2k,2n); the other cases can be discussed

similarly. Let si1,---,s2r be the orthonormal sections of vector bundle E(2k,2n) such that the curvature of

Riemannian connection has the form

S1 0 —X7 S1
So T 0 So
1o _
2 :
S2k—1 0 —x S9k—1
Sok 0 S9k

The total Pontrjagin classes and the Euler class of E = E(2k,2n) are
k
H (1+22), e(E)=ux---x.
i=1

Similarly, assuming togy1,tok+2, - ,t2, are the orthonormal sections of vector bundle F(2k,2n), the
curvature of the Riemannian connection has the form

tok+1 0 —Yr+1 Lok+t1
tok42 Yk+1 0 tok42
1, .
2 - :
ton—1 0 —un ton—1
t2n Yn 0 th

The total Pontrjagin classes and the Euler class of F' = F(2k,2n) are

n

p(F)= T (+32), eF)=ygrs1 - tn.
a=k+1

$2i—1 ® toa_1,52i ® taq_1,82i_1 Q ton, S2; Q ta, are the local orthonormal sections of vector bundle
E ® F = TG(2k,2n). The curvature of Riemannian connection on E ® F' is given by

S2i—1 ® tag—1 0 -2 —Ya O 52i—1 @ taa—1
LVQ $2i @ laa—1 | = 0 0 —Ya $2i @ laa—1
27 82i—1 ® tag | wa O 0 -z 82i—1 ® l2a
82; @ taq 0 Yo 0 82; @ taq

Then we have
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Lemma 4.2 (1) e(TG(2k,2n)) =e(E® F) =1, (27 — y2);

P

(2) p(TG(2k,2n)) =p(E @ F) =[], , (1+2(27 +y3) + (27 — y2)?).
By simple computation, we have
p1(T'G(2k,2n)) = (2n — 2k)p1(E) + 2kp1 (F) = 2(n — 2k)p1 (E).

In particular, p, (TG (2k,4k)) = 0.

In the next section, we shall show
e(TG(2,2n +2)) = (n+ 1)e*"(E(2,2n + 2)),

e(TG(2,2n +3)) = (n + 1)e*"TH(E(2,2n + 3)).
We can also show

e(TG(3,7) = 3¢3(F(3,7)), e(TG(4,8)) = 6e*(E(4,8)) = 6e*(F(4,8)).

5. The cases of G(2,N)

In this section, we study the real homology of Grassmann manifold G(2, N).

As is well known, the oriented Grassmann manifold G(2, N) is a Kéhler manifold and can be imbedded
in a complex projective space. Here we give a new proof. Let ej,es be the oriented orthonormal basis of

m € G(2,N), e — e, ea — —e; defines an almost complex structure
J: T,G(2,N) = T,G(2,N),

121(12.601/\62|—>—6a/\€1ZEJQQ7 Eoon=e€e1Neqgr—reaNey, = —Fiq,.

It is easy to see that J is well defined and preserves the metric on G(2,N).

Proposition 5.1 G(2,N) is a Kahler manifold with complex structure J .
Proof Let V be the Riemannian connection on T'G(2, N) defined above. We have

(VN)Eijo =V(JE;o) — J(VE;jo) =0, i=1,2.

Hence, VJ =0, J is a complex structure and G(2, N) is a Kdhler manifold. O
The Euler classes of canonical vector bundles E = E(2,2n+2) and F = F(2,2n+2) can be represented
by
2n+2

1
e(E) = o az:% wi Aws,

(1)
e(F) N (47)”71' Z 5(0(10[2 o QQ”)QO‘IQZ ARERRA Qa2'rl.71a2n'

For k < 2n, G(2,k +2) is a submanifold of G(2,2n + 2) whose elements are contained in a fixed k + 2-
dimensional subspace of R?"*2 i: G(2,k+2) — G(2,2n+2) the inclusion. Then, E(2,k+2) = i*E(2,2n+2)
and e(E(2,k + 2)) = i*e(E(2,2n + 2)). Let G(1,2n + 1) be a submanifold of G(2,2n + 2) with elements
e1Nég, é2 =(0,---,0,1), j: G(1,2n+ 1) — G(2,2n + 2) be the inclusion.
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Theorem 5.2 For Grassmann manifold G(2,2n + 2), we have

(1) pg(F) = (~=1)p{(E) = (-1)7€*(E), q=1,---,n;
(2) The Pontrjagin classes and Euler class of tangent bundle TG(2,2n + 2) can be represented by the
Euler class of F,

p1(G(2,2n 4+ 2)) = 2(n — 1)e2(E), p2(G(2,2n +2)) = (2n* — 5n + 9)e*(E), -,
e(G(2,2n 4+ 2)) = (n + 1)e*™(E);

(3) fc(1,2n+1) e(F) = fG(Z,k+2) HE)=2, k=1 2n fc(1,2n+1) e"(E) = fG(z,n+2) e(F) =0.
Proof For Grassmann manifold G(2,2n + 2), we have pi(E) = ¢*(E), p,(F) = ¢*(F). From (1 + p1(E)) -
(I14+p1(F)+p2AF) + -+ pp(F)) =1, we have

1+ pi(F)+po(F)+ - -+ pp(F)= ———F =1+ —-1)9p1(E).
p1(F) + p2(F) Pn(F) 51 (B) q;( )'Pi(E)

Hence, p,(F) = (—1)9p{(E) = (—1)%€®4(E), p,(F) = €*(F) = (—1)"e*>"(E). This proves (1).
By Lemma 4.2, note that 1 = e(F), the Euler class of G(2,2n +2) is

e(TG(2,2n+2)) = (af —y3)(ai —v3) - (27 — v )
= 2" — 27" P p(F) + 27" pa(F) — -+ 4 (=1)"pu(F)

= (n+1)e*(E).

By Gauss—Bonnet formula, we have

x(G(2,2n+2)) = / e(G(2,2n+2)) =2n + 2.
G(2,2n+2)
From (1) and
n+1
p(G(2,2n+2)) = [ (L+2(2 +92) + (27 — 42)?),
a=2

we can prove (2).
Restricting the Euler class e(E) on G(2,k + 2), we have

1 k+2
i'e(E) = o > W Aws.
a=3

Then

k!

k! k+2 k+2
(,d%/\(,dg)/\.../\(,c.}lJr /\(,;.)2Jr = (27T)deG(27k+2)7

(2m)*

where d Vi (2, k42) is the volume element of G(2,k +2). Then

/ FEY=2, k=1,---,2n.
G(2,k+2)

i*e"(E) =
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Restricting on G(1,2n+ 1), w§ =0, we have

(2n)!

eo(F(L,2n+1)) = j7e(F(2,2n+2)) = 50

W AW A AW

It is easy to see that e(F(1,2n + 1)) is the Euler class of the tangent bundle of S*" = G(1,2n + 1) and

