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Abstract: We prove that in the pure mapping class group of the 3-punctured projective plane equipped with the

word metric induced by certain generating set, the ratio of the number of pseudo-Anosov elements to the number of all

elements in a ball centered at the identity tends to one, as the radius of the ball tends to infinity. We also compute

growth functions of the sets of reducible and pseudo-Anosov elements.
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1. Introduction

Let G be a group with a finite generating set A . For x ∈ G the length of x with respect to A is defined to

be the minimum number of factors needed to express x as a product of elements of A and their inverses. We

denote it by ||x||A . The word metric on G with respect to A is defined as dA(x, y) = ||xy−1||A for x, y ∈ G .

For a subset X ⊂ G , the growth function of X with respect to A is the function f(z) defined by the power

series
∞∑

n=0

Cnz
n , where the coefficient Cn is equal to the number of elements of length n in X . The density

d(X) of X with respect to A is defined as

d(X) = lim
n→∞

#(B(n) ∩X)

#B(n)
,

where B(n) is the set of elements of G of length at most n (it is the ball of radius n , centered at the identity,

with respect to the word metric induced by A), and # denotes the cardinality.

Let S be a compact surface with a finite set P of distinguished points in the interior of S called

punctures. We denote as Homeo(S, P ) the topological group of all, orientation preserving if S is orientable,

homeomorphisms of S that preserve P and fix the boundary of S pointwise. The mapping class group of (S, P )

is M(S, P ) = π0Homeo(S, P ). Elements of M(S, P ) are isotopy classes of homeomorphisms in Homeo(S, P ).

By the pure mapping class group of (S, P ) we understand in this paper the subgroup PM(S, P ) of M(S, P )

consisting of the isotopy classes of homeomorphisms fixing every puncture and also preserving local orientation

at every puncture. Since the groups M(S, P ) and PM(S, P ) are finitely generated, it makes sense to study

growth functions and densities of their subsets, with respect to various finite generating sets.
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Suppose that ∂S = ∅ and the Euler characteristic of S\P is negative. Let C(S, P ) denote the set of

isotopy classes of simple closed curves on S\P not bounding a disc with less than 2 punctures. The group

M(S, P ) acts on C(S, P ). An element of M(S, P ) is called reducible if it fixes a nonempty finite collection of

pairwise disjoint elements of C(S, P ). An element of M(S, P ) that has infinite order and is not reducible is

called pseudo-Anosov. By the Nielsen–Thurston classification of surface homeomorphisms (see [4, Chapter 13]),

a pseudo-Anosov mapping class can be represented by a pseudo-Anosov homeomorphism h , such that there is

a pair F s, Fu of transverse measured foliations on S , such that h(F s) = λ−1F s and h(Fu) = λFu for some

λ > 1.

In this paper we consider the case when (S, P ) is the projective plane with 3 punctures. The pure

mapping class group PM(S, P ) is free of rank 3. We fix free generators of PM(S, P ) and consider the induced

word metric. We prove the following results.

Theorem 1.1 The growth functions of the sets of reducible and pseudo-Anosov elements in PM(S, P ) are

rational.

We compute these growth functions explicitly.

Theorem 1.2 Let P be the set of pseudo-Anosov elements in PM(S, P ) . Then d(P) = 1 .

Analogous results were proved in [10] in the case when S is the torus, and in [1] for the 4-holed sphere.

Our results, as well as those in [1, 10], give a partial answer to Question 3.14 and confirm Conjecture 3.15 in

[3] in a special case. Similar results on “genericity” of pseudo-Anosovs, in the sense of random walks and not

the word metric, were proved in the papers [6, 7, 8]. This paper seems to be the first in which problems of this

type are considered for a nonorientable surface.

This paper is organised as follows: In Section 2 we give an algebraic characterisation of reducible elements

in the pure mapping class group of the 3-punctured projective plane. In Section 3 we count for each n ≥ 1

the numbers of reducible elements of length n and also determine growth functions of certain sets of reducible

elements. The main results are proved in Section 4.

