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Abstract: In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular, we

use characteristic classes and the Poincaré duality to study the homology groups of Grassmann manifolds. We show that

for k = 2 or n ≤ 8, the cohomology groups H∗(G(k, n),R) are generated by the first Pontrjagin class, the Euler classes

of the canonical vector bundles. In these cases, the Poincaré duality: Hq(G(k, n),R) → Hk(n−k)−q(G(k, n),R) can be

expressed explicitly.
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1. Introduction

Let G(k, n) be the Grassmann manifold formed by all oriented k -dimensional subspaces of Euclidean space

Rn . For any π ∈ G(k, n), there are orthonormal vectors e1, · · · , ek such that π can be represented by

e1 ∧ · · · ∧ ek . Thus G(k, n) becomes a submanifold of the space
∧k

(Rn); then we can use moving frame

to study the Grassmann manifolds.

There are 2 canonical vector bundles E = E(k, n) and F = F (k, n) over G(k, n) with fibres generated

by vectors of the subspaces and the vectors orthogonal to the subspaces, respectively. Then we have Pontrjagin

classes pi(E) and pj(F ) with the relationship

(1 + p1(E) + · · · )(1 + p1(F ) + · · · ) = 1.

If k or n− k is an even number, we have Euler class e(E) or e(F ).

The oriented Grassmann manifolds are classifying spaces for oriented vector bundles. For any oriented

vector bundle τ : ξ →M with fibre type Rk , there is a map g : M → G(k, n) such that ξ is isomorphic to the

induced bundle g∗E . If the maps g1, g2 : M → G(k, n) are homotopic, the induced bundles g∗1E and g∗2E are

isomorphic. Then the characteristic classes of the vector bundle ξ are the pullback of the characteristic classes

of the vector bundle E .

In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular,

we use characteristic classes and the Poincaré duality to study the homology groups of oriented Grassmann

manifolds. The characteristic classes of the canonical vector bundles can be represented by curvature and
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are the harmonic forms, see [5, 7, 8, 15, 20]. For k = 2 or n ≤ 8, we show that the cohomology groups

H∗(G(k, n),R) are generated by the first Pontrjagin class p1(E) and the Euler classes e(E), e(F ) if k or n−k
is even. In these cases, the Poincaré duality: Hq(G(k, n),R) → Hk(n−k)−q(G(k, n),R) can be given explicitly.

In §2, we compute volumes of some homogeneous spaces that are needed in the later discussion. In §3,
we study the Poincaré duality on oriented compact Riemannian manifolds. The results are Theorem 3.1.

The Poincaré polynomials of Grassmann manifolds G(k, n) for k = 2 or n ≤ 8 are listed at the end of

§3, which give the real homology groups of Grassmann manifolds. From [12], we know that the tangent space

of Grassmann manifolds is isomorphic to tensor products of the canonical vector bundles. In §4 we use the

splitting principle of the characteristic class to study the relationship among these vector bundles, and show

that the characteristic classes of the tangent bundle on Grassmann manifolds can be represented by that of

canonical vector bundles.

In §5, we study G(2, N); the main results are Theorem 5.5. In §6, we study the Grassmann manifold

G(3, 6); the main results are Theorem 6.1.

In §7, §8 we study the Grassmann manifold G(3, 7) and G(3, 8); the main results are Theorem 7.5 and

8.4. In §9, we study G(4, 8); the main results are Theorem 9.4, 9.5.

As an application, in §5 and §9, we consider the Gauss maps of submanifolds in Euclidean spaces. The

results generalize the work by Chern and Spanier [4]. For example, if g : M → G(4, 8) is the Gauss map of an

immersion f : M → R8 of a compact oriented 4-dimensional manifold, we have

g∗[M ] =
1

2
χ(M)[G(4, 5)] + λ[G(1, 5)] +

3

2
τ(M)[G(2, 4)],

where λ = 1
2

∫
M
e(F (4, 8)) and τ(M) is the signature of M . λ = 0 if f is an imbedding.

In §10 we use Gysin sequence to compute the cohomology of the homogeneous space ASSOC =

G2/SO(4), which was studied by Borel and Hirzebruch [6].

The cohomology groups of infinite Grassmann manifold G(k,R∞) are simple; they are generated by

Pontrjagin classes and the Euler class (if k is even) of the canonical vector bundle freely; see [13], p.179.

The computations on specific Grassmann manifolds like G(3, 7) or G(4, 8) have important implications

on the theory of calibrated submanifolds like associative, coassociative, or Cayley submanifolds of Riemannian

7-8-manifolds of G2 or Spin7 holonomy. This work has many applications like [1, 11] among potential others.

In [1, 11], there are applications to associative, coassociative submanifolds of G2 manifolds.

2. The volumes of homogeneous spaces

For any π ∈ G(k, n), there are orthonormal vectors e1, · · · , ek such that π can be represented by e1 ∧ · · · ∧ ek .

These give an imbedding of G(k, n) in Euclidean space
∧k

(Rn); see [2, 20]. Let e1, e2, · · · , en be orthonormal

frame fields on Rn such that G(k, n) is generated by e1 ∧ · · · ∧ ek locally. The vectors e1, e2, · · · , en can be

viewed as functions on Grassmann manifolds. Let deA =
n∑

B=1

ωB
AeB , ωB

A = ⟨deA, eB⟩ be 1 forms on G(k, n).

From d2eA = 0, we have dωB
A =

n∑
C=1

ωC
A ∧ ωB

C . By

d(e1 ∧ · · · ∧ ek) =
k∑

i=1

n∑
α=k+1

ωα
i Eiα,

493



SHI and ZHOU/Turk J Math

Eiα = e1 · · · ei−1eαei+1 · · · ek, i = 1, · · · , k, α = k + 1, · · · , n,

we know Eiα forms a basis of Te1···ekG(k, n) and ωα
i is their dual basis.

ds2 = ⟨d(e1 ∧ · · · ∧ ek), d(e1 ∧ · · · ∧ ek)⟩ =
∑
i,α

(ωα
i )

2

is the induced metric on G(k, n). Differential Eiα = e1 · · · ei−1eαei+1 · · · ek , by Gauss equation, we get the

Riemannian connection ∇ on G(k, n),

∇Eiα =
k∑

j=1

ωj
iEjα +

n∑
β=k+1

ωβ
αEiβ .

Grassmann manifold G(k, n) is oriented; the orientation is given by the volume form

ωk+1
1 ∧ ωk+1

2 ∧ · · · ∧ ωk+1
k ∧ · · · ∧ ωn

1 ∧ ωn
2 ∧ · · · ∧ ωn

k .

For later use we compute the volumes for some homogeneous spaces. We first compute the volume of

special orthogonal group SO(n).

Let gl(n,R) be the set of all n× n real matrices with the inner product

⟨X,Y ⟩ = tr (XY t) =
∑
A,B

XABYAB , X = (XAB), Y = (YCD) ∈ gl(n,R).

Then gl(n,R) is a Euclidean space and SO(n) is a Riemannian submanifold of gl(n,R). Represent the elements

of SO(n) by G = (e1, · · · , en)t , where eA is the A -th row of G . The vectors e1, · · · , en can be viewed as

functions of SO(n); then ωB
A = ⟨deA, eB⟩ = deA · etB are 1 forms on SO(n), ωB

A + ωA
B = 0. Let EBC be the

matrix with 1 in the B -th row, C -th column, the others being zero. We have

dGG−1 = (ωB
A ) =

∑
A,B

ωB
AEAB , dG =

∑
A<B

ωB
A (EAB − EBA)G.

Then {(EAB − EBA)G} is a basis of TGSO(n) and

ds2 = ⟨dG,dG⟩ = 2
∑
A<B

ωB
A ⊗ ωB

A

is a Riemannian metric on SO(n).

Proposition 2.1 The volume of SO(n) is

V (SO(n)) = 2
1
2 (n−1)V (Sn−1)V (SO(n− 1)) = 2

1
4n(n−1)V (Sn−1) · · ·V (S1).

Proof Let ēn = (0, · · · , 0, 1) be a fixed vector. The map τ(G) = ēnG = en defines a fibre bundle

τ : SO(n) → Sn−1 with fibres SO(n− 1). By den =
∑

ωA
n eA ,

dVSn−1 = ωn
1 · · ·ωn

n−1
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is the volume element of Sn−1 . The volume element of SO(n) can be represented by

dVSO(n) = (
√
2)

1
2n(n−1)

∏
A<B

ωB
A = 2

1
2 (n−1)(

√
2)

1
2 (n−1)(n−2)

∏
A<B<n

ωB
A · τ∗dVSn−1 ,

restricting (
√
2)

1
2 (n−1)(n−2)

∏
A<B<n ωB

A on the fibres of τ are the volume elements of the fibres. Integration

dVSO(n) along the fibre of τ first, then on Sn−1 , shows

V (SO(n)) = 2
1
2 (n−1)V (Sn−1)V (SO(n− 1)).

2

As we know V (Sm) = 2π
m+1

2

Γ(m+1
2 )

,

V (S2n−1) =
2πn

(n− 1)!
, V (S2n) =

22n+1n!πn

(2n)!
.

To compute the volume of G(k, n), we use principle bundle SO(n) → G(k, n) with the Lie group

SO(k)× SO(n− k) as fibres.

Proposition 2.2 The volume of Grassmann manifold G(k, n) is

V (G(k, n)) =
V (SO(n))

2
1
2k(n−k)V (SO(k))V (SO(n− k))

=
V (Sn−1) · · ·V (Sn−k)

V (Sk−1) · · ·V (S1)
.

The proof is similar to that of Proposition 2.1. By simple computation, we have

V (G(2, n+ 2)) =
2(2π)n

n!
, V (G(3, 6)) =

2

3
π5,

V (G(3, 7)) =
16

45
π6, V (G(3, 8)) =

2

45
π8, V (G(4, 8)) =

8

135
π8.

Now we compute the volume of complex Grassmann manifold GC(k, n). Let J be the natural complex

structure on Cn = R2n and s1, · · · , sk be Hermitian orthonormal basis of π ∈ GC(k, n). Let e2i−1, e2i =

Je2i−1 ∈ R2n be the realization vectors of si,
√
−1 si respectively. Then e1e2 · · · e2k−1e2k ∈ G(2k, 2n), and

GC(k, n) becomes a submanifold of G(2k, 2n).

Let U(n) = {G ∈ gl(n,C) | G · Gt
= I} be the unitary group and the Hermitian inner product of

X = (XAB), Y = (YCD) ∈ gl(n,C) be

⟨X,Y ⟩ = tr (XY
t
) =

∑
A,B

XABY AB .

Let G = (s1, · · · , sn)t ∈ U(n) represented by the rows of G , ωB
A = ⟨dsA, sB⟩ = dsA · s̄tB be 1 forms on U(n).

Let ωB
A = φB

A +
√
−1ψB

A . From ωB
A + ωA

B = 0 we have φB
A + φA

B = 0, ψB
A − ψA

B = 0. Then

dG =
∑
A,B

ωB
AEABG

=
∑
A<B

φB
A(EAB − EBA)G+

√
−1 {

∑
A<B

ψB
A (EAB + EBA)G+

∑
A

ψA
AEAAG},
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and

ds2 = ⟨dG,dG⟩ = 2
∑
A<B

(φB
A ⊗ φB

A + ψB
A ⊗ ψB

A ) +
∑
A

ψA
A ⊗ ψA

A

is a Riemannian metric on U(n). The volume element is

dVU(n) = 2
1
2n(n−1)ψ1

1 · · ·ψn
n

∏
A<B

φB
Aψ

B
A .

