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Abstract: We study the inverse problem of central configuration of collinear general 4- and 5-body problems. A central

configuration for n -body problems is formed if the position vector of each particle with respect to the center of mass

is a common scalar multiple of its acceleration. In the 3-body problem, it is always possible to find 3 positive masses

for any given 3 collinear positions given that they are central. This is not possible for more than 4-body problems in

general. We consider a collinear 5-body problem and identify regions in the phase space where it is possible to choose

positive masses that will make the configuration central. In the symmetric case we derive a critical value for the central

mass above which no central configurations exist. We also show that in general there is no such restriction on the value

of the central mass.
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1. Introduction

Central configurations are one of the most important and fundamental topics in the study of few-body problems.

Therefore, few-body problems in general and central configurations in particular have attracted a lot of attention

over the years [4],[5],[10]. Studies on the central configuration of n -body problems (with n ≥ 4) are limited

due to the greater complexity of problems involving higher numbers of bodies. For n ≥ 4, the main focus of the

available literature is on the restricted problems; see, for example [2],[7], and [9]. This opens up a window to

study the central configuration of a general 5-body problem. Hence, in this present study, we adapt a method

presented in [6] to study the central configuration of general collinear 4- and 5-body problems.

Several methods and restriction techniques have been used to study the few-body problem. For example,

Roberts discussed the relative equilibria for a special case of the 5-body problem in [8], which consists of 4

bodies, i.e. (m1,m2, m3,m4) = (1, 1, 1, 1) at the vertices of a rhombus, with opposite vertices having the same

mass, and a central body, i.e. m5 at −1/4. Roberts showed the existence of a 1-parameter family of degenerate

relative equilibria where the 4 equal masses are positioned at the vertices of a rhombus with the remaining

body located at the center. Albouy and Llibre in [1] discussed the central configurations of the 1+4-body

problem. They kept 4 equal masses on a sphere whose center is the ’big’ mass. They found 4 symmetric central

configurations and proved that they all have at least 1 plane of symmetry.

More recently in [3], Hampton and Jensen showed that in the 5-body problem the number of spatial central

configurations is finite, except for some special cases. Ouyang and Xie in [6] considered the inverse problem
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of central configurations of collinear 4-bodies and identified possible conditions to choose positive masses while

maintaining a central configuration. The authors established an expression for the 4 masses depending on the

position x and the center of mass u , which give central configurations in the collinear 4-body problem. We

model our problem on similar lines and propose a method to derive central configurations for a collinear 5-body

problem. The proposed model has the fifth mass fixed at the center of mass. The rest of the paper is organized

as follows. In Section 2, general equations are derived for the 5-body collinear central configurations. In Section

3, we use these equations to discuss the fully symmetric case of the proposed 5-body problem and derive a

critical value for the central mass above which no central configurations are possible. In Section 4, we discuss

the most general form of the proposed problem and derive its central configuration regions. Conclusions are

given in Section 5.

2. General equations for 5-body collinear central configurations

The classical equation of motion for the n -body problem has the form

mi
d2q⃗i
dt2

=
∑
j ̸=i

mimj (q⃗i − q⃗j)

|q⃗i − q⃗j |3
i = 1, 2, ..., n, (1)

where the units are chosen so that the gravitational constant is equal to one and qi ∈ Rd(1 ≤ d ≤ 3), i = 1, 2, ..., n

represents the positions in Euclidean space Rd of n masses mi .

A central configuration q = (q⃗1, · · · , q⃗n) ∈ Rnd is a particular configuration of the n bodies where the

acceleration vector of each body is proportional to its position vector, and the constant of proportionality is the

same for the n bodies. Therefore, a central configuration is a configuration that satisfies the equation

n∑
j=1,j ̸=i

mj(q⃗j − q⃗i)

|q⃗j − q⃗i|3
= −λ(q⃗i − c⃗), i = 1, 2, ..., n, (2)

where λ is a scalar function that is the same for all particles and

c⃗ =

n∑
i=1

miq⃗i

n∑
i=1

mi

, i = 1, 2, ..., n. (3)

Let us consider 5 collinear bodies of masses, m0,m1,m2,m3 , and m4 . The mass m0 is stationary at the center

of mass of the system. We choose the coordinates for the rest of the 4 bodies as follows:

x1 = −s− 1, x2 = −1, x3 = 1, and x4 = 1 + t where s, t > 0. (4)

