

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

On a tower of Garcia and Stichtenoth

Seher TUTDERE*

Department of Mathematics, Gebze Institute of Technology, Cayrova Campus, Gebze, Kocaeli, Turkey

Received: 28.10.2013 •)	Accepted: 13.12.2013	•	Published Online: 14.03.2014	٠	Printed: 11.04.2014
-------------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: In 2003, Garcia and Stichtenoth constructed a recursive tower $\mathcal{F} = (F_n)_{n>0}$ of algebraic function fields over the finite field \mathbb{F}_q , where $q = l^r$ with $r \ge 1$ and l > 2 is a power of the characteristic of \mathbb{F}_q . They also gave a lower bound for the limit of this tower. In this paper, we compute the exact value of the genus of the algebraic function field F_n/\mathbb{F}_q for each $n \ge 0$. Moreover, we prove that when $q = 2^k$, with $k \ge 2$, the limit of the tower \mathcal{F} attains the lower bound given by Garcia and Stichtenoth.

Key words: Towers of algebraic function fields, genus, number of places

1. Introduction

Let \mathbb{F}_q be a finite field and F/\mathbb{F}_q be an algebraic function field of one variable with the field \mathbb{F}_q as its full constant field. Throughout this paper, we shall simply refer to F/\mathbb{F}_q as a function field. Here we consider towers of function fields over \mathbb{F}_q (for the definition of a tower, see Section 2). The limit $\lambda(\mathcal{F})$ of a tower $\mathcal{F} = (F_n)_{n \ge 0}$ over \mathbb{F}_q is defined as

$$\lambda(\mathcal{F}) := \lim_{n \to \infty} \frac{N(F_n)}{g(F_n)},$$

where $N(F_n)$ and $g(F_n)$ denote the number of rational places and the genus, respectively, of F_n/\mathbb{F}_q . Towers with $\lambda(\mathcal{F}) > 0$ are called *asymptotically good* towers. Such towers are quite useful in cryptography and coding theory. In particular, asymptotically good recursive towers are used to construct algebraic-geometry codes with good parameters (for the definition of a recursive tower, see Definition 2.1). The Drinfeld–Vladut bound says that $\lambda(\mathcal{F}) \leq q^{1/2} - 1$. By using recursive towers with limits attaining this bound, one can construct towers exceeding the Gilbert–Varshamov bound [8]. Moreover, the function fields in such towers have a large class number [1].

For a tower $\mathcal{F} = (F_n)_{n>0}$ over \mathbb{F}_q , usually one can estimate the limit of the tower without knowing the precise value of the genus of each function field F_n/\mathbb{F}_q (for instance, see [4, 6, 7, 10]). There are very few towers for which one knows the exact value of the genus of F_n/\mathbb{F}_q (for instance, see [2, 5, 9]). However, knowing the exact value of the genus of F_n/\mathbb{F}_q is quite useful in some applications. For instance, in [1] it was shown that to have a good estimation for the class number of F_n/\mathbb{F}_q , it is good to know the exact value of the genus of F_n/\mathbb{F}_q . This is the main motivation of this paper. Here, our first aim is to compute the genus of F_n/\mathbb{F}_q (for

^{*}Correspondence: stutdere@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: .

all $n \ge 0$) for a tower constructed by Garcia and Stichtenoth. This tower is defined as follows: let $q = l^r$ with $r \ge 1$ and l > 2 be a power of the characteristic of \mathbb{F}_q . Assume that $r \equiv 0 \mod 2$ or $l \equiv 0 \mod 2$. In [3, Theorem 3.11], Garcia and Stichtenoth proved that the polynomial

$$F(X,Y) = Y^{l-1} + (X+b)^{l-1} - 1 \in \mathbb{F}_q[X,Y], \text{ with } b \in \mathbb{F}_l^*,$$

defines a recursive tower \mathcal{F} over \mathbb{F}_q . They also showed that the limit of this tower satisfies the inequality $\lambda(\mathcal{F}) \geq 2/(l-2)$. Our second aim is to prove that when $q = 2^k$, with $k \geq 2$, the limit of the tower \mathcal{F} attains the lower bound given by Garcia and Stichtenoth.