2. Pure mapping class group of the 3-punctured projective plane

For the rest of this paper let S be the projective plane obtained from the standard unit disc D = {z ∈ C : |z| ≤

1} by identifying antipodal points on ∂D . Let z1, z2, z3 denote the images in S of the points − 3
4 i,

3
4e

πi
6 , 3

4e
5πi
6

respectively. We fix P = {z1, z2, z3} and denote PM(S, P ) simply as PM(S). We also fix the local orientation

at each puncture zi induced by the standard orientation of D .

A simple closed curve γ on S is called nonseparating if S\γ is connected, and separating otherwise. Every

nonseparating curve on S is one-sided, which means that its regular neighbourhood is a Möbius strip. Let µ0

be the image of ∂D in S and let µ1, µ2, µ3 be the images in S of the line segments respectively t, te
2πi
3 , te

πi
3

for t ∈ [−1, 1]. Note that these are one-sided curves. For i = 0, 1, 2, 3 let Di be the disc obtained by cutting

S along µi (D0 = D ) and fix the orientation of Di induced by the local orientation at z1 . For j = 1, 2, 3 let

αj and βj be the separating curves in the Figure. We fix Dehn twists Tαj , Tβj , such that Tαj are right with

respect to the orientation of D0 , Tβ2 and Tβ3 are right with respect to the orientation of D1 , and Tβ1 is right
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Figure. Curves on the 3-punctured projective plane S .

with respect to the orientation of D2 . Then in PM(S) we have the following relations:

(L1) Tα1Tα2Tα3 = 1, (L2) T−1
α1

Tβ2Tβ3 = 1,

(L3) Tα2Tβ1Tβ3 = 1, (L4) Tα3Tβ2T
−1
β1

= 1.

They all follow from the well-known lantern relation between Dehn twists supported on a 4-holed sphere (see

[4, Proposition 5.1]). In the lantern relation one has a product of 3 twists on one side of the equality and a

product of 4 twists about the boundary components of the sphere on the other side. In our situation, however,

the 4 twists are trivial, because they are about curves bounding once-punctured discs and a Möbius band.

Theorem 2.1 ([9, Theorem 7.5]) The group PM(S) is freely generated by Tα1 , Tα2 , Tβ1 .

Since a free group is torsion free, every element of PM(S) is either reducible or pseudo-Anosov.

Lemma 2.2 Let M be the Möbius strip with one puncture p ∈ M . Then PM(M, {p}) is generated by a Dehn

twist about the boundary of M .

Proof Let F be the projective plane obtained from M by gluing a disc with a puncture q along ∂M . Since

every h ∈ Homeo(M, {p}) may be extended by the identity on the disc to h′ ∈ Homeo(F, {p, q}), we have a

homomorphism PM(M, {p}) → PM(F, {p, q}), which fits in the following short exact sequence (see [9, Section

7])

1 → Z → PM(M, {p}) → PM(F, {p, q}) → 1,

where Z is generated by a Dehn twist T∂M . By [5, Corollary 4.6], M(F, {p, q}) is isomorphic to the dihedral

group of order 8, and since PM(F, {p, q}) is a subgroup of index 8, thus it is trivial (note that in [5] a slightly
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different definition of the pure mapping class group of a nonorientable surface is used; its elements are allowed

to reverse local orientation at the punctures). 2

Proposition 2.3 An element of PM(S) is reducible if and only if it fixes an isotopy class of one-sided curves.

Proof Let h be a reducible homeomorphism of S . By definition, there is a set C of disjoint nonisotopic

simple closed curves such that h(C) = C . If C contains a one-sided curve, then since any 2 one-sided curves

on S intersect, C contains only one such curve, and this curve is fixed by h . If C does not contain a one-sided

curve, then it consists of a single separating curve γ . Let E and M be the connected components of the

surface obtained by cutting S along γ , where E is a punctured disc and M is a Möbius strip with at most

one puncture. Clearly h preserves M and E , and since it preserves local orientation at the punctures, it also

preserves orientation of E . It follows that h preserves orientation of γ and changing h by an isotopy we

may assume that it is equal to the identity on γ . Let h′ = h|M . If there is no puncture in M then h′ is

isotopic to the identity on M by an isotopy fixing ∂M (see [2, Theorem 3.4]), while if there is a puncture in

M , then h′ is isotopic to some power of a Dehn twist about ∂M , by Lemma 2.2. In particular h is isotopic to

a homeomorphism fixing a one-sided curve on M . 2

We say that 2 simple closed curves γ1 and γ2 are PM(S)-equivalent if γ1 = h(γ2) for some h ∈
Homeo(S, P ) fixing every puncture and preserving local orientation at every puncture.