Wi Awf A Aw?™ s the volume element. Hence by Gauss-Bonnet formula or by direct computation, we

/ Jre(F(2,2n +2)) = 2.
G(1,2n+1)

Furthermore, from w8|g(1,2n+1) = 0 and Qapla2,nt2) =0 for o, 8 > n + 2, we have

/ e (E) = 0, / i*e(F) = 0.
G(1,2n+1) G(2,n+2)

have

By pY(E) = €2*(E), we have

[ akm=z
G(2,2k+2)

The Poincaré polynomial of G(2,2n + 2) is
pe(G(2,2n +2)) = 1+ 4 H 12772 4 220 4 20F2 o e,

By Theorem 5.2, we have
(1) For k # n, ef(E) € H*(G(2,2n+2)), G(2,k+2) € Ho,(G(2,2n+2)) are the generators respectively;
(2) e™(E),e(F) € H>*(G(2,2n+2)) and G(2,n+2),G(1,2n+1) € Ho,(G(2,2n+2)) are the generators.
The characteristic classes e*(E),e(F) and the submanifolds G(2,k + 2),G(1,2n + 1) are integral co-
homology and homology classes, respectively. However, they need not be the generators of the integral
cohomology and homology groups. For example, when k& # n, from fG(2,k+2) e*(E) = 2 we know that
[G(2,k +2)] € Hox(G(2,2n + 2),Z), e*(E) € H**(G(2,2n + 2),Z) cannot be generators simultaneously. Now
we compute [op. €"(E) and [ip, e(F).

Let J be a complex structure on R?*+2 c R?"*+2 and CP* = {e;Je; | e; € S***1}. Let ej,e0 =

Jei, esa—1,€20 = Jesa—1, & =2,3,--- ,k+1, be local orthonormal frame fields on R?**2. By dey = Jde; we
have wi* ! = w3, Wi = —w3* 1; then
k+1 k41

d(e1 Ae2) Z Wi (Br2a—1 + Ba22a) + Y wi%(E12a — B220-1).
a=2

The oriented volume element of CP* is dV = 2kw? Awi A -+ A w2k H2,
Let i: CP* — G(2,2n + 2) be inclusion, we have
k!
PP (BE) = (—1)* - Wl Awi A A2

wk
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By Proposition 2.3 (3),
/ i*eF(B) = (—1)~.
cpk

By pi(E) = e**(E), we have [.por i*pr(E) = 1.
For n =k, J induces a complex structure on the induced bundle i*F — CP™. Let F¢ be the complex
vector bundle formed by the (1,0)-vectors of i*F @ C. By i*e(F) = ¢, (F¢) (see [19]), we can show

/ i*e(F) = / cn(Fp) = 1.
cpr cpn
See also Chern [3].

Let J be a complex structure on R***2 and the orientation given by J is opposite to that of .J.
—k —
Let CP" = {v A Jv | v € S?**11 be the complex projective space. The orientation on the vector bundle

E(2,2n + 2)|—5x is given by v, Jv, and we have

/ﬂf i*eF(E) = (-1)*.
CcP

Let F¢ be the complex vector bundle formed by the (1,0)-vectors of F ®C|gpn - The orientation on realization

lep

vector bundle of F¢ given by J is opposite to that of Fl|gpn . Hence e(F|zpn) = —cn(Fe) and we have

[y == [ eatfe)=-1

These prove
Proposition 5.3 (1) When k < n, we have
[G(2,k +2)] = 2(—1)*[CP*] € Hop(G(2,2n + 2));
(2) In the homology group Hayn(G(2,2n + 2)), we have
[G(2,n+2)] = (~1)"([CP"] + [CP")),
[G(1,2n +1)] = [CP"] — [CP"].

For Grassmann manifold G(2,2n+3), by the splitting principle of the characteristic classes, we can assume
that there are oriented orthonormal sections s1, s9 and t3,t4,- - ,tant2, tants of vector bundle E = F(2,2n+3)
and F = F(2,2n + 3) respectively, such that

T ofs1\ (0 —x $1
= ()= ) (%)

l3 0 -y i3

t4 y2 0 t4

1, B :
2 tont1 0 —yn11 t2nt1
tont2 Ynt1 0 ton+2
t2n43 0 t2n+3

505



SHI and ZHOU/Turk J Math

n+1
The total Pontrjagin classes of F are p(F) = ] (1+y2).

a=2
$1 ®tag—1,82 ®lag_1,51 ®log, S2 ®tag and $1 @ to,1s, S2 ® topys are orthonormal sections of £ ® F =

TG(2,2n + 3); they also give an orientation on F ® F. The curvature of E® F is

51 ®lo2a—1 0 —x —Ya O 51 ®lo2a—1
ivz 52 @taa—1 | _ z 0 0  —Ya 52 @ taa—1
2 51 @ taq Yo O 0 —x 51 @ taq ’
S92 @ taq, 0 Yo x 0 S92 ® toy

LVQ $1 @ tonys _ 0 —=x $1 ®tonys
27 52 @ tanys z 0 52 @tonys )
Hence the Euler class of G(2,2n + 3) is

n+1
e(TG(2,2n+3) =e(E@F) =z [ (a*—y2) = (n+ 1) (E).

a=2

The odd dimensional homology groups of G(2,2n + 3) are trivial, and the even dimensional homology
groups are one dimensional. The Euler-Poincaré number is x(G(2,2n + 3)) = 2n + 2.

Similar to the case of G(2,2n + 2), we have

Theorem 5.4 (1) The Pontrjagin classes of F(2,2n+3) and TG(2,2n+3) can all be represented by the Euler
class e(E(2,2n+ 3));

(2) e(TG(2,2n +3)) = (n+ 1)e?" 1 (E(2,2n + 3));

(3) Ja@rin € (B22n+3)) =2, k=1, ,2n+1;

(4) f(CPk €k(E(2,2n+3)) — (—l)k’ k— 1o+l

As is well known, the Chern, Pontrjagin, and Euler classes are all integral cocycles. Let D: H*(G(2,N),Z)
— Han—4-1(G(2,N),Z) be the Poincaré duality. The following theorem gives the structure of the integral ho-
mology and cohomology of G(2, N).

Theorem 5.5 (1) When 2k +2 < N, [CP*] and €*(E(2,N)) are the generators of Hop(G(2,N),Z) and
H?!(G(2,N),Z), respectively;

(2) When 2k +2 > N, [G(2,k + 2)] and 3e*(E(2,N)) are the generators of Hax(G(2,N),Z) and
H?¢(G(2,N),Z), respectively;

(3) When 2k +2 < N, D(e*(E(2,N))) = [G(2,N — k)]; when 2k +2 > N, D(3¢*(E(2,N))) =
(—1)rHCPr2);

(4) [CP"],[CP"] and H(=1)"e"(E(2,2n+2)) + 1e(F(2,2n+2)) are generators of Hap(G(2,2n+2),7Z)
and H*(G(2,2n + 2),Z), respectively. Furthermore,

D(%(—l)"e”(E(Z o +2)) + %e(F(Q, on +2))) = [CP"],
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D(5(~1)"e" (B(2, 20+ 2)) — 5e(F(2,2n +2))) = [CP"]

Proof Asis well known, the Euler classes and Pontrjagin classes are harmonic forms and are integral cocycles,
and their products are also harmonic forms; see [7, 15]. When 2k +2 < N, from [ eF(E(2,N)) = (—=1)* we
know CP* € Ho,(G(2,N),Z) and €*(E(2,N)) € H**(G(2,N),Z) are generators, respectively.

