http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $384-393$
(C) TÜBİTAK
doi:10.3906/mat-1310-52

On a tower of Garcia and Stichtenoth

Seher TUTDERE*
Department of Mathematics, Gebze Institute of Technology, Çayırova Campus, Gebze, Kocaeli, Turkey

Received: 28.10.2013 • Accepted: $13.12 .2013 \quad$ • Published Online: $14.03 .2014 \quad$ Printed: 11.04 .2014

Abstract

In 2003, Garcia and Stichtenoth constructed a recursive tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ of algebraic function fields over the finite field \mathbb{F}_{q}, where $q=l^{r}$ with $r \geq 1$ and $l>2$ is a power of the characteristic of \mathbb{F}_{q}. They also gave a lower bound for the limit of this tower. In this paper, we compute the exact value of the genus of the algebraic function field F_{n} / \mathbb{F}_{q} for each $n \geq 0$. Moreover, we prove that when $q=2^{k}$, with $k \geq 2$, the limit of the tower \mathcal{F} attains the lower bound given by Garcia and Stichtenoth.

Key words: Towers of algebraic function fields, genus, number of places

1. Introduction

Let \mathbb{F}_{q} be a finite field and F / \mathbb{F}_{q} be an algebraic function field of one variable with the field \mathbb{F}_{q} as its full constant field. Throughout this paper, we shall simply refer to F / \mathbb{F}_{q} as a function field. Here we consider towers of function fields over \mathbb{F}_{q} (for the definition of a tower, see Section 2). The limit $\lambda(\mathcal{F})$ of a tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ over \mathbb{F}_{q} is defined as

$$
\lambda(\mathcal{F}):=\lim _{n \rightarrow \infty} \frac{N\left(F_{n}\right)}{g\left(F_{n}\right)}
$$

where $N\left(F_{n}\right)$ and $g\left(F_{n}\right)$ denote the number of rational places and the genus, respectively, of F_{n} / \mathbb{F}_{q}. Towers with $\lambda(\mathcal{F})>0$ are called asymptotically good towers. Such towers are quite useful in cryptography and coding theory. In particular, asymptotically good recursive towers are used to construct algebraic-geometry codes with good parameters (for the definition of a recursive tower, see Definition 2.1). The Drinfeld-Vladut bound says that $\lambda(\mathcal{F}) \leq q^{1 / 2}-1$. By using recursive towers with limits attaining this bound, one can construct towers exceeding the Gilbert-Varshamov bound [8]. Moreover, the function fields in such towers have a large class number [1].

For a tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ over \mathbb{F}_{q}, usually one can estimate the limit of the tower without knowing the precise value of the genus of each function field F_{n} / \mathbb{F}_{q} (for instance, see $[4,6,7,10]$). There are very few towers for which one knows the exact value of the genus of F_{n} / \mathbb{F}_{q} (for instance, see $[2,5,9]$). However, knowing the exact value of the genus of F_{n} / \mathbb{F}_{q} is quite useful in some applications. For instance, in [1] it was shown that to have a good estimation for the class number of F_{n} / \mathbb{F}_{q}, it is good to know the exact value of the genus of F_{n} / \mathbb{F}_{q}. This is the main motivation of this paper. Here, our first aim is to compute the genus of F_{n} / \mathbb{F}_{q} (for

[^0]all $n \geq 0$) for a tower constructed by Garcia and Stichtenoth. This tower is defined as follows: let $q=l^{r}$ with $r \geq 1$ and $l>2$ be a power of the characteristic of \mathbb{F}_{q}. Assume that $r \equiv 0 \bmod 2$ or $l \equiv 0 \bmod 2$. In [3, Theorem 3.11], Garcia and Stichtenoth proved that the polynomial
$$
F(X, Y)=Y^{l-1}+(X+b)^{l-1}-1 \in \mathbb{F}_{q}[X, Y], \text { with } b \in \mathbb{F}_{l}^{*}
$$
defines a recursive tower \mathcal{F} over \mathbb{F}_{q}. They also showed that the limit of this tower satisfies the inequality $\lambda(\mathcal{F}) \geq 2 /(l-2)$. Our second aim is to prove that when $q=2^{k}$, with $k \geq 2$, the limit of the tower \mathcal{F} attains the lower bound given by Garcia and Stichtenoth.