Lemma 2.4 Every one-sided simple closed curve on S is PM(S)-equivalent to µi for some i ∈ {0, 1, 2, 3} .

Proof Let γ be a one-sided simple closed curve and let E be the disc obtained by cutting S along γ . Fix

the orientation of E induced by the local orientation at z1 . Let us compare the local orientations at z2 and z3

to the orientation of E . There are 4 cases.

Case 1. The local orientations at z2 and z3 agree with the orientation of E . Then there is an orientation

preserving homeomorphism f : D0 → E , preserving the punctures, which commutes with the gluings giving

back S . Thus f induces h ∈ Homeo(S, P ) such that h(µ0) = γ .

Case 2. The local orientations at z2 and z3 are opposite to the orientation of E . Then there is an

orientation preserving homeomorphism f : D1 → E inducing h ∈ Homeo(S, P ) such that h(µ1) = γ .

Case 3. The local orientation at z3 agrees with the orientation of E , whereas that at z2 is opposite.

Then there is an orientation preserving homeomorphism f : D2 → E inducing h ∈ Homeo(S, P ) such that

h(µ2) = γ .

Case 4. The local orientation at z2 agrees with the orientation of E , whereas that at z3 is opposite.

Then there is h ∈ Homeo(S, P ) such that h(µ3) = γ . 2

The following corollary follows immediately from Proposition 2.3 and Lemma 2.4.

Corollary 2.5 An element of PM(S) is reducible if and only if it is conjugate to an element fixing the isotopy

class of µi for some i ∈ {0, 1, 2, 3} .

For a group G and elements x1, . . . , xk ∈ G we denote by ⟨x1, . . . , xk⟩ the subgroup of G generated by
x1, . . . , xk .

Proposition 2.6 For i = 0, 1, 2, 3 let Si denote the stabiliser in PM(S) of the isotopy class of µi . Then

S0 = ⟨Tα1 , Tα2⟩ , S1 = ⟨Tα1 , Tα2Tβ1⟩ , S2 = ⟨Tα2 , Tβ1⟩ , S3 = ⟨Tα1Tα2 , Tβ1⟩ .
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Proof Fix i ∈ {0, 1, 2, 3} and consider the group PM(Di, P ). Since every homeomorphism of Di equal to

the identity on ∂Di induces a homeomorphism of S , we have a homomorphism φi : PM(Di, P ) → PM(S, P ).

The image of φi is equal to Si , because every homeomorphism of S that fixes µi and preserves local orientation

at the punctures must also preserve orientation of µi , and thus it is isotopic to a homeomorphism equal to the

identity on µi . The group PM(Di, P ) is well known to be isomorphic to the pure braid group on 3 strands,

and it is generated by Dehn twists about 3 curves, each curve surrounding 2 punctures, and each 2 curves

intersecting each other twice (see [4, Chapter 9]). It follows that S0 = ⟨Tα1 , Tα2 , Tα3⟩ , S1 = ⟨Tα1 , Tβ2 , Tβ3⟩ ,
S2 = ⟨Tβ1 , Tα2 , Tβ3⟩ , S3 = ⟨Tβ1 , Tβ2 , Tα3⟩ . By the lantern relations (L1–L4) only 2 twists are needed to generate

Si , and since Tα1Tα2 = T−1
α3

by (L1) and Tα2Tβ1 = T−1
β3

by (L2), the proposition follows. 2

3. Counting some words in the free group of rank 3

Let F = F(a, b, c) be the free group on generators a, b, c . The elements of F are reduced words in the letters

a, a−1, b, b−1, c, c−1 . By a word in F we always mean a reduced word. A word is cyclically reduced if its first

letter is different from the inverse of its last letter. The number of letters in a word w ∈ F is the length of w

denoted as |w| .
The following well-known theorem is the solution to the conjugacy problem in a free group.

Theorem 3.1 Every element of a free group is conjugate to a cyclically reduced word. Two cyclically reduced

words are conjugate if and only if one is a cyclic permutation of the other.