Proposition 2.3 (1) The volume of U(n) is

V (U(n)) = 2n−1V (S2n−1)V (U(n− 1)) = 2
1
2n(n−1)V (S2n−1)V (S2n−3) · · ·V (S1);

(2) As Riemannian submanifold of G(2k, 2n) , the volume of GC(k, n) is

V (GC(k, n)) =
V (U(n))

V (U(k))V (U(n− k))
;

(3) The volume of CPn = GC(1, n+ 1) is

V (CPn) =
(2π)n

n!
.

Proof Let ēn = (0, · · · , 0, 1) be a fixed vector. The map τ(G) = ēnG = sn defines a fibre bundle

τ : U(n) → S2n−1 with fibre type U(n − 1). From dsn =
∑

ωA
n sA and ωA

n = φA
n +

√
−1ψA

n , φ
n
n = 0,

we have the volume element of S2n−1 ,

dVS2n−1 = φn
1ψ

n
1 · · ·φn

n−1ψ
n
n−1ψ

n
n .

Then the volume element of U(n) can be represented by

dVU(n) = 2n−1τ∗dVS2n−1 · dVU(n−1).

These prove (1).

As noted above, the map [s1 · · · sk] 7→ e1e2 · · · e2k−1e2k gives an imbedding of GC(k, n) in G(2k, 2n).

From dsi =
∑

ωj
i sj +

∑
ωα
i sα, ω

j
i = φj

i +
√
−1ψj

i , ωα
i = φα

i +
√
−1ψα

i , we have

de2i−1 =
∑

(φj
ie2j−1 + ψj

i e2j) +
∑

(φα
i e2α−1 + ψα

i e2α),

de2i =
∑

(φj
ie2j − ψj

i e2j−1) +
∑

(φα
i e2α − ψα

i e2α−1).

Then

d(e1e2 · · · e2k−1e2k) =
∑
i,α

φα
i (E2i−1 2α−1 + E2i 2α) +

∑
i,α

ψα
i (E2i−1 2α − E2i 2α−1),

dVGC(k,n) = 2k(n−k)φk+1
1 ψk+1

1 · · ·φn
kψ

n
k .

The rest is similar to that of Proposition 2.1. 2

The symmetric space SLAG = SU(n)/SO(n) can be imbedded in G(n, 2n) as follows. Let ē2i−1, ē2i =

Jē2i−1, i = 1, · · · , n, be a fixed orthonormal basis of Cn = R2n ; the subspace {G(ē1ē3 · · · ē2n−1) | G ∈ SU(n) ⊂
SO(2n)} is diffeomorphic to SLAG = SU(n)/SO(n).
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Proposition 2.4 (1) The volume of special unitary group SU(n) is

V (SU(n)) = 2n−1

√
n

n− 1
V (S2n−1)V (SU(n− 1));

(2) The volume of SLAG is

V (SLAG) =
V (SU(n))

V (SO(n))
.

Proof The proof is similar to that of Proposition 2.1. Let G = (s1, · · · , sn)t ∈ SU(n), ωB
A = dsA · s̄tB . From

detG = 1 we have
n∑

A=1

ωA
A = 0; then ψn

n = −
∑
B ̸=n

ψB
B . The Riemannian metric on SU(n) is

ds2 = 2
∑
A<B

(φB
A ⊗ φB

A + ψB
A ⊗ ψB

A ) +
∑
B ̸=n

ψB
B ⊗ ψB

B + ψn
n ⊗ ψn

n

= 2
∑
A<B

(φB
A ⊗ φB

A + ψB
A ⊗ ψB

A )

+(ψ1
1 , · · · , ψn−1

n−1)


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2


 ψ1

1
...

ψn−1
n−1

 .

Then

dVSU(n) = 2
1
2n(n−1)

√
nψ1

1 · · ·ψn−1
n−1

∏
A<B

φB
Aψ

B
A .

The volume of special unitary group SU(n) is

V (SU(n)) = 2n−1

√
n

n− 1
V (S2n−1)V (SU(n− 1)).

Let e2A−1, e2A = Je2A−1 be the realization vectors of sA,
√
−1 sA respectively. SLAG is generated by

G(ē1ē3 · · · ē2n−1) = e1e3 · · · e2n−1 ,

d(e1e3 · · · e2n−1) =
∑

ψB
B (E2B−1 2B − E2n−1 2n) +

∑
A<B

ψB
A (E2A−1 2B + E2B−1 2A),

ds2 = 2
∑
A<B

ψB
A ⊗ ψB

A + 2
∑
B ̸=n

ψB
B ⊗ ψB

B +
∑

B ̸=C<n

ψB
B ⊗ ψC

C .

Then

dVSLAG = 2
1
4n(n−1)

√
nψ1

1 · · ·ψn−1
n−1

∏
A<B

ψB
A .

Let τ : SU(n) → SLAG be the projection with fibres SO(n). Restricting dsi =
∑

ωj
i sj +

∑
ωα
i sα on the

fibre of τ , we have ωα
i = 0 and ψj

i = 0; then dVSO(n) = 2
1
4n(n−1)

∏
A<B φB

A is the volume element of the

fibres. This completes the proof. 2
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Let Sp(n) = {G ∈ gl(n,H) | G ·Gt
= I} be the symplectic group, and GH(k, n) =

Sp(n)
Sp(k)×Sp(n−k) be the

quaternion Grassmann manifold which can also be imbedded in G(4k, 4n). The following proposition can be

proved as Proposition 2.3.

Proposition 2.5 (1) The volume of Sp(n) is

V (Sp(n)) = 4n−1V (S4n−1)V (Sp(n− 1)) = 2n(n−1)V (S4n−1)V (S4n−5) · · ·V (S3);

(2) As Riemannian submanifold of G(4k, 4n) , the volume of GH(k, n) is

V (GH(k, n)) =
22k(n−k)V (Sp(n))

V (Sp(k))V (Sp(n− k))
.

As HPn = GH(1, n+ 1), we have

V (HPn) =
(4π)2n

(2n+ 1)!
.

3. The Poincaré duality

Let M be a compact oriented Riemannian manifold and Hq(M) = Hq(M,R) its q -th singular homology

group, and Hq(M) = Hq(M,R) be the q -th de Rham cohomology group. For any [ξ] ∈ Hq(M) and

[z] = [
∑

λiσi] ∈ Hq(M), we can define

[ξ]([z]) =

∫
z

ξ =
∑

λi

∫
σi

ξ =
∑

λi

∫
△q

σ∗
i ξ,

where every singular simplex σi : △q → M is differentiable. If [ξ] ∈ Hq(M,Z) and [z] ∈ Hq(M,Z), we have

[ξ]([z]) ∈ Z . By universal coefficients theorem, we have

Hq(M,R) ∼= Hom(Hq(M,R),R),

and
Hq(M,Z) ∼= Hom(Hq(M,Z),Z)⊕ Ext (Hq−1(M,Z),Z).

On the other hand, we have Poincaré duality

D : Hq(M,R) → Hn−q(M,R), n = dimM.

For any [ξ] ∈ Hq(M), D[ξ] ∈ Hn−q(M), we have

[η](D[ξ]) =

∫
D[ξ]

η =

∫
M

ξ ∧ η

for any [η] ∈ Hn−q(M).

In the following, we use harmonic forms to represent the Poincaré duality. Let φ1, · · · , φk be the basis

of Hq(M) and [Ti] = D(φi) be their Poincaré duals. By Hodge Theorem, we can assume that φ1, · · · , φk are
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all the harmonic forms on M . Then ∗φ1, · · · , ∗φk are also the harmonic forms and form a basis of Hn−q(M).

Let

aij = (φi, φj) =

∫
M

⟨φi, φj⟩ dVM =

∫
M

φi ∧ ∗φj

be the inner product of differential forms φi, φj . Let ψ1, · · · , ψk be the dual basis of [T1], · · · , [Tk] , also

represented by harmonic forms. Assuming ψj =
∑

∗φibij , by Poincaré duality,

δij =

∫
Ti

ψj =

∫
M

φi ∧ ψj =

∫
M

∑
φi ∧ ∗φlblj =

∑
ailblj .

This shows (bij) = (aij)
−1 , and we have

(ψ1, · · · , ψk) = (∗φ1, · · · , ∗φk)(aij)
−1.

Theorem 3.1 Let φ1, · · · , φk be a basis of the cohomology group Hq(M) represented by harmonic forms. Let

[T1], · · · , [Tk] ∈ Hn−q(M) be the dual of (ψ1, · · · , ψk) = (∗φ1, · · · , ∗φk)(aij)
−1 , where aij = (φi, φj) . The

Poincaré duality D : Hq(M) → Hn−q(M) is given by

D(φi) = [Ti].

Furthermore, if [S1], · · · , [Sk] are the dual basis of φ1, · · · , φk , then

D(ψi) = (−1)q(n−q)[Si].

Proof The equations D(ψi) = (−1)q(n−q)[Si] follow from ∗ ∗φi = (−1)q(n−q)φi and (φi, φj) = (∗φi, ∗φj). 2

Theorem 3.1 can be applied to the Poincaré duality D : Hq(M,Z) → Hn−q(M,Z) if we ignore the torsion
elements of Hq(M,Z).

The q -th Betti number is the common dimension of the real homology and cohomology groups Hq(G(k, n))

and Hq(G(k, n)) (and is also the rank of Hq(G(k, n),Z) and Hq(G(k, n),Z)). The Poincaré polynomials, with

the Betti numbers as coefficients, are given by the following Table (see [7, 8, 18]).

Grassmannian Poincaré polynomial
G(1, n+ 1) 1 + tn

G(2, 2n+ 1) 1 + t2 + t4 + · · ·+ t4n−2

G(2, 2n+ 2) (1 + t2n)(1 + t2 + · · ·+ t2n)
G(3, 6) (1 + t4)(1 + t5)
G(3, 7) (1 + t4 + t8)(1 + t4)
G(3, 8) (1 + t4 + t8)(1 + t7)
G(4, 8) (1 + t4 + t8)(1 + t4)2

4. The vector bundles on G(k, n)

Let τ1 : E(k, n) → G(k, n) be the canonical vector bundle on Grassmann manifold G(k, n), and the fibre

over π ∈ G(k, n) be the vectors of π . E = E(k, n) is a Riemannian vector bundle with the induced

metric. Let e1, · · · , ek, ek+1, · · · , en be orthonormal frame fields on Rn , G(k, n) is locally generated by
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e1 · · · ek = e1 ∧ · · · ∧ ek . Then e1, · · · , ek are local orthonormal sections of the vector bundle τ1 . From

dei =
k∑

j=1

ωj
i ej +

n∑
α=k+1

ωα
i eα , we know that ∇ei =

∑
ωj
i ej defines a Riemannian connection on τ1 . From

∇2ei =
∑

(dωj
i −

∑
ωl
i ∧ ω

j
l )ej , we have curvature forms

Ωj
i = dωj

i −
∑

ωl
i ∧ ω

j
l =

∑
ωα
i ∧ ωj

α.

The total Pontrjagin classes of the vector bundle τ1 : E → G(k, n) are

p(E) = 1 + p1(E) + p2(E) + · · · = det(I +
1

2π
(Ωj

i )).

If k is even, we have Euler class

e(E) =
(−1)

k
2

(4π)
k
2 (k2 )!

∑
i1,··· ,ik

ε(i1i2 · · · ik)Ωi1i2Ωi3i4 · · ·Ωik−1ik .

Similarly, we can define vector bundle τ2 : F = F (k, n) → G(k, n) on Grassmann manifold G(k, n); the

fibre over e1 · · · ek ∈ G(k, n) is the vectors orthogonal to e1, · · · , ek . Then ek+1, · · · , en are local orthonormal

sections of F . From deα =
∑

ωβ
αeβ+

∑
ωi
αei , we have Riemannian connection ∇eα =

∑
ωβ
αeβ . The curvature

forms are given by

∇2eα =
∑

Ωβ
αeβ , Ωβ

α =
∑

ωi
α ∧ ωβ

i .