Using (2) and (4), we obtain the following equations for central configurations.

m2

s2
+

m0

(1 + s)2
+

m3

(2 + s)2
+

m4

(2 + s+ t)2
= λ(s+ c+ 1), (5)

m0 −
m1

s2
+

m3

4
+

m4

(t+ 2)2
= λ(1 + c), (6)

m0 +
m1

(s+ 2)2
+

m2

4
− m4

t2
= λ(1− c), (7)
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m0

(t+ 1)2
+

m1

(t+ s+ 2)2
+

m2

(t+ 2)2
+

m3

t2
= λ(t− c+ 1). (8)

Let λ = 1. To solve equations (5)–(8) for m1 , m2 , m3 , and m4, we use symbolic calculation in Mathematica.

m1(m0, s, t, c) =
Nm1(m0, s, t, c)

Dm(s, t)
, m2(m0, s, t, c) =

Nm2(m0, s, t, c)

Dm(s, t)
, (9)

m3(m0, s, t, c) =
Nm2(m0, s, t, c)

Dm(s, t)
, m4(m0, s, t, c) =

Nm4(m0, s, t, c)

Dm(s, t)
,

where

Nm1
(m0, s, t, c) = A3A5s

2(t5 − t4(−5 + c)− 4t3(−2 + c)− 4t2(1 + c)

−16t(1 + c)− 16(1 + c) +m0(4t
2 +

(2 + t)3(2 + 3t)

(1 + t)2
)),

Nm2(m0, s, t, c) = 4A4s
2(A3A5(1 + s+ c)− (A3 −A5)(1− c)t2 −A3t

3

+m0(−
A3A5

(1 + s)2
−A5t

2 +
A3t

2

(1 + t)2
)),

Nm3(m0, s, t, c) = 4A5t
2(A3A4(1 + t− c)− (A3 −A4)(1 + c)s2 −A3s

3

+m0(−A4s
2 +

A3s
2

(1 + s)2
− A3A4

(1 + t)2
)),

Nm4(m0, s, t, c) = A3A4t
2(s5 + 16(−1 + c) + 16s(−1 + c) + 4s2(−1 + c)

+4s3(2 + c) + s4(5 + c) +m0(4s
2 +

(2 + s)3(2 + 3s)

(1 + s)2
)),

Dm(s, t) = 256 + 512s+ 384s2 + 128s3 + 16s4 + (512 + 896s+ 576s2

+160s3 + 16s4)t+ (384 + 576s+ 304s2 + 64s3 + 4s4)t2

+(128 + 160s+ 64s2 + 16s3 + 4s4)t3

+(16 + 16s+ 4s2 + 4s3 + s4)t4,

A3 = (s+ t+ 2)2, A4 = (t+ 2)2, A5 = (s+ 2)2.

Equations (9) are the general solutions for masses m1 , m2 , m3 , and m4 with the mass m0 arbitrary. These

equations give regions of central configurations in the stm0 -space for fixed values of c . In other words, given

values of s, t , and m0 , one can find values of m1 , m2 , m3 , and m4 from equations (9), which will make the

configurations central. The values of mi obtained can also become negative, which is not useful for practical

purposes. Therefore, we would like to find regions that will make the masses positive. In the next section we

will analyze the special case where m1 , m4 , and m2 , m3 are symmetric about the center of mass.
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3. Fully symmetric collinear 4- and 5-body problems

Let us consider the s = t case, where m0 is kept stationary at the center of mass. The center of mass is taken

to be at the origin. As a result, the pairs of masses (m1 , m4 ) and (m2 , m3 ) will be symmetric about the

center of mass of the system. Furthermore, it can be shown that for s = t , m1 = m4 and m2 = m3 . Therefore,

we only need to analyze m1 and m2 as a function of m0 ≥ 0 and t > 0. The solutions of masses m1 and m2

derived from equations (9) are given below.

m1 =
N∗

m1
(m0,t)

D∗
m(t)

and m2 =
N∗

m2
(m0,t)

D∗
m(t)

, (10)

where

N∗
m1

(m0,t) = 4t2(2 + t)2(m0

(
16 + 48t+ 52t2 + 28t3 + 7t4

)
(11)

+(1 + t)2
(
−16− 16t− 4t2 + 8t3 + 5t4 + t5

)
),

N∗
m2

(m0,t) = 4t2(2 + t)2(16 + 64t+ 100t2 + 68t3 + 17t4)

−4m0t
2(2 + t)2

(
16 + 16t+ 4t2 + 4t3 + t4

)
, (12)

D∗
m(t) = 256 + 1024t+ 1664t2 + 1408t3 + 656t4 + 160t5

+24t6 + 8t7 + t8. (13)

Lemma 1 Suppose that P1(t) = −16 − 16t− 4t2 + 8t3 + 5t4 + t5. Then for any t > 1.39681, P1(t) is always

positive.

