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Abstract: In 2003, Garcia and Stichtenoth constructed a recursive tower F = (Fn)n≥0 of algebraic function fields over

the finite field Fq , where q = lr with r ≥ 1 and l > 2 is a power of the characteristic of Fq . They also gave a lower

bound for the limit of this tower. In this paper, we compute the exact value of the genus of the algebraic function field

Fn/Fq for each n ≥ 0. Moreover, we prove that when q = 2k , with k ≥ 2, the limit of the tower F attains the lower

bound given by Garcia and Stichtenoth.

Key words: Towers of algebraic function fields, genus, number of places

1. Introduction

Let Fq be a finite field and F/Fq be an algebraic function field of one variable with the field Fq as its full

constant field. Throughout this paper, we shall simply refer to F/Fq as a function field. Here we consider towers

of function fields over Fq (for the definition of a tower, see Section 2). The limit λ(F) of a tower F = (Fn)n≥0

over Fq is defined as

λ(F) := lim
n→∞

N(Fn)

g(Fn)
,

where N(Fn) and g(Fn) denote the number of rational places and the genus, respectively, of Fn/Fq . Towers

with λ(F) > 0 are called asymptotically good towers. Such towers are quite useful in cryptography and coding

theory. In particular, asymptotically good recursive towers are used to construct algebraic-geometry codes with

good parameters (for the definition of a recursive tower, see Definition 2.1). The Drinfeld–Vladut bound says

that λ(F) ≤ q1/2 − 1. By using recursive towers with limits attaining this bound, one can construct towers

exceeding the Gilbert–Varshamov bound [8]. Moreover, the function fields in such towers have a large class

number [1].

For a tower F = (Fn)n≥0 over Fq , usually one can estimate the limit of the tower without knowing the

precise value of the genus of each function field Fn/Fq (for instance, see [4, 6, 7, 10] ). There are very few towers

for which one knows the exact value of the genus of Fn/Fq (for instance, see [2, 5, 9]). However, knowing the

exact value of the genus of Fn/Fq is quite useful in some applications. For instance, in [1] it was shown that

to have a good estimation for the class number of Fn/Fq , it is good to know the exact value of the genus of

Fn/Fq . This is the main motivation of this paper. Here, our first aim is to compute the genus of Fn/Fq (for
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all n ≥ 0) for a tower constructed by Garcia and Stichtenoth. This tower is defined as follows: let q = lr with

r ≥ 1 and l > 2 be a power of the characteristic of Fq . Assume that r ≡ 0 mod 2 or l ≡ 0 mod 2. In [3,

Theorem 3.11], Garcia and Stichtenoth proved that the polynomial

F (X,Y ) = Y l−1 + (X + b)l−1 − 1 ∈ Fq[X,Y ], with b ∈ F∗
l ,

defines a recursive tower F over Fq . They also showed that the limit of this tower satisfies the inequality

λ(F) ≥ 2/(l − 2). Our second aim is to prove that when q = 2k , with k ≥ 2, the limit of the tower F attains

the lower bound given by Garcia and Stichtenoth.

2. Preliminaries

Throughout this paper, we use basic facts and notations as in [7]. We will consider (algebraic) function fields

F/Fq of one variable over Fq . In all cases, Fq will be the full constant field of F . We denote by g(F ), N(F ),

and P(F ) the genus, the number of rational places, and the set of all places of F/Fq , respectively. For a rational

function field Fq(x) we will write (x = a) for the place that is the zero of x− a (where a ∈ Fq ) and (x = ∞)

for the pole of x . We denote them by Pa and P∞ , respectively. This means we have that x(Pa) = a and

x(P∞) = ∞ .

Let E/F be a finite separable extension, and let P and Q be places of F/Fq and E/Fq , respectively.

We will write Q|P if the place Q lies above P . In this case, we will denote by

e(Q|P ), f(Q|P ), and d(Q|P )

the ramification index, the relative degree, and the different exponent, respectively, of Q|P . Moreover, since

P = Q ∩ F , the place P is called the restriction of Q to F .

An infinite sequence F = (Fn)n≥0 of function fields Fn/Fq is called a tower over Fq if

F0 ⫋ F1 ⫋ F2 ⫋ . . . ,

all extensions Fn+1/Fn are finite separable, and g(Fn) → ∞ as n → ∞ .

Definition 2.1 Let F = (Fn)n≥0 be a tower over Fq and F (X,Y ) ∈ Fq[X,Y ] be a nonconstant polynomial.