The total Pontrjagin classes of the vector bundle τ2 : F → G(k, n) are

p(F ) = 1 + p1(F ) + p2(F ) + · · · = det(I +
1

2π
(Ωβ

α)).

The direct sum E(k, n)⊕ F (k, n) = G(k, n)× Rn is trivial, and we have

(1 + p1(E) + p2(E) + · · · ) · (1 + p1(F ) + p2(F ) + · · · ) = 1.

Then Pontrjagin classes of F are determined by that of E . For example, we have

p1(F ) = −p1(E), p2(F ) = p21(E)− p2(E), p3(F ) = −p31(E) + 2p1(E)p2(E)− p3(E).

Let ∗ :
∧k

(Rn) →
∧n−k

(Rn) be the star operator, ∗G(k, n) = G(n − k, n), and the canonical vector bundles

E(k, n), F (k, n) are interchanged under the map ∗ .

Proposition 4.1 The tangent space TG(k, n) of a Grassmann manifold is isomorphic to tensor product

E(k, n)⊗ F (k, n) . If k(n− k) is even, we have

e(G(k, n)) = e(E(k, n)⊗ F (k, n)).

Proof Let e1, e2, · · · , en be an oriented orthonormal basis of Rn , the fibre of E(k, n) over x = e1 ∧ · · · ∧ ek ∈
G(k, n) is generated by e1, · · · , ek and the fibre of F (k, n) over x is generated by ek+1, · · · , en . On the other
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hand, the tangent space TxG(k, n) is generated by Ei α = e1 ∧ · · · ∧ ei−1 ∧ eα ∧ ei+1 · · · ∧ ek . It is easy to see

that the map Ei α 7→ ei ⊗ eα gives an isomorphism from tangent bundle TG(k, n) to tensor product E ⊗ F .

See also [12].

The isomorphism TG(k, n) → E(k, n) ⊗ F (k, n) preserves the connections on TG(k, n) and E ⊗ F ,

respectively, where the connection on E ⊗ F is

∇ (ei ⊗ eα) =
∑

ωj
i ej ⊗ eα +

∑
ωβ
αei ⊗ eβ .

2

In the following we use the splitting principle of the characteristic class to study the relationship among

these vector bundles. We study the oriented Grassmann manifold G(2k, 2n); the other cases can be discussed

similarly. Let s1, · · · , s2k be the orthonormal sections of vector bundle E(2k, 2n) such that the curvature of

Riemannian connection has the form

1

2π
∇2


s1
s2
...

s2k−1

s2k

 =


0 −x1
x1 0

. . .

0 −xk
xk 0




s1
s2
...

s2k−1

s2k

 .

The total Pontrjagin classes and the Euler class of E = E(2k, 2n) are

p(E) =
k∏

i=1

(1 + x2i ), e(E) = x1 · · ·xk.

Similarly, assuming t2k+1, t2k+2, · · · , t2n are the orthonormal sections of vector bundle F (2k, 2n), the

curvature of the Riemannian connection has the form

1

2π
∇2


t2k+1

t2k+2

...
t2n−1

t2n

 =


0 −yk+1

yk+1 0
. . .

0 −yn
yn 0




t2k+1

t2k+2

...
t2n−1

t2n

 .

The total Pontrjagin classes and the Euler class of F = F (2k, 2n) are

p(F ) =
n∏

α=k+1

(1 + y2α), e(F ) = yk+1 · · · yn.

s2i−1 ⊗ t2α−1, s2i ⊗ t2α−1, s2i−1 ⊗ t2α, s2i ⊗ t2α are the local orthonormal sections of vector bundle

E ⊗ F ∼= TG(2k, 2n). The curvature of Riemannian connection on E ⊗ F is given by

1

2π
∇2


s2i−1 ⊗ t2α−1

s2i ⊗ t2α−1

s2i−1 ⊗ t2α
s2i ⊗ t2α

 =


0 −xi −yα 0
xi 0 0 −yα
yα 0 0 −xi
0 yα xi 0




s2i−1 ⊗ t2α−1

s2i ⊗ t2α−1

s2i−1 ⊗ t2α
s2i ⊗ t2α

 .

Then we have
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Lemma 4.2 (1) e(TG(2k, 2n)) = e(E ⊗ F ) =
∏

i,α (x2i − y2α);

(2) p(TG(2k, 2n)) = p(E ⊗ F ) =
∏

i,α (1 + 2(x2i + y2α) + (x2i − y2α)
2).

By simple computation, we have

p1(TG(2k, 2n)) = (2n− 2k)p1(E) + 2kp1(F ) = 2(n− 2k)p1(E).

In particular, p1(TG(2k, 4k)) = 0.

In the next section, we shall show

e(TG(2, 2n+ 2)) = (n+ 1)e2n(E(2, 2n+ 2)),

e(TG(2, 2n+ 3)) = (n+ 1)e2n+1(E(2, 2n+ 3)).

We can also show

e(TG(3, 7)) = 3e3(F (3, 7)), e(TG(4, 8)) = 6e4(E(4, 8)) = 6e4(F (4, 8)).

5. The cases of G(2, N)

In this section, we study the real homology of Grassmann manifold G(2, N).

As is well known, the oriented Grassmann manifold G(2, N) is a Kähler manifold and can be imbedded

in a complex projective space. Here we give a new proof. Let e1, e2 be the oriented orthonormal basis of

π ∈ G(2, N), e1 7→ e2, e2 7→ −e1 defines an almost complex structure

J : TπG(2, N) → TπG(2, N),

E1α = eα ∧ e2 7→ −eα ∧ e1 = E2α, E2α = e1 ∧ eα 7→ e2 ∧ eα = −E1α.

It is easy to see that J is well defined and preserves the metric on G(2, N).

Proposition 5.1 G(2, N) is a Kähler manifold with complex structure J .

Proof Let ∇ be the Riemannian connection on TG(2, N) defined above. We have

(∇J)Ei α = ∇(JEi α)− J(∇Ei α) = 0, i = 1, 2.

Hence, ∇J = 0, J is a complex structure and G(2, N) is a Kähler manifold. 2

The Euler classes of canonical vector bundles E = E(2, 2n+2) and F = F (2, 2n+2) can be represented

by

e(E) =
1

2π

2n+2∑
α=3

ωα
1 ∧ ωα

2 ,

e(F ) =
(−1)n

(4π)nn!

∑
ε(α1α2 · · ·α2n)Ωα1α2 ∧ · · · ∧ Ωα2n−1α2n .

For k < 2n , G(2, k+ 2) is a submanifold of G(2, 2n+ 2) whose elements are contained in a fixed k+ 2-

dimensional subspace of R2n+2 , i : G(2, k+2) → G(2, 2n+2) the inclusion. Then, E(2, k+2) = i∗E(2, 2n+2)

and e(E(2, k + 2)) = i∗e(E(2, 2n + 2)). Let G(1, 2n + 1) be a submanifold of G(2, 2n + 2) with elements

e1 ∧ ē2, ē2 = (0, · · · , 0, 1), j : G(1, 2n+ 1) → G(2, 2n+ 2) be the inclusion.
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Theorem 5.2 For Grassmann manifold G(2, 2n+ 2) , we have

(1) pq(F ) = (−1)qpq1(E) = (−1)qe2q(E), q = 1, · · · , n;
(2) The Pontrjagin classes and Euler class of tangent bundle TG(2, 2n + 2) can be represented by the

Euler class of E ,

p1(G(2, 2n+ 2)) = 2(n− 1)e2(E), p2(G(2, 2n+ 2)) = (2n2 − 5n+ 9)e4(E), · · · ,

e(G(2, 2n+ 2)) = (n+ 1)e2n(E);

(3)
∫
G(1,2n+1)

e(F ) =
∫
G(2,k+2)

ek(E) = 2, k = 1, · · · , 2n;
∫
G(1,2n+1)

en(E) =
∫
G(2,n+2)

e(F ) = 0 .

Proof For Grassmann manifold G(2, 2n + 2), we have p1(E) = e2(E), pn(F ) = e2(F ). From (1 + p1(E)) ·
(1 + p1(F ) + p2(F ) + · · ·+ pn(F )) = 1, we have

1 + p1(F ) + p2(F ) + · · ·+ pn(F ) =
1

1 + p1(E)
= 1 +

n∑
q=1

(−1)qpq1(E).

Hence, pq(F ) = (−1)qpq1(E) = (−1)qe2q(E), pn(F ) = e2(F ) = (−1)ne2n(E). This proves (1).

By Lemma 4.2, note that x1 = e(E), the Euler class of G(2, 2n+ 2) is

e(TG(2, 2n+ 2)) = (x21 − y22)(x
2
1 − y23) · · · (x21 − y2n+1)

= x2n1 − x2n−2
1 p1(F ) + x2n−4

1 p2(F )− · · ·+ (−1)npn(F )

= (n+ 1)e2n(E).

By Gauss–Bonnet formula, we have

χ(G(2, 2n+ 2)) =

∫
G(2,2n+2)

e(G(2, 2n+ 2)) = 2n+ 2.

From (1) and

p(G(2, 2n+ 2)) =
n+1∏
α=2

(1 + 2(x21 + y2α) + (x21 − y2α)
2),

we can prove (2).

Restricting the Euler class e(E) on G(2, k + 2), we have

i∗e(E) =
1

2π

k+2∑
α=3

ωα
1 ∧ ωα

2 .

Then

i∗ek(E) =
k!

(2π)k
ω3
1 ∧ ω3

2 ∧ · · · ∧ ωk+2
1 ∧ ωk+2

2 =
k!

(2π)k
dVG(2,k+2),

where dVG(2,k+2) is the volume element of G(2, k + 2). Then∫
G(2,k+2)

ek(E) = 2, k = 1, · · · , 2n.
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Restricting on G(1, 2n+ 1), ωα
2 = 0, we have

e(F (1, 2n+ 1)) = j∗e(F (2, 2n+ 2)) =
(2n)!

22nn!πn
ω3
1 ∧ ω4

1 ∧ · · · ∧ ω2n+2
1 .

It is easy to see that e(F (1, 2n + 1)) is the Euler class of the tangent bundle of S2n = G(1, 2n + 1) and

ω3
1 ∧ ω4

1 ∧ · · · ∧ ω2n+2
1 is the volume element. Hence by Gauss–Bonnet formula or by direct computation, we

have ∫
G(1,2n+1)

j∗e(F (2, 2n+ 2)) = 2.

Furthermore, from ωα
2 |G(1,2n+1) = 0 and Ωαβ |G(2,n+2) = 0 for α, β > n+ 2, we have∫

G(1,2n+1)

j∗en(E) = 0,

∫
G(2,n+2)

i∗e(F ) = 0.

By pk1(E) = e2k(E), we have ∫
G(2,2k+2)

pk1(E) = 2.

2

The Poincaré polynomial of G(2, 2n+ 2) is

pt(G(2, 2n+ 2)) = 1 + t2 + · · ·+ t2n−2 + 2t2n + t2n+2 + · · ·+ t4n.

By Theorem 5.2, we have

(1) For k ̸= n , ek(E) ∈ H2k(G(2, 2n+2)), G(2, k+2) ∈ H2k(G(2, 2n+2)) are the generators respectively;

(2) en(E), e(F ) ∈ H2n(G(2, 2n+2)) and G(2, n+2), G(1, 2n+1) ∈ H2n(G(2, 2n+2)) are the generators.

The characteristic classes ek(E), e(F ) and the submanifolds G(2, k + 2), G(1, 2n + 1) are integral co-

homology and homology classes, respectively. However, they need not be the generators of the integral

cohomology and homology groups. For example, when k ̸= n , from
∫
G(2,k+2)

ek(E) = 2 we know that

[G(2, k + 2)] ∈ H2k(G(2, 2n + 2),Z), ek(E) ∈ H2k(G(2, 2n + 2),Z) cannot be generators simultaneously. Now

we compute
∫
CPk e

k(E) and
∫
CPn e(F ).