Proof P1(t) is a polynomial of degree 5 in t and the sign of its coefficients changes only once; therefore, by

Descartes’ rule of signs, it can only have 1 real root, which is t = 1.39681. It can easily be shown that for

t > 1.39681, P1(t) is always positive. For example, for t = 1, P1(t) < 0, and for t = 2, P1(t) > 0.

According to equation (13), D∗
m is positive for all values of t > 0. Therefore, we only need to analyze

N∗
m1

and N∗
m2

for m0 ≥ 0 and t > 0.

In equation (11), the term 4t2(2+ t)2 is always positive; therefore, it does not have any effect on the sign

of N∗
m1

. Similarly, the term m0(16 + 48t + 52t2 + 28t3 + 7t4) is also always positive. The only term in N∗
m1

that can become negative is (1 + t)2P1(t). Therefore, by Lemma 1, N∗
m1

will be positive for all m0 ≥ 0 and

t > 1.39681. Hence, m1 will also be positive for m0 ≥ 0 and t > 1.39681. For 0 < t ≤ 1.39681, the positivity

of N∗
m1

and hence m1 is shown in Figure 1a, where m1 is positive on the right side of the curve. It can be

deduced from Figure 1a that m1 is positive for m0 ≥ 1 and t > 0. 2

Following the above procedure, for m2 to be positive, we get the following relationship between m0 and

t :

m0 <

(
16 + 64t+ 100t2 + 68t3 + 17t4

)
(16 + 16t+ 4t2 + 4t3 + t4)

. (14)

Careful analysis of (12) and (14) reveals that for m2 to be positive, m0 must be less than or equal to 17. This

can also be seen in Figure 1b. In the white region of Figure 1b, it is not possible to find positive masses that

will make the configuration central.

The common region where m1 and m2 are both positive is given in Figure 1c.
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Figure 1. a) Solution space where m1 is positive; b) solution space where m2 is positive; c) solution space where both

m1 and m2 are positive.
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Figure 2. a) Solution space for m1 when m0=0 and s = t ; b) solution space for m2 when m0=0 and s = t .

In the special case when m0 = 0, which is the 4-body symmetric case, the expressions for m1 and m2

reduce to

m1 =
4t2(1 + t)2(2 + t)2P1(t)

Dm
, (15)

m2 =
4t2(2 + t)2

(
16 + 64t+ 100t2 + 68t3 + 17t4

)
Dm

. (16)

In this case, the solutions for m1 and m2 are very easy to analyze. The only term in m1 that can become

negative is P1(t). Hence, by Lemma 1, m1 > 0 for t > 1.39681. This is shown numerically in Figure 2a. As

m2 is positive for all values of t (see Figure 2b), both m1 and m2 will be positive for t > 1.39681.

4. General collinear 4- and 5-body problems

In this section, we find regions in the stm0 -space where m1 , m2 , m3 , and m4 are all positive. We will analyze

the 4 masses individually, both analytically and numerically. Finally, an intersection of all 4 regions will be given,

which will show the regions where central configurations are possible for positive masses. In the complement
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of these regions, no central configurations are possible for positive masses. We leave out the analysis of when

m0 = 0, which is the collinear 4-body case of this 5-body problem, as it was discussed in detail by Ouyang and

Xie in [6].

The general solutions for masses m1 , m2 , m3 , and m4 with the mass m0 arbitrary are given by equations

(9) in Section 2. These equations have only one symmetry with s ̸= t. The common denominator Dm(s, t) of

mi (where i = 1, 2, 3, 4) is a polynomial in s and t with positive coefficients. Therefore, Dm(s, t) > 0 for all

s, t > 0. Hence, we only need to analyze the numerators Nmi(m0, s, t, c). We will analyze them one by one.