2. Preliminaries

Throughout this paper, we use basic facts and notations as in [7]. We will consider (algebraic) function fields F / \mathbb{F}_{q} of one variable over \mathbb{F}_{q}. In all cases, \mathbb{F}_{q} will be the full constant field of F. We denote by $g(F), N(F)$, and $\mathbb{P}(F)$ the genus, the number of rational places, and the set of all places of F / \mathbb{F}_{q}, respectively. For a rational function field $\mathbb{F}_{q}(x)$ we will write $(x=a)$ for the place that is the zero of $x-a$ (where $\left.a \in \mathbb{F}_{q}\right)$ and $(x=\infty)$ for the pole of x. We denote them by P_{a} and P_{∞}, respectively. This means we have that $x\left(P_{a}\right)=a$ and $x\left(P_{\infty}\right)=\infty$.

Let E / F be a finite separable extension, and let P and Q be places of F / \mathbb{F}_{q} and E / \mathbb{F}_{q}, respectively. We will write $Q \mid P$ if the place Q lies above P. In this case, we will denote by

$$
e(Q \mid P), f(Q \mid P), \text { and } d(Q \mid P)
$$

the ramification index, the relative degree, and the different exponent, respectively, of $Q \mid P$. Moreover, since $P=Q \cap F$, the place P is called the restriction of Q to F.

An infinite sequence $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ of function fields F_{n} / \mathbb{F}_{q} is called a tower over \mathbb{F}_{q} if

$$
F_{0} \varsubsetneqq F_{1} \varsubsetneqq F_{2} \varsubsetneqq \ldots,
$$

all extensions F_{n+1} / F_{n} are finite separable, and $g\left(F_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Definition 2.1 Let $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ be a tower over \mathbb{F}_{q} and $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ be a nonconstant polynomial. Suppose that there exist elements $x_{n} \in F_{n}$ (for $n \geq 0$) such that

$$
F_{n+1}=F_{n}\left(x_{n+1}\right) \text { with } F\left(x_{n}, x_{n+1}\right)=0 \text { for all } n \geq 0
$$

Then we say that the tower \mathcal{F} is recursively defined over \mathbb{F}_{q} by the polynomial $F(X, Y)$.
For a tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ over \mathbb{F}_{q}, one has the following [4, Lemma 3.4]:
(i) The sequence $\left(g\left(F_{n}\right) /\left[F_{n}: F_{0}\right]\right)_{n \geq 0}$ is convergent in $\mathbb{R}^{>0} \cup\{\infty\}$. The limit of this sequnce is called the genus of tower \mathcal{F} and it is denoted by $\gamma(\mathcal{F})$.
(ii) The sequence $\left(N\left(F_{n}\right) /\left[F_{n}: F_{0}\right]\right)_{n \geq 0}$ is convergent in $\mathbb{R}^{\geq 0}$. The limit of this sequence is called the splitting rate of \mathcal{F} and it is denoted by $\nu(\mathcal{F})$.

Hence, by using (i) and (ii) it is clear that the sequence $\left(N\left(F_{n}\right) / g\left(F_{n}\right)\right)_{n \geq 0}$ converges in $\mathbb{R}^{\geq 0}$. Its limit is called the limit of the tower \mathcal{F} and denoted by $\lambda(\mathcal{F})$. By definition, $\lambda(\mathcal{F})=\nu(\mathcal{F}) / \gamma(\mathcal{F})$.

A tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ over \mathbb{F}_{q} is said to be a tame tower if all extensions F_{n+1} / F_{n} are tame (i.e. all ramification indices in F_{n+1} / F_{n} are coprime to the characteristic of \mathbb{F}_{q}). Moreover, we recall that for any tower \mathcal{F} over \mathbb{F}_{q} the set

$$
R(\mathcal{F}):=\left\{P \in \mathbb{P}\left(F_{0}\right): P \text { is ramified in } F_{n} \text { for some } n \geq 1\right\}
$$

is called the ramification locus of \mathcal{F}.
In this paper, we will study the following tame tower introduced by Garcia and Stichtenoth in [3, Section 3]:

Theorem 2.2 Let $q=l^{r}$ with $r \geq 1$ and $l>2$ be a power of the characteristic of \mathbb{F}_{q}. Assume that

$$
r \equiv 0 \bmod 2 \text { or } l \equiv 0 \bmod 2
$$

Then the polynomial

$$
\begin{equation*}
F(X, Y)=Y^{l-1}+(X+b)^{l-1}-1 \in \mathbb{F}_{q}[X, Y], \text { with } b \in \mathbb{F}_{l}^{*} \tag{2.1}
\end{equation*}
$$

defines a recursive tower $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ over \mathbb{F}_{q} with the following properties:
(i) $\left[F_{n}: F_{0}\right]=(l-1)^{n}$ for all $n \geq 0$.
(ii) The place $\left(x_{0}=\infty\right) \in \mathbb{P}\left(F_{0}\right)$ splits completely in \mathcal{F}.
(iii) Letting $F=F_{0}:=\mathbb{F}_{q}\left(x_{0}\right)$ be the rational function field, we have that

$$
R(\mathcal{F})=\left\{P \in \mathbb{P}\left(F_{0}\right): x_{0}(P)=\alpha \text { for some } \alpha \in \mathbb{F}_{l}\right\}
$$

(iv) The genus of \mathcal{F} satisfies the inequality $\gamma(\mathcal{F}) \leq(l-2) / 2$.
(v) $\lambda(\mathcal{F}) \geq 2 /(l-2)$.

Proof For the proof, see [3, Theorem 3.11 and Proposition 3.9].

3. Main results

From now on, $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ will denote the tower given in Theorem 2.2.
Theorem 3.1 For all $n \geq 0$, we have that

$$
g\left(F_{n}\right)= \begin{cases}\left(\frac{l-2}{2}\right)(l-1)^{n}-\frac{l}{2}(l-1)^{n / 2}+1 & \text { if } n \equiv 0 \quad \bmod 2 \\ \left(\frac{l-2}{2}\right)(l-1)^{n}-(l-1)^{(n+1) / 2}+1 & \text { if } n \equiv 1 \quad \bmod 2\end{cases}
$$

We prove Theorem 3.1 via the Lemmas 3.2, 3.3, and 3.4. First, let

$$
f(X):=-(X+b)^{l-1}+1 \in \mathbb{F}_{q}[X], \text { with } b \in \mathbb{F}_{l}^{*}
$$

Since the tower \mathcal{F} is recursively defined by (2.1), we can set $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$ and $F_{n+1}=F_{n}\left(x_{n+1}\right)$ where

$$
\begin{equation*}
x_{n+1}^{l-1}=f\left(x_{n}\right) \quad \text { for all } n \geq 0 \tag{3.1}
\end{equation*}
$$

Note that $f(\alpha)=0$ if and only if $\alpha \in \mathbb{F}_{l} \backslash\{-b\}$. Hence, by Kummer's extension theorem [7, pp. 122] and Kummer's theorem [7, pp. 86], we have the following ramification structure in $F_{1} / \mathbb{F}_{q}\left(x_{0}\right)$ and $F_{1} / \mathbb{F}_{q}\left(x_{1}\right)$:
(1) Any place $\left(x_{0}=\alpha\right) \in \mathbb{P}\left(F_{0}\right)$, with $\alpha \in \mathbb{F}_{l} \backslash\{-b\}$, is totally ramified in F_{1}. If $P_{\alpha} \in \mathbb{P}\left(F_{1}\right)$ is a place lying above $\left(x_{0}=\alpha\right)$, then $x_{1}\left(P_{\alpha}\right)=0$.
(2) The place $\left(x_{0}=-b\right) \in \mathbb{P}\left(F_{0}\right)$ splits completely in F_{1}. If $P \in \mathbb{P}\left(F_{1}\right)$ is a place lying above $\left(x_{0}=-b\right)$, then $x_{1}(P)=\alpha$ for some $\alpha \in \mathbb{F}_{l}^{*}$.