Let J be a complex structure on R2k+2 ⊂ R2n+2 and CP k = {e1Je1 | e1 ∈ S2k+1} . Let e1, e2 =

Je1, e2α−1, e2α = Je2α−1, α = 2, 3, · · · , k + 1, be local orthonormal frame fields on R2k+2 . By de2 = Jde1 we

have ω2α−1
1 = ω2α

2 , ω2α
1 = −ω2α−1

2 ; then

d(e1 ∧ e2) =
k+1∑
α=2

ω2α−1
1 (E1 2α−1 + E2 2α) +

k+1∑
α=2

ω2α
1 (E1 2α − E2 2α−1).

The oriented volume element of CP k is dV = 2kω3
1 ∧ ω4

1 ∧ · · · ∧ ω2k+2
1 .

Let i : CP k → G(2, 2n+ 2) be inclusion, we have

i∗ek(E) = (−1)k
k!

πk
ω3
1 ∧ ω4

1 ∧ · · · ∧ ω2k+2
1 .
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By Proposition 2.3 (3), ∫
CPk

i∗ek(E) = (−1)k.

By pk(E) = e2k(E), we have
∫
CP 2k i∗pk(E) = 1.

For n = k , J induces a complex structure on the induced bundle i∗F → CPn . Let FC be the complex

vector bundle formed by the (1, 0)-vectors of i∗F ⊗ C . By i∗e(F ) = cn(FC) (see [19]), we can show∫
CPn

i∗e(F ) =

∫
CPn

cn(FC) = 1.

See also Chern [3].

Let J̄ be a complex structure on R2k+2 , and the orientation given by J̄ is opposite to that of J .

Let CP k
= {v ∧ J̄v | v ∈ S2k+1} be the complex projective space. The orientation on the vector bundle

E(2, 2n+ 2)|CPk is given by v, J̄v , and we have∫
CPk

i∗ek(E) = (−1)k.

Let F̃C be the complex vector bundle formed by the (1, 0)-vectors of F ⊗C|CPn . The orientation on realization

vector bundle of F̃C given by J̄ is opposite to that of F |CPn . Hence e(F |CPn) = −cn(F̃C) and we have∫
CPn

e(F ) = −
∫
CPn

cn(F̃C) = −1.

These prove

Proposition 5.3 (1) When k < n , we have

[G(2, k + 2)] = 2(−1)k[CP k] ∈ H2k(G(2, 2n+ 2));

(2) In the homology group H2n(G(2, 2n+ 2)) , we have

[G(2, n+ 2)] = (−1)n([CPn] + [CPn
]),

[G(1, 2n+ 1)] = [CPn]− [CPn
].

For Grassmann manifold G(2, 2n+3), by the splitting principle of the characteristic classes, we can assume

that there are oriented orthonormal sections s1, s2 and t3, t4, · · · , t2n+2, t2n+3 of vector bundle E = E(2, 2n+3)

and F = F (2, 2n+ 3) respectively, such that

1

2π
∇2

(
s1
s2

)
=

(
0 −x
x 0

)(
s1
s2

)
,

1

2π
∇2



t3
t4
...

t2n+1

t2n+2

t2n+3


=



0 −y2
y2 0

. . .

0 −yn+1

yn+1 0
0





t3
t4
...

t2n+1

t2n+2

t2n+3


.
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The total Pontrjagin classes of F are p(F ) =
n+1∏
α=2

(1 + y2α).

s1 ⊗ t2α−1, s2 ⊗ t2α−1, s1 ⊗ t2α, s2 ⊗ t2α and s1 ⊗ t2n+3, s2 ⊗ t2n+3 are orthonormal sections of E ⊗ F ∼=
TG(2, 2n+ 3); they also give an orientation on E ⊗ F . The curvature of E ⊗ F is

1

2π
∇2


s1 ⊗ t2α−1

s2 ⊗ t2α−1

s1 ⊗ t2α
s2 ⊗ t2α

 =


0 −x −yα 0
x 0 0 −yα
yα 0 0 −x
0 yα x 0




s1 ⊗ t2α−1

s2 ⊗ t2α−1

s1 ⊗ t2α
s2 ⊗ t2α

 ,

1

2π
∇2

(
s1 ⊗ t2n+3

s2 ⊗ t2n+3

)
=

(
0 −x
x 0

)(
s1 ⊗ t2n+3

s2 ⊗ t2n+3

)
.

Hence the Euler class of G(2, 2n+ 3) is

e(TG(2, 2n+ 3)) = e(E ⊗ F ) = x

n+1∏
α=2

(x2 − y2α) = (n+ 1)e2n+1(E).

The odd dimensional homology groups of G(2, 2n + 3) are trivial, and the even dimensional homology

groups are one dimensional. The Euler-Poincaré number is χ(G(2, 2n+ 3)) = 2n+ 2.

Similar to the case of G(2, 2n+ 2), we have

Theorem 5.4 (1) The Pontrjagin classes of F (2, 2n+3) and TG(2, 2n+3) can all be represented by the Euler

class e(E(2, 2n+ 3)) ;

(2) e(TG(2, 2n+ 3)) = (n+ 1)e2n+1(E(2, 2n+ 3));

(3)
∫
G(2,k+2)

ek(E(2, 2n+ 3)) = 2, k = 1, · · · , 2n+ 1;

(4)
∫
CPk ek(E(2, 2n+ 3)) = (−1)k, k = 1, · · · , n+ 1.

As is well known, the Chern, Pontrjagin, and Euler classes are all integral cocycles. Let D : Hk(G(2, N),Z)
→ H2N−4−k(G(2, N),Z) be the Poincaré duality. The following theorem gives the structure of the integral ho-

mology and cohomology of G(2, N).

Theorem 5.5 (1) When 2k + 2 < N , [CP k] and ek(E(2, N)) are the generators of H2k(G(2, N),Z) and

H2k(G(2, N),Z) , respectively;

(2) When 2k + 2 > N , [G(2, k + 2)] and 1
2e

k(E(2, N)) are the generators of H2k(G(2, N),Z) and

H2k(G(2, N),Z) , respectively;

(3) When 2k + 2 < N , D(ek(E(2, N))) = [G(2, N − k)] ; when 2k + 2 > N , D( 12e
k(E(2, N))) =

(−1)n−k[CPn−k−2] ;

(4) [CPn], [CPn
] and 1

2 (−1)nen(E(2, 2n+2))± 1
2e(F (2, 2n+2)) are generators of H2n(G(2, 2n+2),Z)

and H2n(G(2, 2n+ 2),Z) , respectively. Furthermore,

D(
1

2
(−1)nen(E(2, 2n+ 2)) +

1

2
e(F (2, 2n+ 2))) = [CPn],
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D(
1

2
(−1)nen(E(2, 2n+ 2))− 1

2
e(F (2, 2n+ 2))) = [CPn

].

Proof As is well known, the Euler classes and Pontrjagin classes are harmonic forms and are integral cocycles,

and their products are also harmonic forms; see [7, 15]. When 2k+2 < N , from
∫
CPk e

k(E(2, N)) = (−1)k we

know CP k ∈ H2k(G(2, N),Z) and ek(E(2, N)) ∈ H2k(G(2, N),Z) are generators, respectively.

By simple computation, we have

ek(E(2, N)) =
k!

(2π)k

∑
α1<···<αk

ωα1
1 ωα1

2 · · ·ωαk
1 ωαk

2 ,

a = (ek(E(2, N)), ek(E(2, N))) =
(k!)2

(2π)2k
Ck

N−2V (G(2, N)),

1

a
∗ ek(E(2, N)) =

(N − k − 2)!

2(2π)N−k−2

∑
β1<···<βN−k−2

ωβ1

1 ωβ1

2 · · ·ωβN−k−2

1 ω
βN−k−2

2

=
1

2
eN−k−2(E(2, N)).

By Theorem 3.1, 1
2e

N−k−2(E(2, N)) is a generator of H2N−2k−4(G(2, N),Z). By
∫
G(2,N−k)

1
2e

N−k−2(E(2, N)) =

1 we know that G(2, N − k) ∈ H2N−2k−4(G(2, N),Z) is a generator and D(ek(E(2, N))) = G(2, N − k). This

proves (1), (2), (3) of the Theorem.

Let [S1], [S2] be generators of H2n(G(2, 2n+2),Z) and harmonic forms ξ1, ξ2 be generators of H2n(G(2, 2n+

2),Z); they satisfy
∫
Si
ξj = δij . There are integers aij , nij such that

(
en(E)
e(F )

)
=

(
n11 n12
n21 n22

)(
ξ1
ξ2

)
, (CPn,CPn

) = (S1, S2)

(
a11 a12
a21 a22

)
.

Then (
n11 n12
n21 n22

)(
a11 a12
a21 a22

)
=

(
(−1)n (−1)n

1 −1

)
,

and we have det(aij) = ±1 or det(nij) = ±1.

If det(nij) = ±1, en(E), e(F ) are also the generators of H2n(G(2, 2n + 2),Z), we can assume ξ1 =

en(E), ξ2 = e(F ). It is easy to see

(en(E), e(F )) = 0, (en(E), en(E)) = (e(F ), e(F )) = 2,

∗en(E) = en(E), ∗e(F ) = e(F ).

By Theorem 3.1, 1
2e

n(E), 1
2e(F ) are also the generators of H2n(G(2, 2n+2),Z). This contradicts the fact that∫

CPn e
n(E) = (−1)n .

Then we must have det(nij) = ±2 and det(aij) = ±1. This shows CPn,CPn
are generators of

H2n(G(2, 2n+2),Z), and 1
2{(−1)nen(E)+e(F )}, 1

2{(−1)nen(E)−e(F )} are generators of H2n(G(2, 2n+2),Z).
The Poincaré duals of these generators are easy to compute. 2
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We give some applications to conclude this section.

Let f : M → RN be an immersion of an oriented compact surface M , g : M → G(2, N) the induced

Gauss map, g(p) = TpM . Then e(M) = g∗(e(E(2, N)) is the Euler class of M . Let [M ] ∈ H2(M) be the

fundamental class of M . When N ̸= 4, we have

g∗[M ] =
1

2
χ(M)[G(2, 3)] = χ(M)[−CP 1] ∈ H2(G(2, N)).

In [10, 17], we have shown there is a fibre bundle τ : G(2, 8) = G(6, 8) → S6 with fibres CP 3 , where

S6 = {v ∈ S7 | v ⊥ ē1 = (1, 0, · · · , 0)} , τ−1(ē2) = {v ∧ Jv | v ∈ S7} , ē2 = (0, 1, 0, · · · , 0). On the other hand,

the map f(v) = ē1 ∧ v gives a section of τ . Let dV be the volume form on S6 such that
∫
S6 dV = 1. It is

easy to see

[τ∗dV ] =
1

2
e3(E(2, 8)) +

1

2
e(F (2, 8)).

Let φ : M → R8 be an immersion of an oriented compact 6-dimensional manifold, and g : M →
G(6, 8) = G(2, 8) be the Gauss map. Then e(M) = g∗e(F (2, 8)) is the Euler class of tangent bundle of M , and

e(T⊥M) = g∗e(E(2, 8)) is the Euler class of normal bundle of M .∫
M

(τ ◦ g)∗dV =

∫
M

g∗[
1

2
e3(E(2, 8)) +

1

2
e(F (2, 8))] =

1

2

∫
M

e3(T⊥M) +
1

2
χ(M)

is the degree of the map τ ◦ g : M → S6 . If φ is an imbedding, e(T⊥M) = 0; see Milnor, Stasheff [13], p.120.

Let J, J̄ be 2 complex structures on R4 , with orthonormal basis e1, e2, e3, e4 ,

Je1 = e2, Je2 = −e1, Je3 = e4, Je4 = −e3;

J̄e1 = −e2, J̄e2 = e1, J̄e3 = e4, J̄e4 = −e3.