By simple computation, we have

k!
FEQN) = oo S wiwst Wi,

(27T)k ay<--<ag
k k Gy
a= (6 (E(27N))7e (E(QvN))) = (27T)2k CN—2V(G(27N))a
é «*(E@2,N)) = W R R L

B1<-<BN-k—2

- %eN—k‘Q(E(ZN)).

By Theorem 3.1, 3¢V ="F=2(E(2, N)) is a generator of H*N~2*=%(G(2,N),Z). By fG(Q,ka) 3eNF2(B(2,N)) =

1 we know that G(2, N — k) € Han—ok—4(G(2,N),Z) is a generator and D(eF(E(2,N))) = G(2, N — k). This
proves (1), (2), (3) of the Theorem.

Let [S1], [S2] be generators of Ha,(G(2,2n+2),Z) and harmonic forms &1, &2 be generators of Hap, (G(2, 2n+
2),7Z); they satisfy fSi & = 6;5. There are integers a;;,n;; such that

(58 )= ) (8) emem=mos (o o).

ni o nig air aiz ) _ [ (=D)" (=1
N1 N22 a1 G22 1 -1 ’
and we have det(a;;) = £1 or det(n;;) = %1.

If det(n;;) = 1, e"(E),e(F) are also the generators of H*"(G(2,2n + 2),7Z), we can assume & =
e"(E),& = e(F). Tt is easy to see

Then

By Theorem 3.1, 1e"(E), 1e(F) are also the generators of H?"(G(2,2n+2),Z). This contradicts the fact that
Jopn €M(E) = (=1)".

Then we must have det(n;;) = +2 and det(a;;) = +1. This shows CP"*,CP" are generators of
Hs,(G(2,2n+2),Z), and 1{(-1)"e"(E)+e(F)}, ${(—1)"e"(E)—e(F)} are generators of H>"(G(2,2n+2),Z).

The Poincaré duals of these generators are easy to compute. O
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We give some applications to conclude this section.

Let f: M — RY be an immersion of an oriented compact surface M, g: M — G(2,N) the induced
Gauss map, g(p) = T,M. Then e¢(M) = ¢g*(e(E(2,N)) is the Euler class of M. Let [M] € Hy(M) be the
fundamental class of M. When N # 4, we have

g.[M] = X(M)[G(2,3)] = X(M)[-CP'] € Hy(G(2 N)).

In [10, 17], we have shown there is a fibre bundle 7: G(2,8) = G(6,8) — S® with fibres CP3, where
S6={veS"|vle =(1,0,---,0)}, 77HE) ={vAJv|ve ST}, & =(0,1,0,---,0). On the other hand,
the map f(v) = & Awv gives a section of 7. Let dV be the volume form on S such that [ dV =1. It is

easy to see
1 1
[rAV) = 3¢ (B(2,8)) + 5e(F(2,8))
Let ¢: M — R® be an immersion of an oriented compact 6-dimensional manifold, and g: M —

G(6,8) = G(2,8) be the Gauss map. Then e(M) = g*e(F(2,8)) is the Euler class of tangent bundle of M, and
e(T+M) = g*e(E(2,8)) is the Euler class of normal bundle of M.

[ roarav = [ sEeEEs) + geres)] = 5 [ @+ gaan

is the degree of the map 7og: M — S¢. If ¢ is an imbedding, e(T+M) = 0; see Milnor, Stasheff [13], p.120.

Let J, J be 2 complex structures on R*, with orthonormal basis eq, es, €3, €4,
Jei =eq, Jes = —eq, Jeg =ey4, Jeyg = —eg;
jel = —€9, j@g = €1, j63 = €4, j64 = —€3.
For any unit vector v =Y v;e;, we have
vJv + *xvJv = ejes + ezey,
vJv—svJv = (vi4vs —vs —vl)(erea — eseq)
+2(vivs 4 vavg)(e1eq — ege3) + 2(vavs — v1vg)(e1e3 + eaey);
vJv — *vJv = —eqeq + eseu,
vJv+svJv = (—v? —v3 4+ 03 +vi)(eres + eseq)
+2(1}1’U3 — 1121}4)(6164 + 6263) — 2(1111}4 + ’U2U3)(6163 — 6264).

This shows CP!, CP' are 2 spheres in G(2,4) = 52(§) X S%?) where the decomposition is given by star
operator *: G(2,4) — G(2,4).

Let f: M — R* be an immersion of an oriented surface, and g: M — G(2,4) the Gauss map. Then
we have g.[M] = a[G(2,3)] + b[G(1,3)], where a = $x(M), b= 1 [,,e(T+M). If f is an imbedding,

0.[M] = JX(OD[G(2,3)] = ~ g X(M)[CP] — Sx(M)[TP']

See also the work by Chern and Spanier [4].
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6. The case of G(3,6)
The Poincaré polynomial of Grassmann manifold G(3,6) is p;(G(3,6)) = 1+t*+1°>+t°. To study the homology

of G(3,6) we need only consider the dimension 4,5.
Let i: G(2,4) — G(3,6) be an inclusion defined naturally. It is easy to see that i*pi(E(3,6)) =
Pu(E2,4)) = 2(E(2,4)); then

/ i (E(3.6)) = 2.
G(2,4)

As 82, let SLAG = {G(e1esé5) | G € SU(3) C SO(6)} be a subspace of G(3,6), and e; = G(&;),e;41 =
G(€i41) = Je; be SU(3)-frame fields, i = 1,3,5. Restricting the coframes w% = (dea,ep) on SLAG we have

Jo_ g+t g4+l J . 2 4 6 _
wy =wily, wi = —wyiyg, 4,7 =1,3,5 and wi +ws +wy = 0.

By the proof of Proposition 2.4, we have dVsag = 23 v3wiwlwlw?wt and V(SLAG) = \/§7T3. Let G(3,6)

be generated by ejeses locally, and the first Pontrjagin class of canonical vector bundle E(3,6) is

P1(E3,6)) = —[(Qu3) + ()% + ()7,

47
where Q;; = —>" w* A w§, a=2,4,6. By computation we have
V6
#p1(E(3,6))|spac = deSLAC%

@ = (1 (B(3.6)).m (B(3.6))) = TP V(G(3.6) = 5.