By Theorem 2.1, there is an isomorphism ρ : F → PM(S) given by ρ(a) = Tα1 , ρ(b) = Tα2 , ρ(c) = Tβ1 ,

which is an isometry with respect to the word metrics induced by the generating sets {a, b, c} of F and

{Tα1 , Tα2 , Tβ1} of PM(S). Via this isomorphism we identify F with PM(S).

For w1, . . . , wk ∈ F we denote by C(w1, . . . , wk) the set of elements of F that are conjugate to elements

of ⟨w1, . . . , wk⟩ , and by C(w1, . . . , wk;n) the subset of C(w1, . . . , wk) consisting of elements of length n .

We also introduce the following notation:

An = #C(b;n),

Bn = #C(a, b;n),

Cn = #C(abc;n),

Dn = #(C(a, bc;n)\(C(a;n) ∪ C(bc;n))).

Lemma 3.2 Let Rn be the number of reducible elements of length n in F . Then, for n ≥ 1

Rn = 2Bn + 2Dn −An − Cn.

Proof From Corollary 2.5 and Proposition 2.6 we have

Rn = #(C(a, b;n) ∪ C(b, c;n) ∪ C(a, bc;n) ∪ C(ab, c;n)).

It follows from Theorem 3.1 that
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C(a, b) ∩ C(b, c) = C(b), C(a, b) ∩ C(a, bc) = C(a)

C(a, b) ∩ C(ab, c) = C(ab), C(b, c) ∩ C(a, bc) = C(bc)

C(b, c) ∩ C(ab, c) = C(c), C(a, bc) ∩ C(ab, c) = C(abc).

We prove the last equality; the first 5 are easily verified. Let w ∈ C(a, bc) ∩ C(ab, c) be nontrivial. Then w is

conjugate to a word

w1 = ax1(bc)x2 · · · ax2k−1(bc)x2k ,

where xi are integers, and we may assume that w1 is cyclically reduced. Analogously, w is conjugate to a

cyclically reduced word of the form

w2 = (ab)y1cy2 · · · (ab)y2l−1cy2l .

By Theorem 3.1, w1 is a cyclic permutation of w2 . It follows that w1 is neither a power of a nor a power

of bc . Therefore we can assume xi ̸= 0 for 1 ≤ i ≤ 2k and k ≥ 1. By replacing w by w−1 if necessary, we

may assume x1 > 0. Note that none of the words aa , ac−1 , cb , ca−1 can appear as a sub-word of a cyclic

permutation of w2 . It follows that xi = 1 for 1 ≤ i ≤ 2k ; hence w1 = (abc)k and w ∈ C(abc). We have shown

that C(a, bc) ∩ C(ab, c) ⊆ C(abc), and the opposite inclusion is obvious.

For n ≥ 1 we have

Rn = #C(a, b;n) + #C(b, c;n) + #(C(a, bc;n)\(C(a;n) ∪ C(bc;n)))

+ #(C(ab, c;n)\(C(c;n) ∪ C(ab;n)))−#C(b;n)−#C(abc;n).

The lemma follows because #(C(ab, c;n)\(C(c;n) ∪ C(ab;n))) = Dn and #C(b, c;n) = Bn . 2

Lemma 3.3 For k ≥ 0 we have A2k+1 = A2k+2 = 2 · 5k. The growth function of C(b) with respect to the

generators a, b, c is f1(x) =
1+2x−3x2

1−5x2 .

Proof Every element of C(b) can be expressed uniquely in the form w = ubiu−1 , where i ∈ Z and u is a word

whose last letter is not b±1 . Let us fix k ≥ 0. Observe there is a bijection C(b; 2k + 1) → C(b; 2k + 2) defined

as ubiu−1 7→ ubi+1u−1 . Thus A2k+1 = A2k+2 . Let us count the words in C(b; 2k + 1). Every such word is of

the form w = ubε(2i+1)u−1 , where u is a word whose last letter is not b±1 of length k − i for 0 ≤ i ≤ k and

ε ∈ {−1, 1} . For a fixed i , there are 2 choices for ϵ , and if i < k then there are 4 · 5k−i−1 choices for u . Thus

A2k+1 = 2 +
k−1∑
i=0

2 · 4 · 5k−i−1 = 2 + 8 · 5k−1
k−1∑
i=0

5−i = 2 · 5k.