For any unit vector v =
∑

viei , we have

vJv + ∗vJv = e1e2 + e3e4,

vJv − ∗vJv = (v21 + v22 − v23 − v24)(e1e2 − e3e4)

+2(v1v3 + v2v4)(e1e4 − e2e3) + 2(v2v3 − v1v4)(e1e3 + e2e4);

vJ̄v − ∗vJ̄v = −e1e2 + e3e4,

vJ̄v + ∗vJ̄v = (−v21 − v22 + v23 + v24)(e1e2 + e3e4)

+2(v1v3 − v2v4)(e1e4 + e2e3)− 2(v1v4 + v2v3)(e1e3 − e2e4).

This shows CP 1 , CP 1
are 2 spheres in G(2, 4) ≈ S2(

√
2
2 ) × S2(

√
2
2 ) where the decomposition is given by star

operator ∗ : G(2, 4) → G(2, 4).

Let f : M → R4 be an immersion of an oriented surface, and g : M → G(2, 4) the Gauss map. Then

we have g∗[M ] = a[G(2, 3)] + b[G(1, 3)] , where a = 1
2χ(M), b = 1

2

∫
M
e(T⊥M). If f is an imbedding,

g∗[M ] =
1

2
χ(M)[G(2, 3)] = −1

2
χ(M)[CP 1]− 1

2
χ(M)[CP 1

].

See also the work by Chern and Spanier [4].
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6. The case of G(3, 6)

The Poincaré polynomial of Grassmann manifold G(3, 6) is pt(G(3, 6)) = 1+t4+t5+t9. To study the homology

of G(3, 6) we need only consider the dimension 4, 5.

Let i : G(2, 4) → G(3, 6) be an inclusion defined naturally. It is easy to see that i∗p1(E(3, 6)) =

p1(E(2, 4)) = e2(E(2, 4)); then ∫
G(2,4)

p1(E(3, 6)) = 2.

As §2, let SLAG = {G(ē1ē3ē5) | G ∈ SU(3) ⊂ SO(6)} be a subspace of G(3, 6), and ei = G(ēi), ei+1 =

G(ēi+1) = Jei be SU(3)-frame fields, i = 1, 3, 5. Restricting the coframes ωB
A = ⟨deA, eB⟩ on SLAG we have

ωj
i = ωj+1

i+1 , ω
j+1
i = −ωj

i+1, i, j = 1, 3, 5 and ω2
1 + ω4

3 + ω6
5 = 0.

By the proof of Proposition 2.4, we have dVSLAG = 2
3
2

√
3ω4

1ω
6
1ω

6
3ω

2
1ω

4
3 and V (SLAG) =

√
3
2 π

3 . Let G(3, 6)

be generated by e1e3e5 locally, and the first Pontrjagin class of canonical vector bundle E(3, 6) is

p1(E(3, 6)) =
1

4π2
[(Ω13)

2 + (Ω15)
2 + (Ω35)

2],

where Ωij = −
∑
α
ωα
i ∧ ωα

j , α = 2, 4, 6. By computation we have

∗p1(E(3, 6))|SLAG =

√
6

4π2
dVSLAG,

a = (p1(E(3, 6)), p1(E(3, 6))) =
3 · 4 · 3
(2π)4

V (G(3, 6)) =
3

2
π.

From
∫
G(2,4)

p1(E(3, 6)) = 2, we know that p1(E(3, 6)) or 1
2p1(E(3, 6)) is a generator of H4(G(3, 6),Z).

If p1(E(3, 6)) is a generator, by Theorem 3.1, 1
a ∗ p1(E(3, 6)) is a generator of H5(G(3, 6),Z), but∫

SLAG

1

a
∗ p1(E(3, 6)) =

∫
SLAG

1√
6π3

dVSLAG =
1

2
.

Then 1
2p1(E(3, 6)) is a generator of H4(G(3, 6),Z) and

∫
SLAG

4
a ∗ 1

2p1(E(3, 6)) = 1.

We have proved the following theorem

Theorem 6.1 (1) 1
2p1(E(3, 6)) ∈ H4(G(3, 6),Z) is a generator and its Poincaré dual [SLAG] is a generator

of H5(G(3, 6),Z) ;

(2) 4
3π ∗ p1(E(3, 6)) ∈ H5(G(3, 6),Z) is a generator and its Poincaré dual [G(2, 4)] is a generator of

H4(G(3, 6),Z) .

Let ē1, · · · , ē6 be a fixed orthonormal basis of R6 , G ∈ SO(3) acts on the subspace generated by

ē4, ē5, ē6 , and denote e4 = G(ē4), e5 = G(ē5), e6 = G(ē6). As [7], let PONT be the set of elements

(cos tē1 + sin te4)(cos tē2 + sin te5)(cos tē3 + sin te6), t ∈ [0,
π

2
].
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PONT is a calibrated submanifold (except 2 points correspond to t = 0, π2 ) of the first Pontrjagin form

p1(E(3, 6)). By moving the frame we can show∫
PONT

p1(E(3, 6)) = 2 and V (PONT ) =

√
2

3
V (G(2, 4)) =

4
√
6

3
π2.

Then 4-cycle PONT is homologous to the 4-cycle G(2, 4) inside G(3, 6).

7. The case of G(3, 7)

The Poincaré polynomial of G(3, 7) is pt(G(3, 7)) = 1 + 2t4 + 2t8 + t12.

Let ē1, ē2, · · · , ē8 be a fixed orthonormal basis of R8 and R7 be a subspace generated by ē2, · · · , ē8 . The
oriented Grassmann manifold G(3, 7) is the set of subspaces of R7 .

Let E = E(3, 7) and F = F (3, 7). As §4, we can show

p1(F ) = −p1(E), p2(F ) = e2(F ) = p21(E), e(E ⊗ F ) = e(TG(3, 7)) = 3e3(F ).

By
∫
G(3,7)

e(TG(3, 7)) = χ(G(3, 7)) = 6 we have∫
G(3,7)

e3(F ) = 2.

By inclusion G(2, 6) ⊂ G(3, 7), CP 2 and CP 2
can be imbedded in G(3, 7).

Lemma 7.1
∫
CP 2 p1(E) =

∫
CP 2 p1(E) = 1,

∫
CP 2 e(F ) = −

∫
CP 2 e(F ) = 1.

Proof By p1(E(3, 7))|CP 2 = p1(E(2, 6))|CP 2 = e2(E(2, 6))|CP 2 and the results of §5, we have
∫
CP 2 p1(E) = 1.

The other equalities can be proved similarly. 2

Then ∫
CP 2

1

2
(p1(E) + e(F )) =

∫
CP 2

1

2
(p1(E)− e(F )) = 1,∫

CP 2

1

2
(p1(E)− e(F )) =

∫
CP 2

1

2
(p1(E) + e(F )) = 0,

hence CP 2,CP 2 ∈ H4(G(3, 7)) and 1
2 (p1(E) + e(F )), 1

2 (p1(E)− e(F )) ∈ H4(G(3, 7)) are generators.

Let e2, e3, e4, · · · , e8 be oriented orthonormal frame fields on R7 , and G(3, 7) be generated by e2∧e3∧e4
locally. Euler class of F and first Pontrjagin class of E can be represented by

e(F ) =
1

2(4π)2

∑
ε(α1α2α4α4)Ωα1α2 ∧ Ωα3α4

=
1

4π2

4∑
i,j=2

(ωi
5ω

i
6ω

j
7ω

j
8 − ωi

5ω
i
7ω

j
6ω

j
8 + ωi

5ω
i
8ω

j
6ω

j
7),

p1(E) =
1

4π2
[(Ω23)

2 + (Ω24)
2 + (Ω34)

2].

Then we have

p1(E)e2(F ) = p31(E) = 0.
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Lemma 7.2 (1) ∗p1(E) = 4
5π

2p1(E)e(F ), ∗e(F ) = 1
2π

2e2(F ) ;

(2) (p1(E), e(F )) = 0, a = (p1(E), p1(E)) = 8
5π

2, b = (e(F ), e(F )) = π2 .

Proof ∗p1(E), p1(E)e(F ) and ∗e(F ), e2(F ) are the harmonic forms on G(3, 7). ∗p1(E) = 4
5π

2p1(E)e(F )

follows from the equalities such as

∗ω5
2ω

5
3ω

6
2ω

6
3 = ω7

2ω
7
3ω

8
2ω

8
3ω

4
5ω

4
6ω

4
7ω

4
8

= ω7
3ω

7
4ω

8
3ω

8
4ω

4
5ω

4
6ω

2
7ω

2
8

= ω7
2ω

7
4ω

8
2ω

8
4ω

4
5ω

4
6ω

3
7ω

3
8 .

The proof of (2) is a direct computation. 2

To study G(3, 7), G(3, 8), and G(4, 8), we shall use Clifford algebras.

Let Cℓ8 be the Clifford algebra associated with the Euclidean space R8 . Let ē1, ē2, · · · , ē8 be a fixed

orthonormal basis of R8 , and the Clifford product be determined by the relations: ēB · ēC + ēC · ēB =

−2δBC , B, C = 1, 2, · · · , 8. Define the subspace V = V + ⊕ V − of Cℓ8 by V + = Cℓeven8 · A, V − = Cℓodd8 · A ,

where

A =
1

16
Re [(ē1 +

√
−1ē2) · · · (ē7 +

√
−1ē8)(1 + ē1ē3ē5ē7)].

The space V = V + ⊕ V − is an irreducible module over Cℓ8 . The spaces V + and V − are generated by ē1ēBA

and ēBA respectively, B = 1, · · · , 8; see [16,17].

Let Spin7 = {G ∈ SO(8) | G(A) = A} be the isotropy group of SO(8) acting on A . The group Spin7

acts on G(2, 8), G(3, 8) and S7 transitively. G2 = {G ∈ Spin7 | G(ē1) = ē1} is a subgroup of Spin7 .

The Grassmann manifold G(k, 8) can be viewed as a subset of Clifford algebra Cℓ8 naturally. Then,

for any π ∈ G(k, 8), there is v ∈ R8 such that πA = ē1vA or πA = vA according to the number k

being even or odd, |v| = 1. Thus we have maps G(k, 8) → S7, π 7→ v . Since Spin7 acts on G(3, 8)

transitively, from ē2ē3ē4A = ē1A we have G(ē2ē3ē4)A = G(ē1)A for any G ∈ Spin7 . This shows the map

τ : G(3, 8) → S7, τ(π) = v, is a fibre bundle and v ⊥ π ; see [10,17]. Let

ASSOC = τ−1(ē1) = {π ∈ G(3, 8) | τ(π) = ē1}

be the fibre over ē1 . The group G2 acts on ASSOC transitively, and we have ASSOC = {G(ē2ē3ē4) | G ∈ G2} .
We can show the isotropy group {G(ē2ē3ē4) = ē2ē3ē4 | G ∈ G2} is isomorphic to the group SO(4); then

ASSOC ≈ G2/SO(4).

Change the orientation of R7 , and let Ã = 1
16Re [(ē1−

√
−1ē2)(ē3+

√
−1ē4) · · · (ē7+

√
−1ē8)(1+ē1ē3ē5ē7)] .

Define submanifold ˜ASSOC = {π ∈ G(3, 8) | πÃ = ē1Ã} , which is diffeomorphic to ASSOC .

Lemma 7.3 V (ASSOC) = 6
5π

4 .