Suppose that there exist elements xn ∈ Fn (for n ≥ 0) such that

Fn+1 = Fn(xn+1) with F (xn, xn+1) = 0 for all n ≥ 0.

Then we say that the tower F is recursively defined over Fq by the polynomial F (X,Y ) .

For a tower F = (Fn)n≥0 over Fq , one has the following [4, Lemma 3.4]:

(i) The sequence
(
g(Fn)/[Fn : F0]

)
n≥0

is convergent in R>0 ∪ {∞} . The limit of this sequnce is called the

genus of tower F and it is denoted by γ(F).

(ii) The sequence
(
N(Fn)/[Fn : F0]

)
n≥0

is convergent in R≥0 . The limit of this sequence is called the splitting

rate of F and it is denoted by ν(F).
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Hence, by using (i) and (ii) it is clear that the sequence
(
N(Fn)/g(Fn)

)
n≥0

converges in R≥0 . Its limit is called

the limit of the tower F and denoted by λ(F). By definition, λ(F) = ν(F)/γ(F).

A tower F = (Fn)n≥0 over Fq is said to be a tame tower if all extensions Fn+1/Fn are tame (i.e. all

ramification indices in Fn+1/Fn are coprime to the characteristic of Fq ). Moreover, we recall that for any tower

F over Fq the set

R(F) :=
{
P ∈ P(F0) : P is ramified in Fn for some n ≥ 1

}
is called the ramification locus of F .

In this paper, we will study the following tame tower introduced by Garcia and Stichtenoth in [3,

Section 3]:

Theorem 2.2 Let q = lr with r ≥ 1 and l > 2 be a power of the characteristic of Fq . Assume that

r ≡ 0 mod 2 or l ≡ 0 mod 2.

Then the polynomial

F (X,Y ) = Y l−1 + (X + b)l−1 − 1 ∈ Fq[X,Y ], with b ∈ F∗
l , (2.1)

defines a recursive tower F = (Fn)n≥0 over Fq with the following properties:

(i) [Fn : F0] = (l − 1)n for all n ≥ 0 .

(ii) The place (x0 = ∞) ∈ P(F0) splits completely in F .

(iii) Letting F = F0 := Fq(x0) be the rational function field, we have that

R(F) =
{
P ∈ P(F0) : x0(P ) = α for some α ∈ Fl

}
.

(iv) The genus of F satisfies the inequality γ(F) ≤ (l − 2)/2 .

(v) λ(F) ≥ 2/(l − 2) .

Proof For the proof, see [3, Theorem 3.11 and Proposition 3.9]. 2

3. Main results

From now on, F = (Fn)n≥0 will denote the tower given in Theorem 2.2.

Theorem 3.1 For all n ≥ 0 , we have that

g(Fn) =

{(
l−2
2

)
(l − 1)n − l

2 (l − 1)n/2 + 1 if n ≡ 0 mod 2(
l−2
2

)
(l − 1)n − (l − 1)(n+1)/2 + 1 if n ≡ 1 mod 2.

We prove Theorem 3.1 via the Lemmas 3.2, 3.3, and 3.4. First, let

f(X) := −(X + b)l−1 + 1 ∈ Fq[X], with b ∈ F∗
l .
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Since the tower F is recursively defined by (2.1), we can set F0 = Fq(x0) and Fn+1 = Fn(xn+1) where

xl−1
n+1 = f(xn) for all n ≥ 0 . (3.1)

Note that f(α) = 0 if and only if α ∈ Fl \ {−b} . Hence, by Kummer’s extension theorem [7, pp. 122] and

Kummer’s theorem [7, pp. 86], we have the following ramification structure in F1/Fq(x0) and F1/Fq(x1):

(1) Any place (x0 = α) ∈ P(F0), with α ∈ Fl \ {−b} , is totally ramified in F1 . If Pα ∈ P(F1) is a place lying

above (x0 = α), then x1(Pα) = 0.

(2) The place (x0 = −b) ∈ P(F0) splits completely in F1 . If P ∈ P(F1) is a place lying above (x0 = −b),

then x1(P ) = α for some α ∈ F∗
l .

From now on, the numbers in the figures will denote the corresponding ramification indices. To sum up (1) and

(2), we have the following:

1

??
??

?
l−1

��
�� l−1??

??
1

��
��
�

(x0=α)
α∈Fl\{−b} (x1 = 0) (x0 = −b)

(x1=α)

α∈F∗l

Figure 1. Ramification structure in F1/Fq(x0) and F1/Fq(x1) .