From fG(2 " p1(E(3,6)) = 2, we know that pi(E(3,6)) or $pi(E(3,6)) is a generator of H*(G(3,6),Z).
If p1(E(3,6)) is a generator, by Theorem 3.1, 1 xp;(E(3,6)) is a generator of H°(G(3,6),Z), but

1 1 1
/ —xp1(E(3,6)) = / ——=dVsrac = 3
s S

LAG @ Lac Vo6r3
Then 1p1(E(3,6)) is a generator of H*(G(3,6),Z) and [¢; o 2 * $p1(E(3,6)) = 1.

We have proved the following theorem

Theorem 6.1 (1) ipi(E(3,6)) € H*(G(3,6),Z) is a generator and its Poincaré dual [SLAG] is a generator
of H5(G(3,6),Z);

(2) & % p1(E(3,6)) € H*(G(3,6),Z) is a generator and its Poincaré dual [G(2,4)] is a generator of
H4(G(3,6),Z).

Let é1,---,8 be a fixed orthonormal basis of R®, G € SO(3) acts on the subspace generated by
€4, €5,€6, and denote ey = G(€4),e5 = G(&5),e6 = G(€g). As [7], let PONT be the set of elements

(coste; + sintey)(costes + sintes)(costes + sinteg), t € [0, g]
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PONT is a calibrated submanifold (except 2 points correspond to ¢t = 0,7 ) of the first Pontrjagin form
p1(E(3,6)). By moving the frame we can show

=2 an = g :4—\/67r2
/PONTpl(E(Z%,G))fQ d V(PONT)\/;V(G(2,4)) 5T

Then 4-cycle PONT is homologous to the 4-cycle G(2,4) inside G(3,6).

7. The case of G(3,7)
The Poincaré polynomial of G(3,7) is p,(G(3,7)) = 1 + 2t* + 28 + ¢12.
Let €1, @y, -- ,ég be a fixed orthonormal basis of R® and R” be a subspace generated by és,--- ,és. The

oriented Grassmann manifold G(3,7) is the set of subspaces of R”.
Let E=FE(3,7) and F = F(3,7). As §4, we can show

pi(F) = —pi(E), p2(F) = €*(F) = pi(E), e(E® F) = e(TG(3,7)) = 3¢*(F).

By [o@.q e(TG(3,7) =x(G(3,7)) = 6 we have

/ S(F)=2.
G(3,7)

By inclusion G(2,6) C G(3,7), CP? and TP~ can be imbedded in G(3,7).

Lemma 7.1 [.p.pi(E) = [z pi(E) =1, [cpe(F)=— [zpe(F)=1

Proof By p1(E(3,7))|cp2 = p1(E(2,6))|cp2 = €*(E(2,6))|cp2 and the results of §5, we have [, p1(E) = 1.

The other equalities can be proved similarly. O
Then

/ L i(B) +e(F)) = / Lni(B) - e(F) =1,
C

p2§ @25

/ L pu(B) - e(F)) = / (B +e(F)) =0,

cpz 2 cp? 2
hence (CPQ,(CiP2 € Hy(G(3,7)) and (p1(E) + e(F)), 3(p1(E) —e(F)) € H*(G(3,7)) are generators.

Let es,e3,€e4,- -+ ,eg be oriented orthonormal frame fields on R”, and G(3,7) be generated by ez Aez Aey

locally. Euler class of F' and first Pontrjagin class of E can be represented by

1
e(F) = W Z a(a1a2a4a4)ﬂala2 N Qa3a4

4

_ i i g, i d g g i i g

= — E (wswgwrwy — WswrWEWy + WwWWawr ),
ij=2

Pi(B) = 5 [(0)" + (9020)7 + (254)7].

Then we have
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Lemma 7.2 (1) #p1(E) = in?p1(E)e(F), xe(F) = sn%e*(F);
(2) (p1(E),e(F)) =0, a= (pi(E),p1(E)) = 372, b= (e(F),e(F)) =7°.
Proof xpi(E), pi(E)e(F) and *e(F), e*(F) are the harmonic forms on G(3,7). #p1(E) = 37%p1(E)e(F)

follows from the equalities such as

swhwiwiws = wlwlwSwiwiugwiws

= Wbl
C bttt
The proof of (2) is a direct computation. O
To study G(3,7),G(3,8), and G(4,8), we shall use Clifford algebras.
Let Cfg be the Clifford algebra associated with the Euclidean space R®. Let &;,&,,---,s be a fixed
orthonormal basis of R®, and the Clifford product be determined by the relations: ép - éc + éc - ég =
—20pc, B,C =1,2,---,8. Define the subspace V. =V*+ @V~ of Clg by V¥ = Clgven - A V- = Cl3d. A,

where

A= SRe((er 4V Te2) -+ (67 + Vo) (1 + eaéeser)].

The space V = VT @V~ is an irreducible module over Cfg. The spaces VT and V~ are generated by e;egA
and egA respectively, B=1,---,8; see [16,17].

Let Spiny = {G € SO(8) | G(A) = A} be the isotropy group of SO(8) acting on A. The group Spins
acts on G(2,8),G(3,8) and S” transitively. Go = {G € Spin; | G(é1) = &} is a subgroup of Spiny.

The Grassmann manifold G(k,8) can be viewed as a subset of Clifford algebra C¥¢s naturally. Then,
for any © € G(k,8), there is v € R® such that mA = €vA or TA = vA according to the number k
being even or odd, |[v] = 1. Thus we have maps G(k,8) — S7, m + v. Since Spin; acts on G(3,8)
transitively, from ésezeqsA = €A we have G(éxézes)A = G(e)A for any G € Spiny. This shows the map
7: G(3,8) — 87, 7(w) = v, is a fibre bundle and v L 7; see [10,17]. Let

ASSOC =77&) = {r € G(3,8) | 7(x) = &1}

be the fibre over &;. The group G5 acts on ASSOC transitively, and we have ASSOC = {G(ézézé4) | G € Ga}.
We can show the isotropy group {G(ézésés) = ézé3é4 | G € Gy} is isomorphic to the group SO(4); then
ASSOC =~ G2/SO(4).

Change the orientation of R7, and let A = LRe[(e1—v—162)(es+v/—1ey) - - - (er+v/—1és) (1+€1E38587)] .
Define submanifold ASSOC = {m € G(3,8) | A= ¢ A}, which is diffecomorphic to ASSOC.

Lemma 7.3 V(ASSOC) = 7%,

Proof Let é1,és,---,és be Spin; frame fields on R®, and the 1-forms w§ = (dép,éc) satisfy (for proof, see

[10])
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4 7
witwit+wd+wd=0, w-w;+uwl-w! =0,

5 6 7 8
witwd+wd+wl=0, wd—wS+w!—-wi=0,

7 8 5 6
Wt wd —w§—wl =0, w]—wl-wl+uw]=0,

wW§ + wl +w§ +wi =0.