Proof Let ẽ1, ẽ2, · · · , ẽ8 be Spin7 frame fields on R8 , and the 1-forms ωC
B = ⟨dẽB , ẽC⟩ satisfy (for proof, see

[10])
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ω2
1 + ω4

3 + ω6
5 + ω8

7 = 0, ω3
1 − ω4

2 + ω8
6 − ω7

5 = 0,

ω4
1 + ω3

2 + ω8
5 + ω7

6 = 0, ω5
1 − ω6

2 + ω7
3 − ω8

4 = 0,

ω6
1 + ω5

2 − ω8
3 − ω7

4 = 0, ω7
1 − ω8

2 − ω5
3 + ω6

4 = 0,

ω8
1 + ω7

2 + ω6
3 + ω5

4 = 0.

Since Spin7 acts on G(3, 8) transitively, G(3, 8) is locally generated by ẽ2ẽ3ẽ4 . The volume element of G(3, 8)

is dVG(3,8) = ω1
2ω

1
3ω

1
4ω

5
2ω

5
3ω

5
4 · · ·ω8

2ω
8
3ω

8
4 .

Note that A can be represented by Spin7 frames, that is

A =
1

16
Re [(ẽ1 +

√
−1ẽ2) · · · (ẽ7 +

√
−1ẽ8)(1 + ẽ1ẽ3ẽ5ẽ7)].

Let ẽ1 = ē1 be a fixed vector, and ē1, ẽ2, · · · , ẽ8 be G2 frame fields on R8 ; ASSOC is locally generated

by ẽ2ẽ3ẽ4 and

d(ẽ2ẽ3ẽ4) =

3∑
i=2

8∑
α=5

ωα
i Eiα

= ω5
2(E25 + E47) + ω6

2(E26 − E48) + ω7
2(E27 − E45) + ω8

2(E28 + E46)

+ω5
3(E35 + E46) + ω6

3(E36 − E45) + ω7
3(E37 + E48) + ω8

3(E38 − E47).

The metric on ASSOC is

ds2 = 2(ω5
2)

2 + 2(ω8
3)

2 − 2ω5
2ω

8
3 + 2(ω6

2)
2 + 2(ω7

3)
2 − 2ω6

2ω
7
3

+2(ω7
2)

2 + 2(ω6
3)

2 + 2ω7
2ω

6
3 + 2(ω8

2)
2 + 2(ω5

3)
2 + 2ω8

2ω
5
3 ,

with the volume form

dVASSOC = 9 ω5
2ω

5
3 · · · ω8

2ω
8
3 .

The normal space of ASSOC in G(3, 8) at ẽ2ẽ3ẽ4 is generated by

E21, E31, E41, E25 − E47 − E38, E26 + E48 − E37, E27 + E45 + E36, E28 − E46 + E35.

The sphere S7 is generated by ẽ1 , and dVS7 = ω1
2ω

1
3 · · ·ω1

8 is the volume form. From

(E27 + E45 + E36)A = −3ẽ8A, E21A = −ẽ2A, · · · ,

we can compute the tangent map of τ : G(3, 8) → S7 ,

τ∗(E27 + E45 + E36) = −3ẽ8, τ∗(E21) = −ẽ2, · · · .

Then we can compute the cotangent map τ∗ and we have

τ∗dVS7 = ω1
2ω

1
3ω

1
4(ω

6
2 − ω7

3 + ω8
4)(−ω5

2 + ω8
3 + ω7

4)(ω
8
2 + ω5

3 − ω6
4)(ω

7
2 + ω6

3 + ω5
4),
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and

dVG(3,8) = −1

9
τ∗dVS7 · dVτ−1(ẽ1).

From V (G(3, 8)) = 2
45π

8, V (S7) = 1
3π

4 , we have V (ASSOC) = 6
5π

4 . 2

It is easy to see that ASSOC and ˜ASSOC are submanifolds of G(3, 7). In the following lemma

E = E(3, 7), F = F (3, 7).

Lemma 7.4
∫
ASSOC

p21(E) =
∫
ASSOC

p1(E)e(F ) = 1,
∫

˜ASSOC
p21(E) = −

∫
˜ASSOC

p1(E)e(F ) = 1. Then

ASSOC, ˜ASSOC and p21(E), p1(E)e(F ) are generators of H8(G(3, 7)) and H8(G(3, 7)) , respectively. Fur-

thermore, we have

[G(2, 6)] = [ASSOC] + [ ˜ASSOC].

Proof From

∗ω5
2ω

5
3ω

6
2ω

6
3 |ASSOC = ω7

2ω
7
3ω

8
2ω

8
3ω

4
5ω

4
6ω

4
7ω

4
8 |ASSOC =

1

9
dVASSOC ,

∗ω7
2ω

7
3ω

8
2ω

8
3 |ASSOC = ∗ω5

2ω
5
3ω

7
2ω

7
3 |ASSOC = ∗ω6

2ω
6
3ω

8
2ω

8
3 |ASSOC =

1

9
dVASSOC ,

∗ω6
2ω

6
3ω

7
2ω

7
3 |ASSOC = ω5

2ω
5
3ω

8
2ω

8
3ω

4
5ω

4
6ω

4
7ω

4
8 |ASSOC = 0,

∗ω5
2ω

5
3ω

8
2ω

8
3 |ASSOC = 0,

we have
∑
α,β

∗ωα
2 ω

α
3 ω

β
2ω

β
3 |ASSOC = 8 · 1

9dVASSOC ,

∗p1(E)|ASSOC =
1

4π2
· 3 · 8 · 1

9
dVASSOC .

Then by ∗p1(E) = 4
5π

2p1(E)e(F ), we have

∫
ASSOC

p1(E)e(F ) =

∫
ASSOC

5

4π2
∗ p1(E) = 1.

The proof of
∫
ASSOC

p21(E) = 1 is similar.

Change the orientation of R7 , and we have Euclidean space R̃7 . Let Ẽ, F̃ → G(3, 7) be canonical vector

bundles with respect to R̃7 . It is easy to see that Ẽ = E , but the orientations of F̃ and F are different. This

shows ∫
˜ASSOC

p21(E) = 1,

∫
˜ASSOC

p1(E)e(F ) = −1.

[G(2, 6)] = [ASSOC] + [ ˜ASSOC]

follows from
∫
G(2,6)

p21(E) = 2 and
∫
G(2,6)

p1(E)e(F ) = 0. 2
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Theorem 7.5 (1) 1
2 (p1(E)+e(F )), 1

2 (p1(E)−e(F )) are 2 generators of H4(G(3, 7),Z) . Their Poincaré duals

are [ASSOC] and [ ˜ASSOC] respectively;

(2) 1
2 (p1(E)e(F ) + e2(F )), 1

2 (p1(E)e(F ) − e2(F )) ∈ H8(G(3, 7),Z) are generators and their Poincaré

duals are [CP 2], [CP 2
] respectively;

(3) 1
2 (p1(E)e(F ) + e2(F )), 1

2 (p1(E)e(F )− e2(F )) and [ASSOC], [ ˜ASSOC] are dual basis with respect

to the universal coefficients theorem.

The proof is similar to Theorem 5.5.

8. The case of G(3, 8)

The Poincaré polynomial of Grassmann manifold G(3, 8) is

pt(G(3, 8)) = (1 + t4 + t8)(1 + t7) = 1 + t4 + t7 + t8 + t11 + t15.

Let E = E(3, 8), F = F (3, 8). By
∫
CP 2 p1(E) = 1,

∫
ASSOC

p21(E) = 1 we know that

[CP 2] ∈ H4(G(3, 8),Z), [ASSOC] ∈ H8(G(3, 8),Z),

p1(E) ∈ H4(G(3, 8),Z), p21(E) ∈ H8(G(3, 8),Z)

are all generators. By Theorem 3.1, to understand the structure of the homology groups of dimension 7, 11, we

need to compute the Poincaré duals of p1(E), p21(E).

It is not difficult to compute

a = (p1(E), p1(E)) =
15

2π4
V (G(3, 8)) =

1

3
π4.

Then 1
a ∗p1(E) ∈ H11(G(3, 8),Z) is a generator, and we look for a submanifold M such that

∫
M

1
a ∗p1(E) = 1.

In §7 we define fibre bundle τ : G(3, 8) → S7 , τ(π) = v defined by πA = vA . As v ⊥ π , vπ ∈ G(4, 8) and

vπA = −A . Let CAY = {π ∈ G(4, 8) | πA = −A} , called the Cayley submanifold of G(4, 8). Then we have a

fibre bundle µ : G(3, 8) → CAY, π 7→ vπ , with fibre S3 = G(3, 4). Let ASSOC = {ē1e2e3e4 | e2e3e4A = ē1A} ,
where ē1 = (1, 0, · · · , 0). Then M = µ−1(ASSOC) is a 11-dimensional submanifold of G(3, 8).

Let ē1, e2, · · · , e8 be G2 frame fields on R8 , and ASSOC be generated by ē1e2e3e4 . Represent the

elements of µ−1(ē1e2e3e4) by ẽ2ẽ3ẽ4, τ(ẽ2ẽ3ẽ4) = ẽ1 ; then

ẽ1ẽ2ẽ3ẽ4 = ē1e2e3e4.

Let d(ẽ2ẽ3ẽ4) =
4∑

i=2

ω̃1
i Ẽi1 +

4∑
i=2

8∑
α=5

ω̃α
i Ẽiα , ds2M =

∑
i

(ω̃1
i )

2 +
∑
i,α

(ω̃α
i )

2 be the metric on M .

Let ẽ1 = λ1ē1 +
4∑

i=2

λiei, dẽ1 =
4∑

i=2

ω̃i
1ẽi +

8∑
α=5

ω̃α
1 eα and d(e2e3e4) =

∑
i,α

ωα
i Eiα . It is easy to see

ω̃α
1 =

4∑
i=2

λiω
α
i .

4∑
i=2

(ω̃i
1)

2 is the metric on the fibres of µ : M → ASSOC and ⟨d(e2e3e4), d(e2e3e4)⟩ =
∑

(ωα
i )

2
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is the metric on ASSOC . From ⟨ē1Eiα, eβ ẽ2ẽ3ẽ4⟩ = λiδαβ we have

⟨ē1d(e2e3e4), (dẽ1)ẽ2ẽ3ẽ4⟩ = ⟨
∑

ωα
i ē1Eiα,

∑
λjω

β
j eβ ẽ2ẽ3ẽ4⟩ =

∑
α

(
∑
i

λiω
α
i )

2.

Hence ∑
(ω̃α

i )
2 = ⟨ẽ1d(ẽ2ẽ3ẽ4), ẽ1d(ẽ2ẽ3ẽ4)⟩

= ⟨ē1d(e2e3e4)− (dẽ1)ẽ2ẽ3ẽ4, ē1d(e2e3e4)− (dẽ1)ẽ2ẽ3ẽ4⟩

=
∑
i,α

(ωα
i )

2 +
∑

(ω̃α
1 )

2 − 2
∑
α

(
∑
i

λiω
α
i )

2

=
∑
i,α

(ωα
i )

2 −
∑
α

(
∑
i

λiω
α
i )

2.

Then the metric on M can be represented by

ds2M =
∑
i,α

(ωα
i )

2 −
∑
α

(
∑
i

λiω
α
i )

2 +
4∑

i=2

(ω̃i
1)

2.

For fixed ẽ2ẽ3ẽ4 of M , we can choose G2 frame fields ē1, e2, · · · , e8 such that ẽ1 = λ1ē1 + λ2e2 . By

ω5
4 = −ω7

2 − ω6
3 , ω

6
4 = ω8

2 + ω5
3 , ω

7
4 = ω5

2 − ω8
3 , ω

8
4 = −ω6

2 + ω7
3 ,

we have

dVM =
1

9
(1 + 2λ21)

2ω̃2
1ω̃

3
1ω̃

4
1µ

∗dVASSOC .

We can show that
∫
S3(1 + 2λ21)

2dVS3 = 5π2 ; then V (M) = 2
3π

6.

Lemma 8.1
∫
M

3
π4 ∗p1(E) = 1 . Then [M ] and 3

π4 ∗p1(E) are dual generators of H8(G(3, 8),Z), H8(G(3, 8),Z)
respectively.