Lemma 3.2 Let S := {P ∈ P(F0) : x0(P ) = α for some α ∈ Fl \ {−b}} . All P ∈ S are totally ramified in

F .

Proof Let P ∈ S . It follows from Eq. (3.1) that for any Qn ∈ P(Fn), n ≥ 1, Qn|P , we have xn(Qn) = 0.

Hence, by applying Abhyankar’s lemma [7, pp. 137] in Figure 2, we obtain that P is totally ramified in Fn for

all n ≥ 1.
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(x0 = α) (x1 = 0) (x2 = 0) . . . (xn = 0) (xn+1 = 0)

Figure 2. Ramification of (x0 = α) in F .

2

Lemma 3.3 Let P := (x0 = −b) ∈ P(F0) and Q be a place of Fn/Fq lying above P , for some n ≥ 1 . We

have the following cases:

(i) xn(Q) ∈ F∗
l . In this case, e(Q|P ) = 1 .
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(ii) xn(Q) = 0 . Then there exists 1 ≤ k ≤ n such that at P ′ := Q ∩ Fk we have xk(P
′) = α for some

α ∈ F∗
l \ {−b} and

xj(Q) = −b for all 0 ≤ j ≤ k − 1.

In this case, if n < 2k + 1 , then

e(Q|P ) = 1.

If n ≥ 2k + 1 , for any P ′′ ∈ F2k with P ′′|P ′|P , we have

e(Q|P ) = e(Q|P ′′) = (l − 1)n−2k.

Proof It follows immediately from Eq. (3.1) and Figure 1 that xn(Q) ∈ Fl . Using Figure 1 and applying

Abhyankar’s lemma [7, pp. 137] in Figure 3 yields the desired results in (i) and (ii).
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Figure 3. Ramification of (x0 = −b) in F .

2

Lemma 3.4 For any k ≥ 0 , set

Rk := {P ∈ P(Fk) : xk(P ) = α for some α ∈ F∗
l \ {−b}}.

Then the following hold:

(i) For all k ≥ 1 , the place (xk = α) of Fq(xk)/Fq , with α ∈ F∗
l \ {−b} , is totally ramified in Fk .

(ii) #Rk = l − 2 and degP = 1 for all P ∈ Rk with k ≥ 0 .

(iii) For any k ≥ 0 , we have that

∑
Q∈P(Fn)

Q|P
P∈Rk

degQ =

{
(l − 1)n−k if n < 2k + 1

(l − 1)k if n ≥ 2k + 1.

388



TUTDERE/Turk J Math

Proof (i) For k = 1, it is clear from Figure 1. For k ≥ 2, let P ∈ Rk . It follows from Eq. (3.1) (or see Figure

1) that (x0(P ) = −b). Hence, by applying Abhyankar’s lemma [7, pp. 137] in Figure 3, we obtain the desired

result.
(ii) For k = 0, we have #R0 = l − 2. For k ≥ 1, as by (i) each place (xk = α) is totally ramified in Fk , each

has only one extension in Fk . Thus, the result follows.

(iii) Let P ∈ Rk for some k ≥ 0 and Q be a place of Fn lying above P , for some n ≥ k . If k = 0, then by

Lemma 3.2, P is totally ramified in Fn , and so (iii) holds. Now suppose that k ≥ 1. Then it follows from Eq.

(3.1) that

xk(Q) = xk(P ) = α for some α ∈ F∗
l \ {−b},

xi(Q) = −b for all i < k, and

xi(Q) = 0 for all k ≤ n.

By (ii), degP = 1. By Lemma 3.3(ii), for all k ≤ n ≤ 2k the place P is unramified in Fn . Hence, by using

fundamental equality [7, pp. 74] and Theorem 2.2(i),

∑
Q∈P(Fn)

Q|P

degQ =
∑

Q∈P(Fn)
Q|P

f(Q|P ) degP = [Fn : Fk] = (l − 1)n−k.

Now suppose that n ≥ 2k + 1. Let R = Q ∩ F2k . By applying Lemma 3.3 with P ′′ := R , we obtain that

e(Q|R) = (l − 1)n−2k = [Fn : F2k] . That means that R is totally ramified in Fn for all n ≥ 2k + 1, i.e. R has

only one extension in Fn , which is Q and degR = degQ . Since P is unramified in F2k , again by applying

fundamental equality [7, pp. 74] and Theorem 2.2, we have that

∑
Q∈P(Fn)

Q|P

degQ =
∑

R∈P(F2k)
R|P

degR =
∑

R∈P(F2k)
R|P

f(R|P ) degP = [F2k : Fk] = (l − 1)k.