Since Spiny acts on G(3,8) transitively, G(3,8) is locally generated by é€€3é4. The volume element of G(3,8)

; _ 1115 5 5 8,,8,,8
is dVg(3,8) = waw3wiwiwiwy - - - wow3wy -

Note that A can be represented by Spin; frames, that is
1 _ - ~ - JURSU
A= ERQ [(61 =+ v —162) cee (67 + v —168)(1 + 61636567)].

Let é; = &; be a fixed vector, and &y, &y, -- ,&s be Gy frame fields on R®; ASSOC is locally generated

by ég ég é4 and

(Eas + Ey7) + WS (Eas — Eug) + wi(Ear — Egs) + wS(Fas + Fug)

o,
3
D
(V]
™
w
™
B
S~—
[
”'M“
[ V]

DN Ut

= w
w3 (Ess + Eyg) + wS(Ess — Eus) + wi(Bsr + Eag) + w5 (Fss — Eur).
The metric on ASSOC is
ds? = 2(w3)? +2(wh)? — 2wiws + 2(ws)? + 2(wi)? — 2wsw}
+2(w3)% 4+ 2(w8)? + 2wiw3 + 2(wh)? + 2(w3)? + 2w,

with the volume form
5

dVassoc =9 wgwg wgwg.
The normal space of ASSOC in G(3,8) at éx€3€4 is generated by
Eoi, Es1, Eqr, Eos — Eur — Ess, Eog + Eus — Esr, Eor + Eys + E3e, Eog — Fag + Ess.
The sphere S7 is generated by é;, and dVgr = wiwi -+ wd is the volume form. From

(Ea7 + Ey5 + E36)A = —383A, Ea A = —éA,

we can compute the tangent map of 7: G(3,8) — S7,
T(Ea7 + Eus + E3e) = —36s, Ti(Ea1) = —€2, -

Then we can compute the cotangent map 7* and we have

T*dVsr = wiwiwi (W — wi + wh)(—wd + wf + w)(W§ + w§ — wd)(wg + w§ + w}),
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and

1,
dVG(3,8) = —§T dV57 : dVT—l(gl).

From V(G(3,8)) = Zn%, V(S7) = i7?, we have V(ASSOC) = &r*. )

It is easy to see that ASSOC and ASSOC are submanifolds of G(3,7). In the following lemma
E=E3,7),F =F(3,7).

Lemma 7.4 [y550cP1(E) = [agsocP(E)e(F) = 1, [ gz5.PH(E) = = [ 55501 (E)e(F) = 1. Then

ASSOC, ASSOC and pi(E),p1(E)e(F) are generators of Hg(G(3,7)) and H®(G(3,7)), respectively. Fur-

thermore, we have
[G(2,6)] = [ASSOC] + [ASSOC].

Proof From

1
5.5 6 6 7788 4.4 .4 4
*WaW3WaWs| ASSOC = WaWiWsWsWsWewrWg|Assoc = §dVAssoc,
778 8 .55 7.7 . 6.6 8 8 —1dV
*WoWsWoWs| ASSOC = *WosWaws|ASSOC = *Wowswows|assoc = =dVassoc,

9

6 6 7.7 _ 5 5 8 8 4 4 4 4 _
ko W3 WeWs | ASSOC = WHWaWsWsWswewrwg|assoc = 0,

5 5 8,8
*w2w3w2w3 ASSOC = 0,

B, .8 _ 1
we have Z *wgwgwg Ws |ASS’OC =8- §dVA5’5’007
a,B

1 1
-3-8- —dVassoc-

#p1(E)|assoc = ) 9

Then by #p1(E) = 37°p1(E)e(F), we have

5
/ p1(E)e(F) = / ypes xp1(E) = 1.
ASSOC ASsoc 2T

The proof of [, 4500 PT(E) =1 is similar.
Change the orientation of R”, and we have Euclidean space R7. Let E, F—>G (3,7) be canonical vector

bundles with respect to R7. It is easy to see that E=FE , but the orientations of F and F are different. This
shows

/N Pi(E) =1, /N pi(E)e(F) = —1.

ASSOC ASSOC

[G(2,6)] = [ASSOC] + [ASSOC]

follows from fg(276) pi(E) =2 and fG(g’G) p1(E)e(F) =0. =
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Theorem 7.5 (1) 1(pi(E)+e(F)), 3(pi(E)—e(F)) are 2 generators of H*(G(3,7),Z). Their Poincaré duals
are [ASSOC] and [Agg’_O/C] respectively;

(2) L(pi(E)e(F) + e*(F)), s(p1(E)e(F) — e2(F)) € H3(G(3,7),Z) are generators and their Poincaré
duals are [CP?], [@2] respectively;

(3) L(pr(E)e(F) + e2(F)), 3(pr(E)e(F) — ¢2(F)) and [ASSOC], [ASSOC] are dual basis with respect

to the universal coefficients theorem.

The proof is similar to Theorem 5.5.

8. The case of G(3,8)

The Poincaré polynomial of Grassmann manifold G(3,8) is
pe(G(3,8)) = (L +t* +t5) (1 +t7) =1+ +¢7 + 45+ 11 + 17,
Let E = E(3,8), F =F(3,8). By [op2P1(E) =1, [,e500Pi(E) =1 we know that
[CP?] € Hy(G(3,8),Z), [ASSOC] € Hg(G(3,8),Z),

pi(E) € H4(G(3,8),Z), p%(E) € HS(G(3’8)7Z)

are all generators. By Theorem 3.1, to understand the structure of the homology groups of dimension 7,11, we
need to compute the Poincaré duals of p1(E), p?(E).
It is not difficult to compute

15

0= (ni(B), m(B) = 5 5 V(G(.8) = o

Then é*pl(E) € H'(G(3,8),7) is a generator, and we look for a submanifold M such that S % *p1(E)=1.
In §7 we define fibre bundle 7: G(3,8) — ST, 7(w) = v defined by mA = vA. Asv L 7, v € G(4,8) and
vrA=—A. Let CAY ={r € G(4,8) | rA = —A}, called the Cayley submanifold of G(4,8). Then we have a
fibre bundle p: G(3,8) — CAY, 7+ v, with fibre S3 = G(3,4). Let ASSOC = {é1ese3e4 | eae3e4A = €1 A},
where & = (1,0,---,0). Then M = u~*(ASSOC) is a 11-dimensional submanifold of G(3,8).
Let €1,es,--- ,es be Gy frame fields on R®, and ASSOC be generated by éjegeses. Represent the

elements of ‘LL71(616263€4) by €9€3€4, T(égégé4) =é1; then

€1€2€3€64 = €1€9€364.

4 _ 4 8 _
Let d(é26364) = >, @lEn+ Y. Y. 08B, dsi; =Y (@)% + > (@%)? be the metric on M.