From now on, the numbers in the figures will denote the corresponding ramification indices. To sum up (1) and (2), we have the following:

Figure 1. Ramification structure in $F_{1} / \mathbb{F}_{q}\left(x_{0}\right)$ and $F_{1} / \mathbb{F}_{q}\left(x_{1}\right)$.

Lemma 3.2 Let $S:=\left\{P \in \mathbb{P}\left(F_{0}\right): x_{0}(P)=\alpha\right.$ for some $\left.\alpha \in \mathbb{F}_{l} \backslash\{-b\}\right\}$. All $P \in S$ are totally ramified in \mathcal{F}.
Proof Let $P \in S$. It follows from Eq. (3.1) that for any $Q_{n} \in \mathbb{P}\left(F_{n}\right), n \geq 1, Q_{n} \mid P$, we have $x_{n}\left(Q_{n}\right)=0$. Hence, by applying Abhyankar's lemma [7, pp. 137] in Figure 2, we obtain that P is totally ramified in F_{n} for all $n \geq 1$.

Figure 2. Ramification of $\left(x_{0}=\alpha\right)$ in \mathcal{F}.

Lemma 3.3 Let $P:=\left(x_{0}=-b\right) \in \mathbb{P}\left(F_{0}\right)$ and Q be a place of F_{n} / \mathbb{F}_{q} lying above P, for some $n \geq 1$. We have the following cases:
(i) $x_{n}(Q) \in \mathbb{F}_{l}^{*}$. In this case, $e(Q \mid P)=1$.
(ii) $x_{n}(Q)=0$. Then there exists $1 \leq k \leq n$ such that at $P^{\prime}:=Q \cap F_{k}$ we have $x_{k}\left(P^{\prime}\right)=\alpha$ for some $\alpha \in \mathbb{F}_{l}^{*} \backslash\{-b\}$ and

$$
x_{j}(Q)=-b \quad \text { for all } \quad 0 \leq j \leq k-1
$$

In this case, if $n<2 k+1$, then

$$
e(Q \mid P)=1
$$

If $n \geq 2 k+1$, for any $P^{\prime \prime} \in \mathbb{F}_{2 k}$ with $P^{\prime \prime}\left|P^{\prime}\right| P$, we have

$$
e(Q \mid P)=e\left(Q \mid P^{\prime \prime}\right)=(l-1)^{n-2 k}
$$

Proof It follows immediately from Eq. (3.1) and Figure 1 that $x_{n}(Q) \in \mathbb{F}_{l}$. Using Figure 1 and applying Abhyankar's lemma [7, pp. 137] in Figure 3 yields the desired results in (i) and (ii).

Figure 3. Ramification of $\left(x_{0}=-b\right)$ in \mathcal{F}.

Lemma 3.4 For any $k \geq 0$, set

$$
R_{k}:=\left\{P \in \mathbb{P}\left(F_{k}\right): x_{k}(P)=\alpha \text { for some } \alpha \in \mathbb{F}_{l}^{*} \backslash\{-b\}\right\}
$$

Then the following hold:
(i) For all $k \geq 1$, the place $\left(x_{k}=\alpha\right)$ of $\mathbb{F}_{q}\left(x_{k}\right) / \mathbb{F}_{q}$, with $\alpha \in \mathbb{F}_{l}^{*} \backslash\{-b\}$, is totally ramified in F_{k}.
(ii) $\# R_{k}=l-2$ and $\operatorname{deg} P=1$ for all $P \in R_{k}$ with $k \geq 0$.
(iii) For any $k \geq 0$, we have that

$$
\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
Q \mid P \\
P \in R_{k}}} \operatorname{deg} Q=\left\{\begin{array}{l}
(l-1)^{n-k} \text { if } n<2 k+1 \\
(l-1)^{k} \text { if } n \geq 2 k+1 .
\end{array}\right.
$$