2. Preliminaries

Throughout this paper, we use basic facts and notations as in [7]. We will consider (algebraic) function fields F/\mathbb{F}_q of one variable over \mathbb{F}_q . In all cases, \mathbb{F}_q will be the full constant field of F. We denote by g(F), N(F), and $\mathbb{P}(F)$ the genus, the number of rational places, and the set of all places of F/\mathbb{F}_q , respectively. For a rational function field $\mathbb{F}_q(x)$ we will write (x = a) for the place that is the zero of x - a (where $a \in \mathbb{F}_q$) and $(x = \infty)$ for the pole of x. We denote them by P_a and P_{∞} , respectively. This means we have that $x(P_a) = a$ and $x(P_{\infty}) = \infty$.

Let E/F be a finite separable extension, and let P and Q be places of F/\mathbb{F}_q and E/\mathbb{F}_q , respectively. We will write Q|P if the place Q lies above P. In this case, we will denote by

$$e(Q|P), f(Q|P), \text{ and } d(Q|P)$$

the ramification index, the relative degree, and the different exponent, respectively, of Q|P. Moreover, since $P = Q \cap F$, the place P is called the *restriction* of Q to F.

An infinite sequence $\mathcal{F} = (F_n)_{n \geq 0}$ of function fields F_n/\mathbb{F}_q is called a *tower* over \mathbb{F}_q if

$$F_0 \subsetneqq F_1 \subsetneqq F_2 \gneqq \dots$$

all extensions F_{n+1}/F_n are finite separable, and $g(F_n) \to \infty$ as $n \to \infty$.

Definition 2.1 Let $\mathcal{F} = (F_n)_{n \ge 0}$ be a tower over \mathbb{F}_q and $F(X, Y) \in \mathbb{F}_q[X, Y]$ be a nonconstant polynomial. Suppose that there exist elements $x_n \in F_n$ (for $n \ge 0$) such that

$$F_{n+1} = F_n(x_{n+1})$$
 with $F(x_n, x_{n+1}) = 0$ for all $n \ge 0$.

Then we say that the tower \mathcal{F} is recursively defined over \mathbb{F}_q by the polynomial F(X,Y).

For a tower $\mathcal{F} = (F_n)_{n \geq 0}$ over \mathbb{F}_q , one has the following [4, Lemma 3.4]:

- (i) The sequence $(g(F_n)/[F_n:F_0])_{n\geq 0}$ is convergent in $\mathbb{R}^{>0} \cup \{\infty\}$. The limit of this sequence is called the *genus of tower* \mathcal{F} and it is denoted by $\gamma(\mathcal{F})$.
- (ii) The sequence $(N(F_n)/[F_n:F_0])_{n\geq 0}$ is convergent in $\mathbb{R}^{\geq 0}$. The limit of this sequence is called the *splitting* rate of \mathcal{F} and it is denoted by $\nu(\mathcal{F})$.

Hence, by using (i) and (ii) it is clear that the sequence $(N(F_n)/g(F_n))_{n\geq 0}$ converges in $\mathbb{R}^{\geq 0}$. Its limit is called the *limit* of the tower \mathcal{F} and denoted by $\lambda(\mathcal{F})$. By definition, $\lambda(\mathcal{F}) = \nu(\mathcal{F})/\gamma(\mathcal{F})$.

A tower $\mathcal{F} = (F_n)_{n\geq 0}$ over \mathbb{F}_q is said to be a *tame* tower if all extensions F_{n+1}/F_n are tame (i.e. all ramification indices in F_{n+1}/F_n are coprime to the characteristic of \mathbb{F}_q). Moreover, we recall that for any tower \mathcal{F} over \mathbb{F}_q the set

$$R(\mathcal{F}) := \left\{ P \in \mathbb{P}(F_0) : P \text{ is ramified in } F_n \text{ for some } n \ge 1 \right\}$$

is called the *ramification locus* of \mathcal{F} .