2

Now we give the proof of Theorem 3.1. We first recall from [7, Definition 3.4.3] that the different of any finite

separable extension of function fields F ′/F is defined as follows:

Diff(F ′/F ) =
∑

P∈P(F )

∑
Q∈P(F ′)

Q|P

d(Q|P )Q.

Proof [Proof of Theorem 3.1] We know from Theorem 2.2(iii) that

R(F) = {P ∈ P(F0) : x0(P ) = α for some α ∈ Fl}.

Moreover, since the tower F is tame, for any P ∈ P(F0) and Q ∈ P(Fn) with Q|P , by Dedekind’s

different theorem [7, pp. 100] the different exponent of Q|P is

d(Q|P ) = e(Q|P )− 1.
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Hence, the degree of the different of Fn/F0 is

degDiff(Fn/F0) =
∑

P∈R(F)

∑
Q∈P(Fn)

Q|P

(e(Q|P )− 1) degQ. (3.2)

By Lemma 3.2, all places P of F0 with x0(P ) ∈ Fl \ {−b} are totally ramified in F , and so for any Q ∈ P(Fn)

with Q|P , we have that

e(Q|P ) = [Fn : F0] = (l − 1)n. (3.3)

Now let Q ∈ P(Fn) and P = (x0 = −b) ∈ P(F0) such that Q|P . Then by Lemma 3.3, we have the following

situations:

(*) xn(Q) ∈ F∗
l and d(Q|P ) = e(Q|P )− 1 = 0,

(**) xn(Q) = 0. In this case, there exists 1 ≤ k < n such that at P ′ := Q∩Fk , we have xk(P
′) = α ∈ F∗

l \{−b} .
Hence, P ′ is in the set of Rk given in Lemma 3.4. Conversely, for any P ′ ∈ Rk , with 1 ≤ k ≤ k , it follows

from Eq. (3.1) that P ′|(x0 = −b). By Lemma 3.3(ii), when n < 2k+1, we have d(Q|P ) = e(Q|P )−1 = 0.

When n ≥ 2k + 1, by using Lemma 3.3(ii), we obtain that

d(Q|P ) = e(Q|P )− 1 = (l − 1)n−2k − 1

= e(Q|P ′)− 1 = d(Q|P ′). (3.4)

Now let

A :=
∑

P∈R(F)
x0(P )=−b

∑
Q|P

d(Q|P ) degQ.

Then by using Eq. (3.4), (*), (**), and Lemma 3.4, we get the following:

A =

⌊n−1
2 ⌋∑

k=1

∑
P ′∈Rk

Q|P ′

d(Q|P ′) degQ

=

⌊n−1
2 ⌋∑

k=1

#Rk((l − 1)n−2k − 1)(l − 1)k

= (l − 2)

(
(l − 1)n

⌊n−1
2 ⌋−1∑
k=0

1

(l − 1)k+1
−

⌊n−1
2 ⌋−1∑
k=0

(l − 1)k+1

)

= (l − 2)(l − 1)n−1

(
1

(l − 1)⌊
n−1
2 ⌋ − 1

)(
l − 1

2− l

)
−

(l − 2)(l − 1)

(
(l − 1)⌊

n−1
2 ⌋ − 1

l − 2

)
= −(l − 1)n−⌊

n−1
2 ⌋ + (l − 1)n − (l − 1)⌊

n−1
2 ⌋+1 + (l − 1). (3.5)
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Now let Q be a place of Fn . By using Theorem 2.2(iii) and combining (3.2), (3.3), and (3.5), we obtain

for all n ≥ 1

degDiff(Fn/F0) =
∑

P∈R(F)
x0(P )∈Fl\{−b}

∑
Q|P

d(Q|P ) degQ+
∑

P∈R(F)
x0(P )=−b

∑
Q|P

d(Q|P ) degQ

= (l − 1)[(l − 1)n − 1]− (l − 1)n−⌊
n−1
2 ⌋ + (l − 1)n −

(l − 1)⌊
n−1
2 ⌋+1 + (l − 1)

= l(l − 1)n − (l − 1)n−⌊
n−1
2 ⌋ − (l − 1)⌊

n−1
2 ⌋+1

=

{
l(l − 1)n − l(l − 1)n/2 if n ≡ 0 mod 2

l(l − 1)n − 2(l − 1)(n+1)/2 if n ≡ 1 mod 2 .