Proof (i) For $k=1$, it is clear from Figure 1. For $k \geq 2$, let $P \in R_{k}$. It follows from Eq. (3.1) (or see Figure 1) that $\left(x_{0}(P)=-b\right)$. Hence, by applying Abhyankar's lemma [7, pp. 137] in Figure 3, we obtain the desired result.
(ii) For $k=0$, we have $\# R_{0}=l-2$. For $k \geq 1$, as by (i) each place $\left(x_{k}=\alpha\right)$ is totally ramified in F_{k}, each has only one extension in F_{k}. Thus, the result follows.
(iii) Let $P \in R_{k}$ for some $k \geq 0$ and Q be a place of F_{n} lying above P, for some $n \geq k$. If $k=0$, then by Lemma $3.2, P$ is totally ramified in F_{n}, and so (iii) holds. Now suppose that $k \geq 1$. Then it follows from Eq. (3.1) that

$$
\begin{aligned}
x_{k}(Q) & =x_{k}(P)=\alpha \quad \text { for some } \alpha \in \mathbb{F}_{l}^{*} \backslash\{-b\} \\
x_{i}(Q) & =-b \quad \text { for all } i<k, \text { and } \\
x_{i}(Q) & =0 \quad \text { for all } k \leq n
\end{aligned}
$$

By (ii), $\operatorname{deg} P=1$. By Lemma 3.3(ii), for all $k \leq n \leq 2 k$ the place P is unramified in F_{n}. Hence, by using fundamental equality [7, pp. 74] and Theorem 2.2(i),

$$
\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ Q \mid P}} \operatorname{deg} Q=\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ Q \mid P}} f(Q \mid P) \operatorname{deg} P=\left[F_{n}: F_{k}\right]=(l-1)^{n-k}
$$

Now suppose that $n \geq 2 k+1$. Let $R=Q \cap F_{2 k}$. By applying Lemma 3.3 with $P^{\prime \prime}:=R$, we obtain that $e(Q \mid R)=(l-1)^{n-2 k}=\left[F_{n}: F_{2 k}\right]$. That means that R is totally ramified in F_{n} for all $n \geq 2 k+1$, i.e. R has only one extension in F_{n}, which is Q and $\operatorname{deg} R=\operatorname{deg} Q$. Since P is unramified in $F_{2 k}$, again by applying fundamental equality [7, pp. 74] and Theorem 2.2 , we have that

$$
\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ Q \mid P}} \operatorname{deg} Q=\sum_{\substack{R \in \mathbb{P}\left(F_{2 k}\right) \\ R \mid P}} \operatorname{deg} R=\sum_{\substack{R \in \mathbb{P}\left(F_{2 k}\right) \\ R \mid P}} f(R \mid P) \operatorname{deg} P=\left[F_{2 k}: F_{k}\right]=(l-1)^{k}
$$

Now we give the proof of Theorem 3.1. We first recall from [7, Definition 3.4.3] that the different of any finite separable extension of function fields F^{\prime} / F is defined as follows:

$$
\operatorname{Diff}\left(F^{\prime} / F\right)=\sum_{P \in \mathbb{P}(F)} \sum_{\substack{Q \in \mathbb{P}\left(F^{\prime}\right) \\ Q \mid P}} d(Q \mid P) Q
$$

Proof [Proof of Theorem 3.1] We know from Theorem 2.2(iii) that

$$
R(\mathcal{F})=\left\{P \in \mathbb{P}\left(F_{0}\right): x_{0}(P)=\alpha \text { for some } \alpha \in \mathbb{F}_{l}\right\}
$$

Moreover, since the tower \mathcal{F} is tame, for any $P \in \mathbb{P}\left(F_{0}\right)$ and $Q \in \mathbb{P}\left(F_{n}\right)$ with $Q \mid P$, by Dedekind's different theorem [7, pp. 100] the different exponent of $Q \mid P$ is

$$
d(Q \mid P)=e(Q \mid P)-1
$$

Hence, the degree of the different of F_{n} / F_{0} is

$$
\begin{equation*}
\operatorname{deg} \operatorname{Diff}\left(F_{n} / F_{0}\right)=\sum_{P \in R(\mathcal{F})} \sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ Q \mid P}}(e(Q \mid P)-1) \operatorname{deg} Q \tag{3.2}
\end{equation*}
$$