Now we can compute the growth function.

f1(x) = 1 +

∞∑
k=0

(A2k+1x
2k+1 +A2k+2x

2k+2) = 1 + (1 + x)

∞∑
k=0

2 · 5kx2k+1

= 1 + (1 + x)2x

∞∑
k=0

(5x2)k = 1 +
2x(1 + x)

1− 5x2
=

1 + 2x− 3x2

1− 5x2
.

2
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Lemma 3.4 For k ≥ 0 we have B2k+1 = 1
3B2k+2 = 6 · 9k − 2 · 5k . The growth function of C(a, b) with respect

to the generators a, b, c is

f2(x) = 1 +
6x

1− 3x
− 2x(1 + 3x)

1− 5x2
.

Proof Every element of C(a, b) is either a word in ⟨a, b⟩ or it is of the form ucεwc−εu−1 , where w ∈ ⟨a, b⟩ ,
ε ∈ {−1, 1} , and u is a word whose last letter is not c−ε . For i ≥ 1 there are 4 · 3i−1 words of length i in

⟨a, b⟩ . It follows that B2k+2 = 3B2k+1 for k ≥ 0. Let us count words of the form ucεwc−εu−1 of length 2k+1.

Suppose that |w| = 2i+ 1 for 0 ≤ i ≤ k− 1. Then |u| = k− i− 1 and we have 4 · 32i choices for w , 2 choices

for ε , and 5k−i−1 choices for u . Thus

B2k+1 = 4 · 32k +
k−1∑
i=0

8 · 32i · 5k−i−1 = 4 · 32k + 8 · 5k−1
k−1∑
i=0

(
9

5

)i

=

= 6 · 9k − 2 · 5k.

f2(x) = 1 +

∞∑
k=0

B2k+1x
2k+1 + 3B2k+1x

2k+2

= 1 + (1 + 3x)x
∞∑
k=0

(6 · 9k − 2 · 5k)x2k

= 1 + (1 + 3x)x

(
6

1− 9x2
− 2

1− 5x2

)
= 1 +

6x

1− 3x
− 2x(1 + 3x)

1− 5x2
.

2

Lemma 3.5 For k ≥ 0 we have C6k+3 = C6(k+1) = 6
31 (5

3k+2 + 6) , C6k+5 = C6(k+1)+2 = 5C6k+3 − 6 ,

C6(k+1)+1 = C6(k+1)+4 = 5C6k+5 . The growth function of C(abc) with respect to the generators a, b, c is

f3(x) = 1 +
6x3

31

(
25(1 + x3)(1 + 5x2 + 25x4)

1− (5x2)3
+

6− x2 − 5x4

1− x3

)
.

Proof Every nontrivial element of C(abc) can be expressed uniquely in the form uviu−1 , where i ≥ 1,

v ∈ {(abc)±1, (bca)±1, (cab)±1} and u is a word whose last letter is neither equal to the last letter of v nor to

the inverse of the first letter of v .

Let us count the elements of C(abc; 6k + 3). Every such element is of the form uv2i+1u−1 , where u, v

are as above, 0 ≤ i ≤ k , and |u| = 3(k − i). There are 6 choices for v and if i < k then there are 4 · 53(k−i)−1

choices for u . Thus

C6k+3 = 6 + 24

k−1∑
i=0

53(k−i)−1 = 6 + 24 · 53k−1
k−1∑
i=0

5−3i =
6

31
(53k+2 + 6).

Every element of C(abc; 6k + 5) is of the form αwα−1 for w ∈ C(abc; 6k + 3), where α is a single

letter. For each w there are 4 choices for α if w is cyclically reduced, and 5 choices otherwise. There
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are 6 cyclically reduced words in C(abc; 6k + 3), namely v2k+1 for v ∈ {(abc)±1, (bca)±1, (cab)±1} ; hence

C6k+5 = 5C6k+3 − 6 = 6
31 (5

3k+3 − 1).

Similarly, every element of C(abc; 6k + 7) is of the form αwα−1 for w ∈ C(abc; 6k + 5), where α is a

single letter. Since the words in C(abc; 6k + 5) are not cyclically reduced, hence C6k+7 = 5C6k+5 .