The only part of Nm1(m0, s, t, c) and Nm4(m0, s, t, c), that can become negative is:

Negm1
(t, c) = t5 − t4(−5 + c)− 4t3(−2 + c)− 4t2(1 + c)− 16t(1 + c)− 16(1 + c),

Negm4(s, c) = s5 + s4(5 + c) + 4s3(2 + c) + 4s2(−1 + c) + 16s(−1 + c) + 16(−1 + c).

Negm1
(t, c) is a polynomial of degree 5 in t ; its coefficients change sign only once for −1 < c < 1 and are

all positive for c < −1. Therefore, by Descartes’ rule of signs it will have only 1 real positive root, which is

t = 1.39681 for c = 0. Negm1(t, 0) is positive for t > 1.39681 and hence Nm1 is also positive. It can easily be

shown that Negm1(t, c) > 0 when t > t0 , where t0 is obtained by solving the monotonically increasing function

c(t) for fixed values of c .

c(t) =
−16− 16t− 4t2 + 8t3 + 5t4 + t5

16 + 16t+ 4t2 + 4t3 + t4

It is straightforward to show that c(t) is a monotonically increasing function by showing that dc(t)
dt > 0

for all t. This means that m1 is positive for all m0 ≥ 0 and t > t0 . When Negm1(t, c) < 0, it does not

automatically mean that Nm1(t, c) < 0. For t < t0 , we must have

m0 >
(1 + t)2

(
16 + 16t+ 4t2 − 8t3 − 5t4 − t5 +

(
16 + 16t+ 4t2 + 4t3 + t4

)
c
)

16 + 48t+ 52t2 + 28t3 + 7t4
.

For the behavior of m1 when m0 > 0 and c = 0, please see Figure 3a. At c = 0, Negm4(s, c) has

similar behavior as that of Negm1(t, c). The region where Negm4(s, c) > 0 is bounded below by c(s), which is

a monotonically increasing function of s , i.e for all m0 ≥ 0 and s > s0 , m4 is greater than zero .

c(s) =
16 + 16s+ 4s2 − 8s3 − 5s4 − s5

16 + 16s+ 4s2 + 4s3 + s4
.

The value of s0 is obtained in the same way as t0. When Negm4(s, c) < 0, it does not automatically mean that

Nm4(s, c) < 0. For s < s0 , we must have

m0 >
(1 + s)2

(
16 + 16s+ 4s2 − 8s3 − 5s4 − s5 −

(
16 + 16s+ 4s2 + 4s3 + s4

)
c
)

16 + 48s+ 52s2 + 28s3 + 7t4
.

For the behavior of m4 when m0 > 0 and c = 0, please see Figure 3b.

The expression m2(m0, s, t, c), which gives the values of m2 , is a complicated function of m0, s, t, and

c. To understand the behavior of m2 we initially take c = 0. After some simplifications, we see that m2 can

be written as:
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Figure 3. a) Solution space for m1 > 0 when m0 > 0 is arbitrary and s ̸= t ; b) solution space for m4 > 0 when

m0 > 0 is arbitrary and s ̸= t .
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Figure 4. a) Solution space for m2 > 0 when m0 > 0 is arbitrary and s ̸= t ; b) solution space for m3 > 0 when

m0 > 0 is arbitrary and s ̸= t .

m2(m0, s, t) =
4A4s

2

Dm(s, t)

(
Negm2(s, t)−

m0Cm0(s, t)

(1 + s)2(1 + t)2

)
, (17)

where

Negm2
(s, t) = (1 + s)(2 + s)4 + 2 (s+ 1) (s+ 2)

3
t+ (s+ 1) (s+ 2)

2
t2

− (s+ 4) (s+ 2) t3 − (5 + 2s)t4 − t5.

Cm0
(s, t) = (s+ 2)

4
+ 2 (s+ 3) (s+ 2)

3
t+

(
13 + 8s+ s2

)
(s+ 2)

2
t2

+2 (s+ 2)
(
7 + 8s+ 4s2 + s3

)
t3

+
(
7 + 14s+ 13s2 + 6s3 + s4

)
t4.
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Figure 5. Solution space for m1 > 0, m2 > 0, m3 > 0, and m4 > 0 when m0 > 0 is arbitrary and s ̸= t .