Proof By Theorem 3.1, the integration
∫
M

1
a ∗ p1(E) is an integer. On the other hand, 2π2p1(E) is a

calibration on G(3, 8) with comass 4
3 ; see [7]; then we have∣∣∣∣∫

M

1

a
∗ p1(E)

∣∣∣∣ ≤ 2

3aπ2
V (M) =

4

3
.

We need to show that
∫
M

1
a ∗ p1(E) ̸= 0.

Let i : CAY → G(4, 8) be the inclusion, µ : G(3, 8) → CAY be a sphere bundle associated with the

induced vector bundle i∗E(4, 8) → CAY , and e(i∗E(4, 8)) = i∗e(E(4, 8)) ∈ H4(CAY,Z) be the Euler class.

The induced bundle (i ◦ µ)∗E(4, 8) → G(3, 8) has a nonzero section, (i ◦ µ)∗e(E(4, 8)) = 0. By Gysin sequence

for the sphere bundle G(3, 8) → CAY , we can show µ∗(
1
a ∗p1(E)), (i∗e(E(4, 8)))2 are 2 generators of H8(CAY ),

where µ∗ : H11(G(3, 8)) → H8(CAY ) is the integration along the fibre. From e2(E(4, 8)) = p2(E(4, 8)), we

have e2(E(4, 8))|G(3,7) = 0; then
∫
ASSOC

(i∗e(E(4, 8)))2 = 0. If we also have
∫
ASSOC

µ∗(
1
a ∗ p1(E)) = 0, then
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[ASSOC] = 0 in H8(CAY ). This contradicts the fact that i∗[ASSOC] ̸= 0. Then with a suitable choice of

orientation on M , we have ∫
M

1

a
∗ p1(E) =

∫
ASSOC

µ∗(
1

a
∗ p1(E)) = 1.

2

Finally, we study the H7(G(3, 8)) and H7(G(3, 8)). Let I, J,K be the quaternion structures on R8 = H2

and Sp(2) the symplectic group. As we know Sp(2) is a subgroup of SU(4) ⊂ SO(8); hence Sp(2) is a subgroup

of Spin7 . Let f : S
7 → G(3, 8), and f(v) = IvJvKv . By Iē1Jē1Kē1A = ē2ē3ē4A = ē1A and Sp(2) acting on

S7 transitively, we have IvJvKvA = vA for any v ∈ S7 , τ(f(v)) = v .

Lemma 8.2 b = (p21(E), p21(E)) = 5
2 .

Proof By computation, we have

p21(E) =
1

2π4
{
∑
i<j

∑
α<β<γ<τ

3ωα
i ω

α
j ω

β
i ω

β
j ω

γ
i ω

γ
j ω

τ
i ω

τ
j

+
∑
j ̸=k

∑
α<β,γ<τ

ωα
i ω

α
j ω

β
i ω

β
j ω

γ
i ω

γ
kω

τ
i ω

τ
k},

i, j, k = 2, 3, 4, α, β, γ, τ = 1, 5, 6, 7, 8.

Then

b = (p21(E), p21(E)) =
1

4π8
(9 · 3 · C4

5 + 3 · C2
5 · C2

3 )V (G(3, 8)) =
5

2
.

2

p21(E) ∈ H8(G(3, 8),Z) is a generator, by Theorem 3.1, 1
b ∗ p21(E) ∈ H7(G(3, 8),Z) is a generator.

Lemma 8.3 2
5

∫
S7 f

∗ ∗ p21(E) = 1 . Then [f(S7)] and 2
5 ∗ p21(E) are dual generators of H7(G(3, 8),Z) and

H7(G(3, 8),Z) respectively.

Proof Let e1, e2 = Ie1, e3 = Je1, e4 = Ke1, e5, e6 = Ie5, e7 = Je5, e8 = Ke5 be Sp(2) frame fields on R8 ,

f(e1) = e2e3e4 . The 1 forms ωα
i = ⟨dei, eα⟩, i = 1, 2, 3, 4, α = 5, 6, 7, 8, satisfy

ω5
1 = ω6

2 = ω7
3 = ω8

4 , ω6
1 = −ω5

2 = −ω8
3 = ω7

4 ,

ω7
1 = ω8

2 = −ω5
3 = −ω6

4 , ω8
1 = −ω7

2 = ω6
3 = −ω5

4 .

We have

∗ω5
2ω

5
3ω

6
2ω

6
3ω

7
2ω

7
3ω

8
2ω

8
3 |f(S7) = ω1

2ω
1
3ω

1
4ω

5
4ω

6
4ω

7
4ω

8
4 |f(S7) = ω1

2ω
1
3ω

1
4ω

1
5ω

1
6ω

1
7ω

1
8 = dVS7 ,

∗ω1
2ω

1
3ω

6
2ω

6
3ω

7
2ω

7
3ω

8
2ω

8
3 |f(S7) = −ω5

2ω
5
3ω

5
4ω

1
4ω

6
4ω

7
4ω

8
4 |f(S7) = 0,

∗ω5
2ω

5
3ω

6
2ω

6
3ω

7
2ω

7
4ω

8
2ω

8
4 |f(S7) = ω1

2ω
1
3ω

1
4ω

5
4ω

6
4ω

7
3ω

8
3 |f(S7) = dVS7 ,

∗ω1
2ω

1
3ω

6
2ω

6
3ω

7
2ω

7
4ω

8
2ω

8
4 |f(S7) = −ω5

2ω
5
3ω

5
4ω

1
4ω

6
4ω

7
3ω

8
3 |f(S7) = 0, · · · .
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Then

1

b
f∗ ∗ p21(E) =

2

5
· 1

2π4
(3 · 3 + 3 · 2)dVS7 =

3

π4
dVS7 ,

2

5

∫
S7

f∗ ∗ p21(E) = 1.

2

Obviously, we also have
∫
f(S7)

τ∗ 3
π4 dVS7 = 1; then

[τ∗
3

π4
dVS7 ] =

2

5
∗ p21(E) ∈ H7(G(3, 8)).

Theorem 8.4 (1) The Poincaré dual of p1(E) is [M ] and the Poincaré dual of 3
π4 ∗ p1(E) is [CP 2] ;

(2) The Poincaré dual of p2(F ) = p21(E) is [f(S7)] and the Poincaré dual of 2
5 ∗ p21(E) is [ASSOC] .

9. The case of G(4, 8)

Let E = E(4, 8), F = F (4, 8) be canonical vector bundles on Grassmann manifold G(4, 8). We have

pt(G(4, 8)) = 1 + 3t4 + 4t8 + 3t12 + t16,

e(E)e(F ) = 0, p1(E) = −p1(F ), p2(E) = e2(E), p2(F ) = e2(F ),

p21(E) = p2(E) + p2(F ), p1(E)p2(E) = p1(E)p2(F ) =
1

2
p31(E),

p21(E)e(E) = e3(E), p21(F )e(F ) = e3(F ).

By the method used in §4, we can show e(E⊗F ) = 6e4(E) = 6e4(F ). Then by
∫
G(4,8)

e(E⊗F ) = χ(G(4, 8)) =

12, we have ∫
G(4,8)

e4(E) =

∫
G(4,8)

e4(F ) = 2.

We first study the cases of 4 and 12. Under the star operator ∗ : G(4, 8) → G(4, 8), ∗CP 2 is a

submanifold of G(4, 8). From CP 2 = GC(1, 3) ⊂ G(4, 8), we have ∗CP 2 = GC(2, 3). The following table

computes the integration of the characteristic classes on the submanifolds of G(4, 8).

CP 2 ∗CP 2 G(2, 4) G(1, 5) G(4, 5) CP 2 HP 1

e(E) 0 1 0 0 2 0 −1
e(F ) 1 0 0 2 0 −1 1
p1(E) 1 −1 2 0 0 1 2

Note that det

 0 1 0
1 0 0
1 −1 2

 = −2, as proof of Theorem 5.5, we can show e(E), e(F ), p1(E) ∈

H4(G(4, 8),Z) or CP 2, ∗CP 2, G(2, 4) ∈ H4(G(4, 8),Z) are the generators.
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By Proposition 2.2, V (G(4, 8)) = 8
135π

8 and we can compute

a = (e(E), e(E)) = (e(F ), e(F )) =
1

2
(p1(E), p1(E)) =

4

15
π4,

(e(E), e(F )) = (e(E), p1(E)) = (e(F ), p1(E)) = 0.

In the last section we have Cayley submanifold CAY = {π ∈ G(4, 8) | πA = −A} of G(4, 8). The Lie group

Spin7 acts on CAY transitively. Let e1, e2, · · · , e8 be Spin7 frame fields on R8 and then CAY be generated

by e1e2e3e4 . By the equations listed in the proof of Lemma 7.3, we have

d(e1e2e3e4) =
∑

ωα
i Eiα

= ω5
1(E15 + E48) + ω6

1(E16 + E47) + ω7
1(E17 − E46) + ω8

1(E18 − E45)

+ω5
2(E25 + E47) + ω6

2(E26 − E48) + ω7
2(E27 − E45) + ω8

2(E28 + E46)

+ω5
3(E35 + E46) + ω6

3(E36 − E45) + ω7
3(E37 + E48) + ω8

3(E38 − E47).

Then the induced metric is

ds2CAY = (ω5
1 − ω6

2)
2 + (ω5

1 + ω7
3)

2 + (ω6
2 − ω7

3)
2

+(ω6
1 + ω5

2)
2 + (ω6

1 − ω8
3)

2 + (ω5
2 − ω8

3)
2

+(ω7
1 − ω5

3)
2 + (ω7

1 − ω8
2)

2 + (ω8
2 + ω5

3)
2

+(ω8
1 + ω7

2)
2 + (ω8

1 + ω6
3)

2 + (ω7
2 + ω6

3)
2.

By (ω5
1 − ω6

2)(ω
5
1 + ω7

3)(ω
6
2 − ω7

3) = 2ω5
1ω

7
3ω

6
2 , · · · , we get

dVCAY = 16ω5
1ω

5
2ω

5
3 · · · ω8

1ω
8
2ω

8
3 .

As shown in [7], 2π2p1(E) is a calibration on G(4, 8) with comass 3
2 and CAY is a calibrated submanifold

of 2π2 ∗ p1(E); then

2π2 ∗ p1(E)|CAY =
3

2
dVCAY .

By triality transformation, we can show that CAY is isometric to G(3, 7); then V (CAY ) = V (G(3, 7)) = 16π6

45 ;

see [14]. This shows ∫
CAY

1

2a
∗ p1(E) =

∫
CAY

45

32π6
dVCAY =

1

2
.

By Theorem 3.1, e(E), e(F ), p1(E) cannot be the generators of H4(G(4, 8),Z). We have proved

Lemma 9.1 CP 2, ∗CP 2, G(2, 4) are the generators of H4(G(4, 8),Z) , and the dual generators of H4(G(4, 8),Z)
are e(F ), e(E), 12 (p1(E) + e(E)− e(F )) , respectively.

The inner product of e(E), e(F ), 12 (p1(E) + e(E)− e(F )) forms a matrix

A =
4π4

15

 1 0 1
2

0 1 − 1
2

1
2 −1

2 1

 , A−1 =
15

4π4

 3
2 − 1

2 −1
−1

2
3
2 1

−1 1 2

 .
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Lemma 9.2 (1) ∗e(E) = 2π4

15 e
3(E), ∗e(F ) = 2π4

15 e
3(F ), ∗p1(E) = 2π4

15 p
3
1(E);

(2) 1
2e

3(E)− 1
4p

3
1(E), 12e

3(F ) + 1
4p

3
1(E), 12p

3
1(E) ∈ H12(G(4, 8),Z) are the generators.