By Lemma 3.2, all places P of F_{0} with $x_{0}(P) \in \mathbb{F}_{l} \backslash\{-b\}$ are totally ramified in \mathcal{F}, and so for any $Q \in \mathbb{P}\left(F_{n}\right)$ with $Q \mid P$, we have that

$$
\begin{equation*}
e(Q \mid P)=\left[F_{n}: F_{0}\right]=(l-1)^{n} \tag{3.3}
\end{equation*}
$$

Now let $Q \in \mathbb{P}\left(F_{n}\right)$ and $P=\left(x_{0}=-b\right) \in \mathbb{P}\left(F_{0}\right)$ such that $Q \mid P$. Then by Lemma 3.3, we have the following situations:
$(*) x_{n}(Q) \in \mathbb{F}_{l}^{*}$ and $d(Q \mid P)=e(Q \mid P)-1=0$,
$\left(^{* *}\right) x_{n}(Q)=0$. In this case, there exists $1 \leq k<n$ such that at $P^{\prime}:=Q \cap F_{k}$, we have $x_{k}\left(P^{\prime}\right)=\alpha \in \mathbb{F}_{l}^{*} \backslash\{-b\}$. Hence, P^{\prime} is in the set of R_{k} given in Lemma 3.4. Conversely, for any $P^{\prime} \in R_{k}$, with $1 \leq k \leq k$, it follows from Eq. (3.1) that $P^{\prime} \mid\left(x_{0}=-b\right)$. By Lemma 3.3(ii), when $n<2 k+1$, we have $d(Q \mid P)=e(Q \mid P)-1=0$. When $n \geq 2 k+1$, by using Lemma 3.3(ii), we obtain that

$$
\begin{align*}
d(Q \mid P) & =e(Q \mid P)-1=(l-1)^{n-2 k}-1 \\
& =e\left(Q \mid P^{\prime}\right)-1=d\left(Q \mid P^{\prime}\right) \tag{3.4}
\end{align*}
$$

Now let

$$
A:=\sum_{\substack{P \in R(\mathcal{F}) \\ x_{0}(P)=-b}} \sum_{Q \mid P} d(Q \mid P) \operatorname{deg} Q
$$

Then by using Eq. (3.4), $\left(^{*}\right),\left({ }^{* *}\right)$, and Lemma 3.4, we get the following:

$$
\begin{align*}
A & =\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \sum_{\substack{P^{\prime} \in R_{k} \\
Q \mid P^{\prime}}} d\left(Q \mid P^{\prime}\right) \operatorname{deg} Q \\
& =\sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \# R_{k}\left((l-1)^{n-2 k}-1\right)(l-1)^{k} \\
& =(l-2)\left((l-1)^{n} \sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor-1} \frac{1}{(l-1)^{k+1}}-\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor-1}(l-1)^{k+1}\right) \\
& =(l-2)(l-1)^{n-1}\left(\frac{1}{\left.(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor}-1\right)\left(\frac{l-1}{2-l}\right)-}\right. \\
& (l-2)(l-1)\left(\frac{(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor}-1}{l-2}\right) \\
= & -(l-1)^{n-\left\lfloor\frac{n-1}{2}\right\rfloor}+(l-1)^{n}-(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}+(l-1) . \tag{3.5}
\end{align*}
$$

Now let Q be a place of F_{n}. By using Theorem 2.2(iii) and combining (3.2), (3.3), and (3.5), we obtain for all $n \geq 1$

$$
\begin{aligned}
\operatorname{deg} \operatorname{Diff}\left(F_{n} / F_{0}\right)= & \sum_{\substack{P \in R(\mathcal{F}) \\
x_{0}(P) \in \mathbb{F}_{l} \backslash\{-b\}}} \sum_{Q \mid P} d(Q \mid P) \operatorname{deg} Q+\sum_{\substack{P \in R(\mathcal{F}) \\
x_{0}(P)=-b}} \sum_{Q \mid P} d(Q \mid P) \operatorname{deg} Q \\
= & (l-1)\left[(l-1)^{n}-1\right]-(l-1)^{n-\left\lfloor\frac{n-1}{2}\right\rfloor}+(l-1)^{n}- \\
& (l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}+(l-1) \\
= & l(l-1)^{n}-(l-1)^{n-\left\lfloor\frac{n-1}{2}\right\rfloor}-(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1} \\
= & \begin{cases}l(l-1)^{n}-l(l-1)^{n / 2} & \text { if } n \equiv 0 \\
l(l-1)^{n}-2(l-1)^{(n+1) / 2} & \text { if } n \equiv 1 \bmod 2 \\
\bmod 2\end{cases}
\end{aligned}
$$