=2 a=5 i

s
||
N

4 4 8
Let 61 = Mé1+ Y, ey, dég = > @ié; + Y, @¥ey and d(ezeses) = > wiEi,. It is easy to see
3 3 a=>5

1=2 =2 7,00

4 4
Of = > Awit. X (©0%)? is the metric on the fibres of u: M — ASSOC and (d(ezezes),d(ezezes)) = Y (wf)?

7 7

@
[|
N
-
I|
[\v)
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is the metric on ASSOC'. From (€1 E;q,e362€3€4) = X\;dap we have
(e1d(egesey), (dé1)eaéséy) Z w§ elEm,Z /\Jw €p€2€3€4) Z (Z )\iwf‘)Q

Hence

—
&
< Q
—
[\v]
Il

(61d(828384), é1d(E26364))
= <éld(626384) — (dél)égé3é4, éld(6263€4) — (dél)égégé4>

= Y@+ @) -2 () awp)?
= D@ =30 00 )

1,
Then the metric on M can be represented by

4
dsfy =37 (@)’ = 30 (30 M)+ (@)

] =2

i,

For fixed ésészéy of M, we can choose G5 frame fields €y, e, - ,eg such that é; = A\jé; + Ages. By
5 _ 7 6 6 _ 8 5 7_ .5 8 8 _ 6 7
Wy = —Wy — W3, Wy =Wy + W3, Wy =Wy — Wz, Wy = —Wy + ws,
we have

dVyr = §(1 + 22322 @3 0t dVassoc-
We can show that [g,(1 4 2A%)2dVgs = 572; then V(M) = 2.

Lemma 8.1 [, 2xpi(E) =1. Then [M] and Z+p,(E) are dual generators of Hs(G(3,8),Z), H*(G(3,8),Z)
respectively.
Proof By Theorem 3.1, the integration [;, 1 % pi(E) is an integer. On the other hand, 27?p;(E) is a

calibration on G(3,8) with comass 3; see [7]; then we have

We need to show that [,, L« p(E) #0.

Let i: CAY — G(4,8) be the inclusion, p: G(3,8) — CAY be a sphere bundle associated with the
induced vector bundle i*E(4,8) — CAY, and e(i*E(4,8)) = i*e(E(4,8)) € H*(CAY,Z) be the Euler class.
The induced bundle (io u)*E(4,8) — G(3,8) has a nonzero section, (io pu)*e(F(4,8)) = 0. By Gysin sequence
for the sphere bundle G(3,8) — CAY , we can show fi.(2xp1(E)), (i*e(E(4,8)))? are 2 generators of H3(CAY),
where p.: H'Y(G(3,8)) — H8(CAY) is the integration along the fibre. From e2?(FE(4,8)) = p2(E(4,8)), we
have €2(E(4,8))|g@,7) = 0; then [, 4o (i%e(E(4,8)))% = 0. If we also have [, ¢qoq ti«(2 * p1(E)) = 0, then
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[ASSOC] = 0 in Hg(CAY). This contradicts the fact that i,[ASSOC] # 0. Then with a suitable choice of
orientation on M , we have

/ é*pl(E):/ p*(%*pl(E)):l
M ASSOC

O

Finally, we study the H,(G(3,8)) and H"(G(3,8)). Let I, J, K be the quaternion structures on R® = H?
and Sp(2) the symplectic group. As we know Sp(2) is a subgroup of SU(4) C SO(8); hence Sp(2) is a subgroup
of Spiny. Let f: S” — G(3,8),and f(v) = IvJuvKv. By Ie;Je; Ké1 A = éaeézeqs A = e1 A and Sp(2) acting on
S7 transitively, we have IvJvKvA = vA for any v € 87, 7(f(v)) =v.

Lemma 8.2 b= (pi(E),p}(E)) =3.

Proof By computation, we have

1
RE) = 73000 Y 3efujulwwlw]we

i<j a<pf<y<T

-1—2 Z w?w;‘wf

J#k a<py<T

“m

w] wiwj wi },

i?j’k:273747 a?B’V’T:17576’7’8'

Then
5

(9 3-C4+3-02-C3HV(G(3,8)) = —.

b= (pi(E),pi(E)) = 5

478

p}(E) € H¥(G(3,8),Z) is a generator, by Theorem 3.1, § x p}(E) € H"(G(3,8),Z) is a generator.

Lemma 8.3 £ [, f* *pi(E) = 1. Then [f(S7)] and 2 % p}(E) are dual generators of H7(G(3,8),Z) and
H"(G(3,8),Z) respectively.

Proof Let ej,es = Iej,e3 = Jey,eq = Key,es,e6 = les,er = Jes,es = Kes be Sp(2) frame fields on R%,
f(e1) = ezegeq. The 1 forms w = (de;,eq), i =1,2,3,4, a =5,6,7,8, satisty

5 6 _ 7 _ . 8 6 5 8 7
W) =Wy =Wz =Wy, Wy = —Wy = —Wz =Wy,
7T_ 8 _ 5 _ 6 8 _ 7T_ 6 _ 5

W) =Wy = —Wg = =Wy, W) = —Wy = W3z = —Wy

We have
5 5 6,6 .7 7 8 8 _ 1,115 6 7,8 1,11 1
*w2w3w2w3w2w3w2w3|f(57)—w2w3w4w4w4w4w4|f(57 —w2w3w4w5w6w7w8 dVgr,

116 6.7 555 1 6 7 8 _
rwywiwiw§wlwiwiwd |57 = —wiwiwiwiwiwiwd|fs7) =0,

5.5 6 6 7 7 8 8 _ 111 5 6 7 8 _
FWy W3 WoWaWaWaWs Wy | £(87) = WaWzwWywyw waws | ¢(g7y = dVgr,

1,16 6 7.7 55 5 1 6 7 8 _
*w2w3w2w3w2w4w2w4|f(57) = —WhW3wiww waws| f(s7y = 0,
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Then

\]

™ 1 3
gf *p%(E) = ' ﬁ(3-3+3-2)d1/57 = FdVSﬂ

2 N _
2 [ e =t

Obviously, we also have ff(S7) T*%dVy =1; then

[ 2dVsr] = 2 4 p3(B) € HT(G(3.8)).

Theorem 8.4 (1) The Poincaré dual of p1(E) is [M] and the Poincaré dual of 2 xp\(E) is [CP?];
(2) The Poincaré dual of p2(F) = pi(E) is [f(S7)] and the Poincaré dual of 2 x p}(E) is [ASSOC].

9. The case of G(4,8)
Let E = E(4,8), F = F(4,8) be canonical vector bundles on Grassmann manifold G(4,8). We have
pe(G(4,8)) = 1+ 3t* 4 415 + 312 + 116
e(B)e(F) =0, pi(E) = —pi(F), p2(E) = e*(E), pa2(F) = e*(F),
R (E) = p2(B) + p2(F), pi(E)pa(E) = pi(E)pa(F) = 5p3(E),

Pi(E)e(E) = ¢*(B), pi(F)e(F) = ¢*(F).