The coefficient of m0 in m2 above is always negative. Other than the coefficient of m0 , which is always

negative, the term that can become negative is given by Negm2(s, t). Consider Negm2(s, t) to be a polynomial

in t with variable coefficients. Given s > 0, the coefficients of t0, t, t2 are positive and the coefficients of t3, t4, t5

are negative. Therefore, by Descartes’ rule of signs Negm2(s, t) will have only 1 positive root for each value

of s , which will determine a smooth monotone increasing function t = f(s). The function f(s)=̃s + 1.4 will

determine a boundary between the negative and positive values of Negm2(s, t). If t > f(s), Negm2(s, t) will

be negative and hence m2 will also be negative, because the second part of m2 that involves m0 is always

negative. For t < f(s), Negm2(s, t) is always positive, but it does not guarantee that Negm2(s, t) and hence

m2 will also be positive. For m2 to be positive, we must also have
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Figure 6. Solution space for mi > 0, i = 1, 2, 3, 4 when a) m0 = 0, b )m0 = 0.5, c) m0 = 1.
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Figure 7. Solution space for mi > 0, i = 1, 2, 3, 4 when a) m0 = 1.5, b) m0 = 6, c) m0 = 10.

m0(s, t) <
(1 + s)2(1 + t)2Negm2(s, t)

Cm0(s, t)
. (18)

In the special case of s = t, the above inequality gives an upper bound of 17.0 on m0 , as has been shown

in Section 3, but no such bound on m0 exists in the general case. The above inequality will give an upper

bound of m0 for each value of s and t. Therefore, it can be concluded that for all t < f(s) we can find a

suitable m0 > 0 that will make m2 positive. Conversely, for all m0 > 0, we can find s, t > 0, which will make

m2 positive. Please refer to Figure 4a for regions in stm0 -space where m2 is positive. In the general case when

c ̸= 0, the coefficient of m0 is always negative; therefore, we only need to analyze Negm2(s, t, c), which is given

below.

Negm2(s, t, c) = −t5 − t4(5 + 2s− c)− t3(2 + s)(4 + s− 2c)

+t2
(
(2 + s)2(1 + s+ c)

)
+ t

(
2(2 + s)3(1 + s+ c)

)
+(2 + s)4(1 + s+ c).

Like Negm2(s, t), Negm2(s, t, c) is also a polynomial in t with variable coefficients as functions of s and

c. By careful analysis of Negm2(s, t, c), it can be seen that the coefficients of t change sign at most once for

each value of s and c. For some values of s and c , none of the coefficients of t changes sign. By Descartes’

rule of signs, Negm2(s, t, c) will have at most 1 positive root for each value of s and c , which will determine

a smooth monotone increasing function t = f(s, c). The function f(s, c) will define a boundary between the

positive and negative values of m2 provided that m0 satisfies the following inequality:

m0(s, t) <
(1 + s)2(1 + t)2Negm2(s, t, c)

Cm0(s, t)
. (19)

As m2(s, t, c) = m3(t, s,−c), the analysis of m3 will be similar to the analysis of m2. For example, the upper

bound on m0 is given by

m0(s, t) <
(1 + s)2(1 + t)2Negm3(s, t, c)

Cm0(s, t)
, (20)
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where Negm3(s, t, c) = Negm2(t, s,−c). The above inequalities will give an upper bound of m0 for fixed values

of s, t , and c.

See Figures 3b and 4b for the regions where m4 and m3 are positive. Numerically, regions of central

configuration for the general collinear 5-body problem are given in Figure 5. Cross-sections of the region in

Figure 5 are given in Figures 6 and 7. In Figures 3–7, c is taken to be zero.

5. Conclusions

We model a general collinear 5-body problem where 4 of the masses are arranged on a line with the fifth mass

stationary at the center of mass. We form expressions for mi , i = 1, 2, 3, 4 as functions of s , t , and m0 ,

which give central configurations in the 5-body problem. In the fully symmetric case of this 5-body problem,

regions in the tm0 -plane are identified where no central configurations are possible if we take all the 5 masses

to be positive. Conversely, in the complement of the region mentioned above, it is always possible to choose

positive masses. It is also shown that for m0 > 17 no central configurations exist unless we allow for some of

the masses to become negative. Similarly, we analyze mi , i = 1, 2, 3, 4 in the general collinear 5-body problem.

We identify regions in the stm0 -space where no central configurations are possible if we restrict all the masses

to being positive. In the complement of these regions, it is always possible to choose positive masses.
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