Observe that the mapping uviu−1 7→ uvi+1u−1 defines bijections C(abc; 6k + 3) → C(abc; 6k + 6),

C(abc; 6k + 5) → C(abc; 6k + 8) and C(abc; 6k + 7) → C(abc; 6k + 10). Thus C6k+3 = C6k+6 , C6k+5 = C6k+8

and C6k+7 = C6k+10 .

Since C1 = C2 = C4 = 0, thus

f3(x) = 1 +
∞∑
k=0

C6k+3(x
6k+3 + x6k+6)

+
∞∑
k=0

C6k+5(x
6k+5 + x6k+8 + 5x6k+7 + 5x6k+10)

= 1 + x3(1 + x3)
∞∑
k=0

C6k+3x
6k + x5(1 + x3)(1 + 5x2)

∞∑
k=0

C6k+5x
6k.

We have
∞∑
k=0

C6k+3x
6k =

6

31

∞∑
k=0

(53k+2 + 6)x6k =
6

31

(
25

1− (5x2)3
+

6

1− x6

)
∞∑
k=0

C6k+5x
6k =

6

31

∞∑
k=0

(53k+3 − 1)x6k =
6

31

(
125

1− (5x2)3
− 1

1− x6

)
It follows that f3(x) can be expressed by the formula given in the lemma. 2

Lemma 3.6 Let En denote the number of cyclically reduced words in C(a, bc;n)\(C(a;n)∪C(bc;n)) . Then for

n ≥ 0 we have

En+3 = En+2 + En+1 + 3En + 8 + (−1)n4. (3.1)

Proof Let us define some subsets of C(a, bc;n):
En – the set of cyclically reduced words in C(a, bc;n)\(C(a;n) ∪ C(bc;n)),
Xn – the set of words of length n , of the form aε1u(bc)ε2 ,

Xn – the set of words of length n , of the form (bc)ε1uaε2 ,

Yn – the set of words of length n , of the form aε1uaε2 ,

where εi ∈ {−1, 1} for i = 1, 2 and u ∈ ⟨a, bc⟩ . Note that Xn and Xn are subsets of En , but Yn is not, as

it contains words that are not cyclically reduced, and powers of a . The mapping w 7→ w−1 defines a bijection

Xn → Xn . We define Xn = #Xn = #Xn , Yn = #Yn .

Every element of Xn+2 is of the form w(bc)ε for w ∈ Xn ∪ Yn . Conversely, if n > 0, then for

w ∈ Xn there is 1 element of the form w(bc)ε in Xn+2 , while for w ∈ Yn there are 2 such elements. Thus

Xn+2 = Xn + 2Yn . Similarly we have Yn+1 = Yn + 2Xn . Now we can obtain a recursive equation for Xn as

follows: Xn+3 −Xn+1 = 2Yn+1 = 2Yn + 4Xn = Xn+2 −Xn + 4Xn . Thus for n ≥ 1 we have

Xn+3 = Xn+2 +Xn+1 + 3Xn. (3.2)
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For n ≥ 1 we define a mapping ι : En → En+2 . Let w ∈ En . By the definition of En and Theorem 3.1, w is a

word of length n in ⟨a, bc⟩ , possibly cyclically permuted, that is neither a power of a nor a power of bc . We

set

ι(w) =


aεua2ε if w = aεu

(bc)εu(bc)ε if w = (bc)εu

cubcb if w = cub

b−1u(bc)−1c−1 if w = b−1uc−1,

where ε ∈ {−1, 1} . Note that ι is injective and

En+2 = ι(En) ∪ Xn+2 ∪ Xn+2 ∪ Z ∪ U ,

where Z is the set of words of the form aε1u(bc)ε2aε1 , and U is the set of words of the form cuaε1b or

b−1uaε1c−1 , where εi ∈ {−1, 1} for i = 1, 2 and u ∈ ⟨a, bc⟩ . There are bijections Xn+1 → Z given

by aε1u(bc)ε2 7→ aε1u(bc)ε2aε1 , and Xn+2 → U given by bcuaε 7→ cuaεb , (bc)−1uaε 7→ b−1uaεc−1 . Thus

#Z = Xn+1 , #U = Xn+2 and

En+2 = 3Xn+2 +Xn+1 + En. (3.3)