By the method used in §4, we can show ¢(E® F) = 6e*(E) = 6e*(F). Then by fG(4 8) e(E®F)=x(G(4,8)) =

/ e4(E)=/ AF) = 2.
G(4,8) G(4,8)

We first study the cases of 4 and 12. Under the star operator *: G(4,8) — G(4,8), xCP? is a
submanifold of G(4,8). From CP? = G¢(1,3) C G(4,8), we have xCP? = G¢(2,3). The following table

computes the integration of the characteristic classes on the submanifolds of G(4,38).

12, we have

cP? | «cP? | G249 | 6,5 | a4 | TP | mP!
eE) | 0 1 0 0 2 0 -1
e(F) 1 0 0 2 0 -1 1
n(E) | 1 -1 2 0 0 1 2
0 1 0
Note that det| 1 0 0 = —2, as proof of Theorem 5.5, we can show e(E),e(F),pi1(F) €
1 -1 2
H*(G(4,8),Z) or CP% xCP? G(2,4) € Hy(G(4,8),7Z) are the generators.
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By Proposition 2.2, V(G(4,8)) = 15z and we can compute

4
g —’]‘(‘4’
15
(e(E),e(F)) = (e(E),p1(E)) = (e(F),p1(E)) = 0.
In the last section we have Cayley submanifold CAY = {m € G(4,8) | rA = —A} of G(4,8). The Lie group
Spiny acts on CAY transitively. Let ey, eq,--- ,eg be Spiny frame fields on R® and then CAY be generated

a = (e(E),e(E)) = (e(F),e(F)) = %(pl(E),pl(E))

by ejesezeq. By the equations listed in the proof of Lemma 7.3, we have

d(erezezey) = wa‘Em
= w}(E15 + Eus) + wi(E16 + Ear) + wi (Ei7 — Esg) + wi(E1s — Egs)
+w3 (Eas + Ear) + w3 (B2 — Eus) + wi(Ear — Eys) + wh (Fas + Eye)
+wj(Ess + Esg) + wS(Fss — Eus) + wi(Esr + Eus) + w(Ess — Ear).
Then the induced metric is
dstay = (Wi —w3)® + (0} +wf)? + (w§ — wi)®
o +wd)? + (@ — wh)® + (w5 — wh)®
+Hw] —wi)® + (W] —wd)? + (W] + ws)?
W +wi)? + (@f +w§)® + (W] + wh)?.
By (w} —w8)(w? +wi)(ws — wi) = 2wwiwg, -, we get

=4 5 =4 8 8 8
dVeoay = 16wjwows -+ wiwsws.

As shown in [7], 27%p; (E) is a calibration on G(4,8) with comass 3 and CAY is a calibrated submanifold
of 272 % p1(E); then

3
212 % p1(E)|cay = §dVCAY~

By triality transformation, we can show that C AY is isometric to G(3,7); then V(CAY) =V (G(3,7)) = 1%6 ;
see [14]. This shows

1 1
/CAY 20 *P1(E) /CAY 3276 O T 3

By Theorem 3.1, e(E),e(F),p1(E) cannot be the generators of H*(G(4,8),Z). We have proved

Lemma 9.1 CP2% «CP? G(2,4) are the generators of Hy(G(4,8),Z), and the dual generators of H*(G(4,8),Z)
are e(F),e(E), 3(p1(E) + e(E) — e(F)) , respectively.

The inner product of e(E),e(F), 3(p1(E) + e(E) — e(F)) forms a matrix

_dxt
15

0 1 3 B
1 2 JE R T
J 1 2 2
47 1 1

A

= O
N|—

—_

N|—=
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Lemma 9.2 (1) xe(E) = %e?’(E), xe(F) = 21”5 e3(F), *p1(E) = %pi’(E),

(2) 33(E) — 1p3(E), 1e3(F) + 1p}(E), 1p}(E) € H'?(G(4,8),Z) are the generators.
Proof xe(E),xe(F),xp1(E) and €3(E),e3(F), p3(E) are 2 generators of the cohomology group H'?(G(4,8)),
and they are all the harmonic forms on G(4,8). Then e*(E), e3(F), p3(E) can be represented by xe(E), xe(F), *p1(E).
Assuming e*(E) = Axe(E) + p*e(F)+v#pi(E), by e(F)Axe(E) =0, e(F) A#pi(E) =0, we have p=v =0,

4
2 = / e(E) A e3(E) = )\/ e(E) A xe(F) = Ny
G(4,8) G(4.,8) 15

Then *e(E) = ﬁeig(E). The other 2 equalities can be proved similarly.

15
Then

Lemma 9.3 The following table computes the integration of the characteristic classes on the submanifolds of
G(4,8) in dimension 12.

G4,7) GB,7) | CAY
3(E) 2 0 -1
S3(F) 0 2 1
pi(E) 0 0 2

Proof The second column follows from fG(4,7) e3(E) = fG(3,7) e}(F) = 2 and e(F)|gur = 0, pi(E) =
2p1(E)p2(F) = 2p1(E)e?(F). The third column can be proved similarly. For the fourth column, we have
proved [,y 5= * p1(E) = %; then [, p}(E) = 2. By computing xe(E)|cay, *e(F)|cay, we can show
Joay €(E)=—1and [, ,, *(F)=1. O

Theorem 9.4 (1) e(E),e(F), 5(p1(E) + e(E) — e(F)) € H*(G(4,8),Z) are the generators, and their dual
generators are [CP?],[xCP?],[G(2,4)] € Hi(G(4,8),Z);

(2) 1e3(E), 3¢*(F),5p3(E) and [G(4,7)],[G(3,7)],[CAY] are the generators of H'?(G(4,8),Z) and
H12(G(4,8),Z), respectively;

(3) The Poincaré duals of e(E),e(F), 2(p1(E) + e(E) — e(F)) are

,.\/\

[G(4,7)], [GB, 7)), [CAY] +[G(4,7)] - [G(3,7)]

respectively.

519



SHI and ZHOU/Turk J Math

Proof By Lemma 9.2, 1e3(E) — 1p}(E), 3e3(F) + 1p3(E), 2p3(E) are the generators of H'*(G(4,8),Z).

Then 1e3(E), 3€3(F), 3p3(E) are also the generators of H'(G(4,8),Z). |

By Theorem 3.1, we can compute the Poincaré duals of

1 1 1 L L
ieS(E) _ prf(E)’ 5(aB(F) + szlg(E)a ipzlg(E)

By Theorem 9.4, $(p1(E)+e(E)—e(F))e(E) = +(p1(E)e(E)+e*(E)) and 3(p1(E)e(F)—e*(F)), 3(p1(E)e(E)—
e*(E)), 3(p1(E)e(F) + €*(F)) are integral cocycles. The submanifolds ASSOC, ASSOC defined in §7 are
also the submanifolds of G(4,8); then *xASSOC, +ASSOC are submanifolds of G(4,8). The following table

can be proved by Lemma 7.4.