In this paper, we will study the following tame tower introduced by Garcia and Stichtenoth in [3, Section 3]:

Theorem 2.2 Let $q = l^r$ with $r \ge 1$ and l > 2 be a power of the characteristic of \mathbb{F}_q . Assume that

$$r \equiv 0 \mod 2$$
 or $l \equiv 0 \mod 2$

Then the polynomial

$$F(X,Y) = Y^{l-1} + (X+b)^{l-1} - 1 \in \mathbb{F}_q[X,Y], \quad with \ b \in \mathbb{F}_l^*,$$
(2.1)

defines a recursive tower $\mathcal{F} = (F_n)_{n \geq 0}$ over \mathbb{F}_q with the following properties:

- (i) $[F_n:F_0] = (l-1)^n$ for all $n \ge 0$.
- (ii) The place $(x_0 = \infty) \in \mathbb{P}(F_0)$ splits completely in \mathcal{F} .
- (iii) Letting $F = F_0 := \mathbb{F}_q(x_0)$ be the rational function field, we have that

$$R(\mathcal{F}) = \left\{ P \in \mathbb{P}(F_0) : x_0(P) = \alpha \text{ for some } \alpha \in \mathbb{F}_l \right\}.$$

- (iv) The genus of \mathcal{F} satisfies the inequality $\gamma(\mathcal{F}) \leq (l-2)/2$.
- (v) $\lambda(\mathcal{F}) \geq 2/(l-2)$.

Proof For the proof, see [3, Theorem 3.11 and Proposition 3.9].

3. Main results

From now on, $\mathcal{F} = (F_n)_{n \geq 0}$ will denote the tower given in Theorem 2.2.

Theorem 3.1 For all $n \ge 0$, we have that

$$g(F_n) = \begin{cases} \left(\frac{l-2}{2}\right)(l-1)^n - \frac{l}{2}(l-1)^{n/2} + 1 & \text{if } n \equiv 0 \mod 2\\ \left(\frac{l-2}{2}\right)(l-1)^n - (l-1)^{(n+1)/2} + 1 & \text{if } n \equiv 1 \mod 2. \end{cases}$$

We prove Theorem 3.1 via the Lemmas 3.2, 3.3, and 3.4. First, let

$$f(X) := -(X+b)^{l-1} + 1 \in \mathbb{F}_q[X], \text{ with } b \in \mathbb{F}_l^*.$$

386

Since the tower \mathcal{F} is recursively defined by (2.1), we can set $F_0 = \mathbb{F}_q(x_0)$ and $F_{n+1} = F_n(x_{n+1})$ where

$$x_{n+1}^{l-1} = f(x_n) \quad \text{for all } n \ge 0.$$
 (3.1)

Note that $f(\alpha) = 0$ if and only if $\alpha \in \mathbb{F}_l \setminus \{-b\}$. Hence, by Kummer's extension theorem [7, pp. 122] and Kummer's theorem [7, pp. 86], we have the following ramification structure in $F_1/\mathbb{F}_q(x_0)$ and $F_1/\mathbb{F}_q(x_1)$:

- (1) Any place $(x_0 = \alpha) \in \mathbb{P}(F_0)$, with $\alpha \in \mathbb{F}_l \setminus \{-b\}$, is totally ramified in F_1 . If $P_\alpha \in \mathbb{P}(F_1)$ is a place lying above $(x_0 = \alpha)$, then $x_1(P_\alpha) = 0$.
- (2) The place $(x_0 = -b) \in \mathbb{P}(F_0)$ splits completely in F_1 . If $P \in \mathbb{P}(F_1)$ is a place lying above $(x_0 = -b)$, then $x_1(P) = \alpha$ for some $\alpha \in \mathbb{F}_l^*$.