Now by using the Hurwitz genus formula [7, pp.99] for the extension F_{n} / F_{0}, the desired result follows:

$$
\begin{aligned}
2 g\left(F_{n}\right)-2 & =\left[F_{n}: F_{0}\right]\left(2 g\left(F_{0}\right)-2\right)+\operatorname{deg} \operatorname{Diff}\left(F_{n} / F_{0}\right) \\
& =(l-1)^{n}\left(2 g\left({ }_{0} F\right)-2\right)+\operatorname{deg} \operatorname{Diff}\left(F_{n} / F_{0}\right) \\
& = \begin{cases}(l-2)(l-1)^{n}-l(l-1)^{n / 2} & \text { if } n \equiv 0 \\
(l-2)(l-1)^{n}-2(l-1)^{(n+1) / 2} & \text { if } n \equiv 1 \\
\bmod 2 \\
\bmod 2\end{cases}
\end{aligned}
$$

The following corollary is an immediate consequence of Theorem 3.1:
Corollary 3.5 The genus of the tower $\mathcal{F} / \mathbb{F}_{q}$ is

$$
\gamma(\mathcal{F})=\frac{l-2}{2}
$$

Next we show that when $q=2^{k}$ with $k \geq 2$ the limit of the tower \mathcal{F} over \mathbb{F}_{q} attains the Garcia and Stichtenoth lower bound given in Theorem 2.2(v).

Theorem 3.6 Suppose that $r=1$, i.e. l is a power of 2 and $q=l$. Then

$$
\lambda(\mathcal{F})=\frac{2}{l-2}
$$

Proof We know that $\lambda(\mathcal{F})=\nu(\mathcal{F}) / \gamma(\mathcal{F})$. As $\gamma(\mathcal{F})$ is given in Corollary 3.5, it is enough to compute $\nu(\mathcal{F})$. For this, we need to estimate $N\left(F_{n}\right)$ for all $n \geq 0$. Since $q=l$ and each rational place of F_{n} / \mathbb{F}_{q} lies over a rational place of F_{0} / F_{q}, we have that

$$
\begin{equation*}
N\left(F_{n}\right)=\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ x_{0}(Q) \in \mathbb{F}_{n} \backslash\{-b\}}} 1+\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ x_{0}(Q)=-b}} 1+\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\ x_{0}(Q)=\infty}} 1 \tag{3.6}
\end{equation*}
$$

Let $P \in \mathbb{P}\left(F_{0}\right)$ be a rational place and $n \geq 1$. If P is totally ramified in F_{n}, then P has only one rational extension in F_{n}. If P splits completely in F_{n}, then P has $\left[F_{n}: F_{0}\right]$ rational extensions in F_{n}. Hence, by

Lemmas 3.2, 3.3, and 3.4 and Theorem 2.2(ii), for any $n, k \geq 1$ with $n \geq k$, we have

$$
\begin{gather*}
\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
x_{0}(Q) \in \mathbb{F}_{l} \backslash\{-b\}}} 1=l-1, \quad \sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
x_{0}(Q)=\infty}} 1=(l-1)^{n}, \text { and } \tag{3.7}\\
\sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
x_{0}(Q)=-b}} 1 \leq \sum_{k=1}^{n-1} \sum_{P_{k} \in R_{k}} \sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
Q \mid P_{k}}} 1 \leq B, \text { where } B:=\sum_{k=1}^{n-1} \sum_{P_{k} \in R_{k}} \sum_{\substack{Q \in \mathbb{P}\left(F_{n}\right) \\
Q \mid P_{k}}} \operatorname{deg} Q .
\end{gather*}
$$