ASSOC ASSOC *ASSOC *ASSOC
2€%(F) + ip1(E)e(F) 1 0 0 0
56%(F) — sp1(E)e(F) 0 1 0 0
2€%(E) + 5p1(E)e(E) 0 0 1 0
2e*(E) — 5p1(E)e(E) 0 0 0 1
Theorem 9.5 The characteristic classes

LE(F) + Spu(E)e(F), 2e(F) — spy(E)e(F)

26 2p1 € ) 26 2p1 € )

1, 1 1, 1

SE(E) + 3p1(B)e(B), 5¢(B) - 5pm(B)e(E)

are the generators of H®(G(4,8),7Z). Their Poincaré duals are

[ASSOC], [ASSOC], [*ASSOC], [*xASSOC]

respectively.

Proof To see that the Poincaré dual of £ = £(e(F) + p1(E)e(F)) is ASSOC, we want to show that for any

n € H3(G(4,8)) we have fG(4}8) M = [Ls500 M- We can take n = £ (e*(F)+pi(E)e(F)), 3(e*(E)+pi(E)e(E))

to verify this equation. O
By R® = R?® ® R®, we see the product Grassmann G(2,3) x G(2,5),G(1,3) x G(3,5) can imbedded in

G(4,8) and we have

G(4,6) | G(2,6) G(2,3) x G(2,5) | G(1,3) x G(3,5)
e?(E) 2 0 0 0
e2(F) 0 2 0 0
p1(E)e(E) 0 0 4 0
p1(E)e(F) 0 0 0 4

Then
G(4,6), G(2,6), G(2,3) x G(2,5), G(1,3) x G(3,5) € Hg(G(4,8),R)

520



SHI and ZHOU/Turk J Math

and
e*(E), *(F), p1(E)e(E), pi(E)e(F) € H¥(G(4,8),R)
are also the generators.

As an application, we consider the immersion f: M — R® of a compact oriented 4-dimensional manifold,
with g: M — G(4,8) as its Gauss map. We have

.M = SX(MDG,5)] + AG(L5)] + Sr(M)[G(2,4),

where A =1 [, g%e(F(4,8)) and (M) = % [,, 9"p1(E(4,8)) = % [}, p1(T'M) is the signature of M. A =0 if
f is an imbedding.

If g is the Gauss map of immersion M in R” or R, we have

9-[M) = SX(MG(,5)] + Sr(M)G(, 1))

10. The cohomology groups on ASSOC
The submanifold ASSOC =~ G2/S0O(4) of Grassmann manifold G(3,7) is important in the theory of calibra-

tions; see [7,9]. In [6] Borel and Hirzebruch studied the characteristic classes on homogeneous spaces, and they
computed the cohomology of ASSOC'. In what follows we use Gysin sequence to study the cohomology of
ASSOC.

As §7,let G(2,7) and G(3,7) be Grassmann manifolds on R” C R® generated by és,--- ,és, and S C R”
the unit sphere. There is a fibre bundle 71: G(2,7) — S6 defined by 74 = e;vA, 71(7) = v, where A € Clg

is defined in §7. For any G € G4, we have the following commutative diagram

G271 % Gen
14 Im
G

56 — SS.

The fibre 77 '(&2) = {v A Jv | v € S8, v L &} ~ CP?; see [10].
Then for any © € G(2,7), v="T71(7), v Aw € ASSOC. This defines the map

T9: G(2,7) = ASSOC, m—vAm.
For any ezeses € ASSOC, ezese A = e1 A, then 1o(eses) = eseseyq. This shows
Lemma 10.1 m: G(2,7) — ASSOC s a fibre bundle with fibre G(2,3) = S2.

Let i: ASSOC — G(3,7) be an inclusion. It is easy to see G(2,7) is isomorphic to the sphere bundle
S(E) = {v € E, |[v| = 1} of the induced bundle E = i*E(3,7). Let e(E(3,7)) € H*(G(3,7),Z) be the Euler
class of E(3,7), 2e(E(3,7)) = 0; see [13] p. 95-103. Then e(E) = i*e(E(3,7)) € H3(ASSOC,Z) is the Euler
class of the induced bundle E. There is a Gysin exact sequence for the sphere bundle G(2,7) - ASSOC,

s HIY(ASSOC) 25 HU(G(2,7)) =2 HI2(ASSOC)
"B gt (ASSOC) T HIYH(G(2,7)) —,
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where 79, is the integration along the fibre. The coefficients of the cohomology groups can be R, Z, or Zs.

Lemma 10.2 ¢(E) = i*e(E(3,7)) # 0.
Proof Themap 7o.: HY(G(2,7),Z) — H1"2(ASSOC,Z) is the integration along the fibre. Let &1, eq,e3, - , eg

be Gy frame fields, and G(2,7) is generated by esey and 7o(eseq) = ezezeqs. Then the Euler class of vector
bundle E(2,7) can be represented by

8

1 1
e(B2.7) = gwi Awi+ o > w§ Aws

a=>5

and w? A w? is the volume element of the fibre at ezes. Then To.(e(E(2,7)) = 2.
By Gysin sequence, the map 7o,: H2(G(2,7)) — H°(ASSOC) is surjective if e(E) = 0. This contra-
dicts the fact that m.(e(E(2,7)) =2 and e(E(2,7)) € H>(G(2,7),Z) is a generator. O
Then e(E(3,7)) € H*(G(3,7),Z) is a nonzero torsion.

Theorem 10.3 The cohomology groups of ASSOC are

HY(ASSOC, Z,) _{ Lo a7 LT,

HY(ASSOC,Z) ={ Z,, q=36,

R? q:0)4787

Hq(ASSOC,]R):{ 0 ezo4s

Proof G(2,7) is a Kéhler manifold, and the cohomology of G(2,7) is generated by Euler class e(E(2,7)).

We prove the case of Zs coefficients; the other cases are left to the reader. By Gysin sequence, we have

0= H2(A5500) "% H'(4550C) 225 HY(G(2,7)) = 0,

0= H(A550C) "B 52(4550C) =5 HX(G(2,7)) =3° HO(ASSOC)
"B 13(48500) 5 HI(G(2,7)) = 0.
This shows H'(ASSOC) =0 and H?*(ASSOC) = H?*(G(2,7)), H°(ASSOC) = H3(ASSOC). By
0= H'Y(ASSOC) ne(®) H*(ASSOC) SEN HYG(2,7)) 25 H?(ASSOC)
and 7o, = 0: HY(G(2,7),Z2) — H*(ASSOC,Zs), we have
H*(ASSOC) =~ H*(G(2,7)).

The cases of ¢ =5,---,8 can be proved similarly. O
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