From now on, the numbers in the figures will denote the corresponding ramification indices. To sum up (1) and (2), we have the following:

Figure 1. Ramification structure in $F_1/\mathbb{F}_q(x_0)$ and $F_1/\mathbb{F}_q(x_1)$.

Lemma 3.2 Let $S := \{P \in \mathbb{P}(F_0) : x_0(P) = \alpha \text{ for some } \alpha \in \mathbb{F}_l \setminus \{-b\}\}$. All $P \in S$ are totally ramified in \mathcal{F} .

Proof Let $P \in S$. It follows from Eq. (3.1) that for any $Q_n \in \mathbb{P}(F_n)$, $n \ge 1$, $Q_n | P$, we have $x_n(Q_n) = 0$. Hence, by applying Abhyankar's lemma [7, pp. 137] in Figure 2, we obtain that P is totally ramified in F_n for all $n \ge 1$.

Figure 2. Ramification of $(x_0 = \alpha)$ in \mathcal{F} .

Lemma 3.3 Let $P := (x_0 = -b) \in \mathbb{P}(F_0)$ and Q be a place of F_n/\mathbb{F}_q lying above P, for some $n \ge 1$. We have the following cases:

(i) $x_n(Q) \in \mathbb{F}_l^*$. In this case, e(Q|P) = 1.

(ii) $x_n(Q) = 0$. Then there exists $1 \le k \le n$ such that at $P' := Q \cap F_k$ we have $x_k(P') = \alpha$ for some $\alpha \in \mathbb{F}_l^* \setminus \{-b\}$ and

$$x_j(Q) = -b$$
 for all $0 \le j \le k - 1$.

In this case, if n < 2k + 1, then

$$e(Q|P) = 1.$$

If $n \geq 2k+1$, for any $P'' \in \mathbb{F}_{2k}$ with P''|P'|P, we have

$$e(Q|P) = e(Q|P'') = (l-1)^{n-2k}$$

Proof It follows immediately from Eq. (3.1) and Figure 1 that $x_n(Q) \in \mathbb{F}_l$. Using Figure 1 and applying Abhyankar's lemma [7, pp. 137] in Figure 3 yields the desired results in (i) and (ii).

Figure 3. Ramification of $(x_0 = -b)$ in \mathcal{F} .

Lemma 3.4 For any $k \ge 0$, set

$$R_k := \{ P \in \mathbb{P}(F_k) : x_k(P) = \alpha \text{ for some } \alpha \in \mathbb{F}_l^* \setminus \{-b\} \}.$$

Then the following hold:

- (i) For all $k \ge 1$, the place $(x_k = \alpha)$ of $\mathbb{F}_q(x_k)/\mathbb{F}_q$, with $\alpha \in \mathbb{F}_l^* \setminus \{-b\}$, is totally ramified in F_k .
- (ii) $\#R_k = l-2$ and deg P = 1 for all $P \in R_k$ with $k \ge 0$.
- (iii) For any $k \ge 0$, we have that

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q \mid P \\ P \in R_k}} \deg Q = \begin{cases} (l-1)^{n-k} & \text{if } n < 2k+1 \\ (l-1)^k & \text{if } n \ge 2k+1. \end{cases}$$

Proof (i) For k = 1, it is clear from Figure 1. For $k \ge 2$, let $P \in R_k$. It follows from Eq. (3.1) (or see Figure 1) that $(x_0(P) = -b)$. Hence, by applying Abhyankar's lemma [7, pp. 137] in Figure 3, we obtain the desired result.

(ii) For k = 0, we have $\#R_0 = l - 2$. For $k \ge 1$, as by (i) each place $(x_k = \alpha)$ is totally ramified in F_k , each has only one extension in F_k . Thus, the result follows.