By using Lemma 3.4(iii), we obtain the following:

$$
\begin{align*}
B \leq & \sum_{k=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \# R_{k} \cdot(l-1)^{k}+\sum_{k=\left\lfloor\frac{n-1}{2}\right\rfloor+1}^{n-1} \# R_{k} \cdot(l-1)^{n-k} \\
= & (l-2)\left(\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor-1}(l-1)^{k+1}+(l-1)^{n} \sum_{k=\left\lfloor\frac{n-1}{2}\right\rfloor+1}^{n} \frac{1}{(l-1)^{k}}\right) \\
= & (l-2)(l-1)\left[\frac{(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor}}{l-2}\right]+ \\
& (l-2)(l-1)^{n}\left[\frac{1}{(l-1)^{n+1}}-\frac{1}{(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}}\right]\left(\frac{l-1}{2-l}\right) \\
= & (l-1)^{\left\lfloor(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor}-1\right]-} \\
& (l-1)^{n+1}\left[\frac{1}{(l-1)^{n+1}}-\frac{1}{(l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}}\right] \\
= & (l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}-(l-1)-1+(l-1)^{n-\left\lfloor\frac{n-1}{2}\right\rfloor} \\
= & (l-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}+(l-1)^{n-\left\lfloor\frac{n-1}{2}\right\rfloor}-l . \tag{3.8}
\end{align*}
$$

Now by substituting each value of (3.7) and (3.8) for the sums involved in Eq. (3.6), the following follows:

$$
(l-1)^{n}+(l-1) \leq N\left(F_{n}\right) \leq(l-1)^{n}+(l-1)+A_{n},
$$

where

$$
A_{n}:= \begin{cases}l(l-1)^{n / 2}-l & \text { if } n \equiv 0 \quad \bmod 2 \\ 2(l-1)^{(n+1) / 2}-l & \text { if } n \equiv 1 \quad \bmod 2\end{cases}
$$

Hence, the splitting rate of $\mathcal{F} / \mathbb{F}_{q}$ is

$$
\begin{equation*}
\nu(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{N\left(F_{n}\right)}{\left[F_{n}: F_{0}\right]}=1 \tag{3.9}
\end{equation*}
$$

Now by using Corollary 3.5 and (3.9) we obtain the desired result.
We here conjecture that the limit of the tower \mathcal{F} attains the Garcia and Stichtenoth lower bound for all $r \geq 1$.

References

[1] Ballet S, Rolland R. Lower bounds on the class number of algebraic function fields defined over any finite field. J Théor Nombres Bordeaux 2012; 24: 505-540.
[2] Garcia A, Stichtenoth H. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. Invent Math 1995; 121: 211-222.
[3] Garcia A, Stichtenoth H, Rück HG. On tame towers over finite fields. J Reine Angew Math 2003; 557: 53-80.
[4] Garcia A, Stichtenoth H, Thomas M. On towers and composita of towers of function fields over finite fields. Finite Fields Th App 1997; 3: 257-274.
[5] Gerard VDG, Vlugt MVD. An asymptotically good tower of curves over the field with eight elements. B Lond Math Soc 2002; 34.03: 291-300.
[6] Hess F, Stichtenoth H, Tutdere S. On invariants of towers of function fields over finite fields. J Algebra Appl 2013; 12 477-487.
[7] Stichtenoth H. Algebraic Function Fields and Codes. 2nd ed. Berlin, Germany: Springer, 2009.
[8] Tsfasman MA, Vladut SG, Zink T. Modular curves, Shimura curves and Goppa codes, better than the VarshamovGilbert bound. Math Nachr 1982; 109: 21-28.
[9] Tutdere S. On the asymptotic theory of towers of function fields over finite fields. PhD, Sabancı University, İstanbul, Turkey, 2012.
[10] Wulftange J. Zahme Türme algebraischer Funktionenkörper. PhD, Essen University, Essen, Germany, 2002.

[^0]: *Correspondence: stutdere@gmail.com
 2010 AMS Mathematics Subject Classification: .