We have En = Xn = 0 for n ≤ 2, X3 = {aε1(bc)ε2 | ε1, ε2 ∈ {−1, 1}} , X4 = {a2ε1(bc)ε2 | ε1, ε2 ∈ {−1, 1}} ; thus
X3 = X4 = 4, E3 = 12 and E4 = 16. Thus (3.1) holds for n = 0 and n = 1. It is now routine to prove that

(3.1) holds for all n ≥ 0 by induction, using (3.3) and (3.2). 2

Lemma 3.7 For n ≥ 0 we have

Dn+3 = Dn+2 +Dn+1 + 3Dn + φ(n), (3.4)

where φ(2k+1) = 4 · 5k , φ(2k) = 12 · 5k for k ≥ 0 . The growth function of C(a, bc)\(C(a)∪C(bc)) with respect

to the generators a, b, c is

f4(x) =
4x3(3 + x)

(1− 5x2)(1− x− x2 − 3x3)
.

Proof Let Dn = C(a, bc;n)\(C(a;n) ∪ C(bc;n)). Every element of Dn+2 that is not cyclically reduced is of

the form αuα−1 , where α is a letter and u ∈ Dn . Conversely, if n ≥ 1, then for every u ∈ Dn there are 5

elements of the form αuα−1 in Dn+2 if u is not cyclically reduced, or 4 such words if u is cyclically reduced.

Thus Dn+2 − En+2 = 5(Dn − En) + 4En , which gives, for n ≥ 0,

Dn+2 = En+2 − En + 5Dn. (3.5)

We have Dn = En = 0 for n ≤ 2, D3 = E3 = 12 and D4 = E4 = 16. Thus (3.4) holds for n = 0 and n = 1.

It is now routine to prove that (3.4) holds for all n ≥ 0 by induction, using (3.5) and (3.1) from Lemma 3.6.
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Now we can compute the growth function.

f4(x) =

∞∑
n=0

Dnx
n = x3

∞∑
n=0

Dn+3x
n

= x3
∞∑

n=0

(Dn+2 +Dn+1 + 3Dn + φ(n))xn

= xf4(x) + x2f4(x) + 3x3f4(x) + x3
∞∑
k=0

5k(12x2k + 4x2k+1)

= (x+ x2 + 3x3)f4(x) +
4x3(3 + x)

1− 5x2
,

and the lemma is proved. 2

4. Growth functions and density of reducible and pseudo-Anosov elements

In this section we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let f(x) and g(x) denote the growth functions of the sets of reducible and pseudo-Anosov

elements respectively. Since f(x) + g(x) is the growth function of PM(S), we have

f(x) + g(x) = 1 + 6
∞∑

n=1

5n−1xn =
1 + x

1− 5x
.

Let f1(x), f2(x), f3(x), f4(x) be the growth functions computed in Lemmas 3.3, 3.4, 3.5, 3.7. By Lemma 3.2 we

have

f(x) =
∞∑

n=0

Rnx
n = 1 +

∞∑
n=1

(2Bn + 2Dn −An − Cn)x
n

= 1 + 2f2(x) + 2f4(x)− f1(x)− f3(x),

which is a rational function. Since f(x) and f(x) + g(x) are rational, so is g(x). 2

Let f(n) and g(n) be 2 sequences of nonnegative numbers. We write f(n) = Θ(g(n)) if there exist 2

positive numbers c1, c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all but finitely many n .

Lemma 4.1 Let R be the set of reducible elements in PM(S) . Then #(B(n) ∩R) = Θ(3n) .

Proof Since we have the isometry ρ : F → PM(S),

#(B(n) ∩R) =
n∑

k=0

Rk.

Clearly it suffices to show that Rn = Θ(3n). We have Rn > Bn and, by Lemma 3.2, Rn < 2(Bn +Dn). Since

Bn = Θ(3n) by Lemma 3.4, it suffices to show that Dn < 3n . That is easily proved by induction, using (3.4)
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from Lemma 3.7 and the inequality φ(n) ≤ 12 · 3n . 2

Proof of Theorem 1.2. By Lemma 4.1 we have #(B(n) ∩R) = Θ(3n), and since

#B(n) = 1 + 6
n−1∑
k=0

5k =
3 · 5n − 1

2
,

thus d(R) = 0. The result follows, because d(P) = 1− d(R). 2
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