(iii) Let $P \in R_k$ for some $k \ge 0$ and Q be a place of F_n lying above P, for some $n \ge k$. If k = 0, then by Lemma 3.2, P is totally ramified in F_n , and so (iii) holds. Now suppose that $k \ge 1$. Then it follows from Eq. (3.1) that

$$\begin{aligned} x_k(Q) &= x_k(P) = \alpha \quad \text{for some } \alpha \in \mathbb{F}_l^* \setminus \{-b\}, \\ x_i(Q) &= -b \quad \text{for all } i < k, \text{ and} \\ x_i(Q) &= 0 \quad \text{for all } k \le n. \end{aligned}$$

By (ii), deg P = 1. By Lemma 3.3(ii), for all $k \le n \le 2k$ the place P is unramified in F_n . Hence, by using fundamental equality [7, pp. 74] and Theorem 2.2(i),

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} \deg Q = \sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} f(Q|P) \deg P = [F_n : F_k] = (l-1)^{n-k}.$$

Now suppose that $n \ge 2k + 1$. Let $R = Q \cap F_{2k}$. By applying Lemma 3.3 with P'' := R, we obtain that $e(Q|R) = (l-1)^{n-2k} = [F_n : F_{2k}]$. That means that R is totally ramified in F_n for all $n \ge 2k + 1$, i.e. R has only one extension in F_n , which is Q and deg $R = \deg Q$. Since P is unramified in F_{2k} , again by applying fundamental equality [7, pp. 74] and Theorem 2.2, we have that

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} \deg Q = \sum_{\substack{R \in \mathbb{P}(F_{2k}) \\ R|P}} \deg R = \sum_{\substack{R \in \mathbb{P}(F_{2k}) \\ R|P}} f(R|P) \deg P = [F_{2k} : F_k] = (l-1)^k.$$

Now we give the proof of Theorem 3.1. We first recall from [7, Definition 3.4.3] that the different of any finite separable extension of function fields F'/F is defined as follows:

$$\operatorname{Diff}(F'/F) = \sum_{\substack{P \in \mathbb{P}(F) \\ Q \mid P}} \sum_{\substack{Q \in \mathbb{P}(F') \\ Q \mid P}} d(Q|P)Q.$$

Proof [Proof of Theorem 3.1] We know from Theorem 2.2(iii) that

$$R(\mathcal{F}) = \{ P \in \mathbb{P}(F_0) : x_0(P) = \alpha \text{ for some } \alpha \in \mathbb{F}_l \}.$$

Moreover, since the tower \mathcal{F} is tame, for any $P \in \mathbb{P}(F_0)$ and $Q \in \mathbb{P}(F_n)$ with Q|P, by Dedekind's different theorem [7, pp. 100] the different exponent of Q|P is

$$d(Q|P) = e(Q|P) - 1.$$

Hence, the degree of the different of F_n/F_0 is

$$\deg \operatorname{Diff}(F_n/F_0) = \sum_{\substack{P \in R(\mathcal{F}) \ Q \in \mathbb{P}(F_n) \\ Q|P}} \sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} (e(Q|P) - 1) \deg Q.$$
(3.2)

By Lemma 3.2, all places P of F_0 with $x_0(P) \in \mathbb{F}_l \setminus \{-b\}$ are totally ramified in \mathcal{F} , and so for any $Q \in \mathbb{P}(F_n)$ with Q|P, we have that

$$e(Q|P) = [F_n : F_0] = (l-1)^n.$$
(3.3)

Now let $Q \in \mathbb{P}(F_n)$ and $P = (x_0 = -b) \in \mathbb{P}(F_0)$ such that Q|P. Then by Lemma 3.3, we have the following situations:

- (*) $x_n(Q) \in \mathbb{F}_l^*$ and d(Q|P) = e(Q|P) 1 = 0,
- (**) $x_n(Q) = 0$. In this case, there exists $1 \le k < n$ such that at $P' := Q \cap F_k$, we have $x_k(P') = \alpha \in \mathbb{F}_l^* \setminus \{-b\}$. Hence, P' is in the set of R_k given in Lemma 3.4. Conversely, for any $P' \in R_k$, with $1 \le k \le k$, it follows from Eq. (3.1) that $P'|(x_0 = -b)$. By Lemma 3.3(ii), when n < 2k+1, we have d(Q|P) = e(Q|P) - 1 = 0. When $n \ge 2k + 1$, by using Lemma 3.3(ii), we obtain that

$$d(Q|P) = e(Q|P) - 1 = (l-1)^{n-2k} - 1$$

= $e(Q|P') - 1 = d(Q|P').$ (3.4)