Now by using the Hurwitz genus formula [7, pp.99] for the extension Fn/F0 , the desired result follows:

2g(Fn)− 2 = [Fn : F0](2g(F0)− 2) + degDiff(Fn/F0)

= (l − 1)n(2g(0F )− 2) + degDiff(Fn/F0)

=

{
(l − 2)(l − 1)n − l(l − 1)n/2 if n ≡ 0 mod 2

(l − 2)(l − 1)n − 2(l − 1)(n+1)/2 if n ≡ 1 mod 2.

2

The following corollary is an immediate consequence of Theorem 3.1:

Corollary 3.5 The genus of the tower F/Fq is

γ(F) =
l − 2

2
.

Next we show that when q = 2k with k ≥ 2 the limit of the tower F over Fq attains the Garcia and

Stichtenoth lower bound given in Theorem 2.2(v).

Theorem 3.6 Suppose that r = 1 , i.e. l is a power of 2 and q = l . Then

λ(F) =
2

l − 2
.

Proof We know that λ(F) = ν(F)/γ(F). As γ(F) is given in Corollary 3.5, it is enough to compute ν(F).

For this, we need to estimate N(Fn) for all n ≥ 0. Since q = l and each rational place of Fn/Fq lies over a

rational place of F0/Fq , we have that

N(Fn) =
∑

Q∈P(Fn)
x0(Q)∈Fl\{−b}

1 +
∑

Q∈P(Fn)
x0(Q)=−b

1 +
∑

Q∈P(Fn)
x0(Q)=∞

1. (3.6)

Let P ∈ P(F0) be a rational place and n ≥ 1. If P is totally ramified in Fn , then P has only one rational

extension in Fn . If P splits completely in Fn , then P has [Fn : F0] rational extensions in Fn . Hence, by
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Lemmas 3.2, 3.3, and 3.4 and Theorem 2.2(ii), for any n, k ≥ 1 with n ≥ k , we have∑
Q∈P(Fn)

x0(Q)∈Fl\{−b}

1 = l − 1,
∑

Q∈P(Fn)
x0(Q)=∞

1 = (l − 1)n, and (3.7)

∑
Q∈P(Fn)
x0(Q)=−b

1 ≤
n−1∑
k=1

∑
Pk∈Rk

∑
Q∈P(Fn)

Q|Pk

1 ≤ B, where B :=
n−1∑
k=1

∑
Pk∈Rk

∑
Q∈P(Fn)

Q|Pk

degQ.

By using Lemma 3.4(iii), we obtain the following:

B ≤
⌊n−1

2 ⌋∑
k=1

#Rk · (l − 1)k +
n−1∑

k=⌊n−1
2 ⌋+1

#Rk · (l − 1)n−k

= (l − 2)

( ⌊n−1
2 ⌋−1∑
k=0

(l − 1)k+1 + (l − 1)n
n∑

k=⌊n−1
2 ⌋+1

1

(l − 1)k

)

= (l − 2)(l − 1)

[
(l − 1)⌊

n−1
2 ⌋ − 1

l − 2

]
+

(l − 2)(l − 1)n
[

1

(l − 1)n+1
− 1

(l − 1)⌊
n−1
2 ⌋+1

](
l − 1

2− l

)
= (l − 1)

[
(l − 1)⌊

n−1
2 ⌋ − 1

]
−

(l − 1)n+1

[
1

(l − 1)n+1
− 1

(l − 1)⌊
n−1
2 ⌋+1

]
= (l − 1)⌊

n−1
2 ⌋+1 − (l − 1)− 1 + (l − 1)n−⌊

n−1
2 ⌋

= (l − 1)⌊
n−1
2 ⌋+1 + (l − 1)n−⌊

n−1
2 ⌋ − l. (3.8)

Now by substituting each value of (3.7) and (3.8) for the sums involved in Eq. (3.6), the following follows:

(l − 1)n + (l − 1) ≤ N(Fn) ≤ (l − 1)n + (l − 1) +An,

where

An :=

{
l(l − 1)n/2 − l if n ≡ 0 mod 2

2(l − 1)(n+1)/2 − l if n ≡ 1 mod 2.

Hence, the splitting rate of F/Fq is

ν(F) = lim
n→∞

N(Fn)

[Fn : F0]
= 1. (3.9)

Now by using Corollary 3.5 and (3.9) we obtain the desired result. 2

We here conjecture that the limit of the tower F attains the Garcia and Stichtenoth lower bound for all

r ≥ 1.
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