Proof ∗e(E), ∗e(F ), ∗p1(E) and e3(E), e3(F ), p31(E) are 2 generators of the cohomology group H12(G(4, 8)),

and they are all the harmonic forms on G(4, 8). Then e3(E), e3(F ), p31(E) can be represented by ∗e(E), ∗e(F ), ∗p1(E).

Assuming e3(E) = λ∗e(E)+µ∗e(F )+ν ∗p1(E), by e(F )∧∗e(E) = 0, e(F )∧∗p1(E) = 0, we have µ = ν = 0,

2 =

∫
G(4,8)

e(E) ∧ e3(E) = λ

∫
G(4,8)

e(E) ∧ ∗e(F ) = λ
4π4

15
.

Then ∗e(E) = 2π4

15 e
3(E). The other 2 equalities can be proved similarly.

Then

(∗e(E), ∗e(F ), ∗1
2
(p1(E) + e(E)− e(F )))A−1

= (
1

2
(e3(E)− 1

2
p31(E)),

1

2
(e3(F ) +

1

2
p31(E)),

1

2
p31(E)).

2

Lemma 9.3 The following table computes the integration of the characteristic classes on the submanifolds of

G(4, 8) in dimension 12.

G(4, 7) G(3, 7) CAY
e3(E) 2 0 −1
e3(F ) 0 2 1
p31(E) 0 0 2

Proof The second column follows from
∫
G(4,7)

e3(E) =
∫
G(3,7)

e3(F ) = 2 and e(F )|G(4,7) = 0, p31(E) =

2p1(E)p2(F ) = 2p1(E)e2(F ). The third column can be proved similarly. For the fourth column, we have

proved
∫
CAY

1
2a ∗ p1(E) = 1

2 ; then
∫
CAY

p31(E) = 2. By computing ∗e(E)|CAY , ∗e(F )|CAY , we can show∫
CAY

e3(E) = −1 and
∫
CAY

e3(F ) = 1. 2

Theorem 9.4 (1) e(E), e(F ), 12 (p1(E) + e(E) − e(F )) ∈ H4(G(4, 8),Z) are the generators, and their dual

generators are [CP 2], [∗CP 2], [G(2, 4)] ∈ H4(G(4, 8),Z) ;

(2) 1
2e

3(E), 12e
3(F ), 12p

3
1(E) and [G(4, 7)], [G(3, 7)], [CAY ] are the generators of H12(G(4, 8),Z) and

H12(G(4, 8),Z) , respectively;

(3) The Poincaré duals of e(E), e(F ), 12 (p1(E) + e(E)− e(F )) are

[G(4, 7)], [G(3, 7)], [CAY ] + [G(4, 7)]− [G(3, 7)]

respectively.
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Proof By Lemma 9.2, 1
2e

3(E) − 1
4p

3
1(E), 12e

3(F ) + 1
4p

3
1(E), 12p

3
1(E) are the generators of H12(G(4, 8),Z).

Then 1
2e

3(E), 12e
3(F ), 12p

3
1(E) are also the generators of H12(G(4, 8),Z). 2

By Theorem 3.1, we can compute the Poincaré duals of

1

2
e3(E)− 1

4
p31(E),

1

2
e3(F ) +

1

4
p31(E),

1

2
p31(E).

By Theorem 9.4, 1
2 (p1(E)+e(E)−e(F ))e(E) = 1

2 (p1(E)e(E)+e2(E)) and 1
2 (p1(E)e(F )−e2(F )), 1

2 (p1(E)e(E)−

e2(E)), 1
2 (p1(E)e(F ) + e2(F )) are integral cocycles. The submanifolds ASSOC, ˜ASSOC defined in §7 are

also the submanifolds of G(4, 8); then ∗ASSOC, ∗ ˜ASSOC are submanifolds of G(4, 8). The following table

can be proved by Lemma 7.4.

ASSOC ˜ASSOC ∗ASSOC ∗ ˜ASSOC
1
2e

2(F ) + 1
2p1(E)e(F ) 1 0 0 0

1
2e

2(F )− 1
2p1(E)e(F ) 0 1 0 0

1
2e

2(E) + 1
2p1(E)e(E) 0 0 1 0

1
2e

2(E)− 1
2p1(E)e(E) 0 0 0 1

Theorem 9.5 The characteristic classes

1

2
e2(F ) +

1

2
p1(E)e(F ),

1

2
e2(F )− 1

2
p1(E)e(F ),

1

2
e2(E) +

1

2
p1(E)e(E),

1

2
e2(E)− 1

2
p1(E)e(E)

are the generators of H8(G(4, 8),Z) . Their Poincaré duals are

[ASSOC], [ ˜ASSOC], [∗ASSOC], [∗ ˜ASSOC]

respectively.

Proof To see that the Poincaré dual of ξ = 1
2 (e

2(F ) + p1(E)e(F )) is ASSOC , we want to show that for any

η ∈ H8(G(4, 8)) we have
∫
G(4,8)

ξ∧η =
∫
ASSOC

η . We can take η = 1
2 (e

2(F )±p1(E)e(F )), 1
2 (e

2(E)±p1(E)e(E))

to verify this equation. 2

By R8 = R3 ⊕ R5 , we see the product Grassmann G(2, 3) × G(2, 5), G(1, 3) × G(3, 5) can imbedded in

G(4, 8) and we have

G(4, 6) G(2, 6) G(2, 3)×G(2, 5) G(1, 3)×G(3, 5)
e2(E) 2 0 0 0
e2(F ) 0 2 0 0

p1(E)e(E) 0 0 4 0
p1(E)e(F ) 0 0 0 4

Then
G(4, 6), G(2, 6), G(2, 3)×G(2, 5), G(1, 3)×G(3, 5) ∈ H8(G(4, 8),R)
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and

e2(E), e2(F ), p1(E)e(E), p1(E)e(F ) ∈ H8(G(4, 8),R)

are also the generators.

As an application, we consider the immersion f : M → R8 of a compact oriented 4-dimensional manifold,

with g : M → G(4, 8) as its Gauss map. We have

g∗[M ] =
1

2
χ(M)[G(4, 5)] + λ[G(1, 5)] +

3

2
τ(M)[G(2, 4)],

where λ = 1
2

∫
M
g∗e(F (4, 8)) and τ(M) = 1

3

∫
M
g∗p1(E(4, 8)) = 1

3

∫
M
p1(TM) is the signature of M . λ = 0 if

f is an imbedding.

If g is the Gauss map of immersion M in R7 or R6 , we have

g∗[M ] =
1

2
χ(M)[G(4, 5)] +

3

2
τ(M)[G(2, 4)].

10. The cohomology groups on ASSOC

The submanifold ASSOC ≈ G2/SO(4) of Grassmann manifold G(3, 7) is important in the theory of calibra-

tions; see [7,9]. In [6] Borel and Hirzebruch studied the characteristic classes on homogeneous spaces, and they

computed the cohomology of ASSOC . In what follows we use Gysin sequence to study the cohomology of

ASSOC .

As §7, let G(2, 7) and G(3, 7) be Grassmann manifolds on R7 ⊂ R8 generated by ē2, · · · , ē8 , and S6 ⊂ R7

the unit sphere. There is a fibre bundle τ1 : G(2, 7) → S6 defined by πA = ē1vA, τ1(π) = v , where A ∈ Cℓ8

is defined in §7. For any G ∈ G2 , we have the following commutative diagram

G(2, 7)
G−→ G(2, 7)

τ1 ↓ ↓ τ1
S6 G−→ S6.

The fibre τ−1
1 (ē2) = {v ∧ Jv | v ∈ S6, v ⊥ ē2} ≈ CP 2 ; see [10].

Then for any π ∈ G(2, 7), v = τ1(π), v ∧ π ∈ ASSOC . This defines the map

τ2 : G(2, 7) → ASSOC, π 7→ v ∧ π.

For any e2e3e4 ∈ ASSOC, e2e3e4A = ē1A , then τ2(e3e4) = e2e3e4 . This shows

Lemma 10.1 τ2 : G(2, 7) → ASSOC is a fibre bundle with fibre G(2, 3) = S2 .

Let i : ASSOC → G(3, 7) be an inclusion. It is easy to see G(2, 7) is isomorphic to the sphere bundle

S(Ẽ) = {v ∈ Ẽ, |v| = 1} of the induced bundle Ẽ = i∗E(3, 7). Let e(E(3, 7)) ∈ H3(G(3, 7),Z) be the Euler

class of E(3, 7), 2e(E(3, 7)) = 0; see [13] p. 95–103. Then e(Ẽ) = i∗e(E(3, 7)) ∈ H3(ASSOC,Z) is the Euler

class of the induced bundle Ẽ . There is a Gysin exact sequence for the sphere bundle G(2, 7) → ASSOC ,

−→ Hq(ASSOC)
τ∗
2−→ Hq(G(2, 7))

τ2∗−→ Hq−2(ASSOC)

∧e(Ẽ)−→ Hq+1(ASSOC)
τ∗
2−→ Hq+1(G(2, 7)) −→,
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where τ2∗ is the integration along the fibre. The coefficients of the cohomology groups can be R,Z , or Z2 .

Lemma 10.2 e(Ẽ) = i∗e(E(3, 7)) ̸= 0 .

Proof The map τ2∗ : H
q(G(2, 7),Z) → Hq−2(ASSOC,Z) is the integration along the fibre. Let ē1, e2, e3, · · · , e8

be G2 frame fields, and G(2, 7) is generated by e3e4 and τ2(e3e4) = e2e3e4 . Then the Euler class of vector

bundle E(2, 7) can be represented by

e(E(2, 7)) =
1

2π
ω2
3 ∧ ω2

4 +
1

2π

8∑
α=5

ωα
3 ∧ ωα

4

and ω2
3 ∧ ω2

4 is the volume element of the fibre at e3e4 . Then τ2∗(e(E(2, 7)) = 2.

By Gysin sequence, the map τ2∗ : H2(G(2, 7)) → H0(ASSOC) is surjective if e(Ẽ) = 0. This contra-

dicts the fact that τ2∗(e(E(2, 7)) = 2 and e(E(2, 7)) ∈ H2(G(2, 7),Z) is a generator. 2

Then e(E(3, 7)) ∈ H3(G(3, 7),Z) is a nonzero torsion.

Theorem 10.3 The cohomology groups of ASSOC are

Hq(ASSOC,Z2) =

{
Z2, q ̸= 1, 7,
0, q = 1, 7;

Hq(ASSOC,Z) =

 Z, q = 0, 4, 8,
Z2, q = 3, 6,
0, q = 1, 2, 5, 7;

Hq(ASSOC,R) =
{

R, q = 0, 4, 8,
0, q ̸= 0, 4, 8.

Proof G(2, 7) is a Kähler manifold, and the cohomology of G(2, 7) is generated by Euler class e(E(2, 7)).

We prove the case of Z2 coefficients; the other cases are left to the reader. By Gysin sequence, we have

0 = H−2(ASSOC)
∧e(Ẽ)−→ H1(ASSOC)

τ∗
2−→ H1(G(2, 7)) = 0,

0 = H−1(ASSOC)
∧e(Ẽ)−→ H2(ASSOC)

τ∗
2−→ H2(G(2, 7))

τ2∗=0−→ H0(ASSOC)

∧e(Ẽ)−→ H3(ASSOC)
τ∗
2−→ H3(G(2, 7)) = 0.

This shows H1(ASSOC) = 0 and H2(ASSOC) ∼= H2(G(2, 7)), H0(ASSOC) ∼= H3(ASSOC). By

0 = H1(ASSOC)
∧e(Ẽ)−→ H4(ASSOC)

τ∗
2−→ H4(G(2, 7))

τ2∗−→ H2(ASSOC)

and τ2∗ = 0: H4(G(2, 7),Z2) → H2(ASSOC,Z2), we have

H4(ASSOC) ∼= H4(G(2, 7)).

The cases of q = 5, · · · , 8 can be proved similarly. 2
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