Now let

$$A := \sum_{\substack{P \in R(\mathcal{F}) \\ x_0(P) = -b}} \sum_{Q|P} d(Q|P) \deg Q.$$

Then by using Eq. (3.4), (*), (**), and Lemma 3.4, we get the following:

$$A = \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} \sum_{P' \in R_k} d(Q|P') \deg Q$$

$$= \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} \#R_k((l-1)^{n-2k} - 1)(l-1)^k$$

$$= (l-2) \left((l-1)^n \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor - 1} \frac{1}{(l-1)^{k+1}} - \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor - 1} (l-1)^{k+1} \right)$$

$$= (l-2)(l-1)^{n-1} \left(\frac{1}{(l-1)^{\lfloor \frac{n-1}{2} \rfloor}} - 1 \right) \left(\frac{l-1}{2-l} \right) - (l-2)(l-1) \left(\frac{(l-1)^{\lfloor \frac{n-1}{2} \rfloor} - 1}{l-2} \right)$$

$$= -(l-1)^{n-\lfloor \frac{n-1}{2} \rfloor} + (l-1)^n - (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} + (l-1).$$
(3.5)

Now let Q be a place of F_n . By using Theorem 2.2(iii) and combining (3.2), (3.3), and (3.5), we obtain for all $n \ge 1$

$$\begin{split} \deg \operatorname{Diff}(F_n/F_0) &= \sum_{\substack{P \in R(\mathcal{F}) \\ x_0(P) \in \mathbb{F}_l \setminus \{-b\}}} \sum_{\substack{Q \mid P}} d(Q \mid P) \deg Q + \sum_{\substack{P \in R(\mathcal{F}) \\ x_0(P) = -b}} \sum_{\substack{Q \mid P}} d(Q \mid P) \deg Q \\ &= (l-1)[(l-1)^n - 1] - (l-1)^{n-\lfloor \frac{n-1}{2} \rfloor} + (l-1)^n - (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} + (l-1) \\ &= l(l-1)^n - (l-1)^{n-\lfloor \frac{n-1}{2} \rfloor} - (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} \\ &= \begin{cases} l(l-1)^n - l(l-1)^{n/2} & \text{if } n \equiv 0 \mod 2 \\ l(l-1)^n - 2(l-1)^{(n+1)/2} & \text{if } n \equiv 1 \mod 2 \end{cases}. \end{split}$$

Now by using the Hurwitz genus formula [7, pp.99] for the extension F_n/F_0 , the desired result follows:

$$\begin{aligned} 2g(F_n) - 2 &= [F_n : F_0](2g(F_0) - 2) + \deg \operatorname{Diff}(F_n/F_0) \\ &= (l - 1)^n (2g(_0F) - 2) + \deg \operatorname{Diff}(F_n/F_0) \\ &= \begin{cases} (l - 2)(l - 1)^n - l(l - 1)^{n/2} & \text{if } n \equiv 0 \mod 2\\ (l - 2)(l - 1)^n - 2(l - 1)^{(n+1)/2} & \text{if } n \equiv 1 \mod 2. \end{cases} \end{aligned}$$

The following corollary is an immediate consequence of Theorem 3.1:

Corollary 3.5 The genus of the tower \mathcal{F}/\mathbb{F}_q is

$$\gamma(\mathcal{F}) = \frac{l-2}{2}.$$

Next we show that when $q = 2^k$ with $k \ge 2$ the limit of the tower \mathcal{F} over \mathbb{F}_q attains the Garcia and Stichtenoth lower bound given in Theorem 2.2(v).

Theorem 3.6 Suppose that r = 1, i.e. l is a power of 2 and q = l. Then

$$\lambda(\mathcal{F}) = \frac{2}{l-2}.$$

Proof We know that $\lambda(\mathcal{F}) = \nu(\mathcal{F})/\gamma(\mathcal{F})$. As $\gamma(\mathcal{F})$ is given in Corollary 3.5, it is enough to compute $\nu(\mathcal{F})$. For this, we need to estimate $N(F_n)$ for all $n \ge 0$. Since q = l and each rational place of F_n/\mathbb{F}_q lies over a rational place of F_0/F_q , we have that

$$N(F_n) = \sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) \in \mathbb{F}_l \setminus \{-b\}}} 1 + \sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) = -b}} 1 + \sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) = \infty}} 1.$$
(3.6)

Let $P \in \mathbb{P}(F_0)$ be a rational place and $n \ge 1$. If P is totally ramified in F_n , then P has only one rational extension in F_n . If P splits completely in F_n , then P has $[F_n : F_0]$ rational extensions in F_n . Hence, by

Lemmas 3.2, 3.3, and 3.4 and Theorem 2.2(ii), for any $n, k \ge 1$ with $n \ge k$, we have

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) \in \mathbb{F}_l \setminus \{-b\}}} 1 = l-1, \quad \sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) = \infty}} 1 = (l-1)^n, \text{ and}$$
(3.7)

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ x_0(Q) = -b}} 1 \le \sum_{k=1}^{n-1} \sum_{\substack{P_k \in R_k \\ Q \in \mathbb{P}(F_n) \\ Q|P_k}} \sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P_k}} 1 \le B, \text{ where } B := \sum_{k=1}^{n-1} \sum_{\substack{P_k \in R_k \\ Q \in \mathbb{P}(F_n) \\ Q|P_k}} \deg Q.$$

By using Lemma 3.4(iii), we obtain the following:

$$B \leq \sum_{k=1}^{\lfloor \frac{n-1}{2} \rfloor} \#R_k \cdot (l-1)^k + \sum_{k=\lfloor \frac{n-1}{2} \rfloor + 1}^{n-1} \#R_k \cdot (l-1)^{n-k}$$

$$= (l-2) \left(\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor - 1} (l-1)^{k+1} + (l-1)^n \sum_{k=\lfloor \frac{n-1}{2} \rfloor + 1}^n \frac{1}{(l-1)^k} \right)$$

$$= (l-2)(l-1) \left[\frac{(l-1)^{\lfloor \frac{n-1}{2} \rfloor} - 1}{l-2} \right] + (l-2)(l-1)^n \left[\frac{1}{(l-1)^{n+1}} - \frac{1}{(l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1}} \right] \left(\frac{l-1}{2-l} \right)$$

$$= (l-1) \left[(l-1)^{\lfloor \frac{n-1}{2} \rfloor} - 1 \right] - (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} - \frac{1}{(l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1}} \right]$$

$$= (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} - (l-1) - 1 + (l-1)^{n-\lfloor \frac{n-1}{2} \rfloor}$$

$$= (l-1)^{\lfloor \frac{n-1}{2} \rfloor + 1} + (l-1)^{n-\lfloor \frac{n-1}{2} \rfloor} - l.$$
(3.8)

Now by substituting each value of (3.7) and (3.8) for the sums involved in Eq. (3.6), the following follows:

$$(l-1)^n + (l-1) \le N(F_n) \le (l-1)^n + (l-1) + A_n,$$

where

$$A_n := \begin{cases} l(l-1)^{n/2} - l & \text{if } n \equiv 0 \mod 2\\ 2(l-1)^{(n+1)/2} - l & \text{if } n \equiv 1 \mod 2. \end{cases}$$

Hence, the splitting rate of \mathcal{F}/\mathbb{F}_q is

$$\nu(\mathcal{F}) = \lim_{n \to \infty} \frac{N(F_n)}{[F_n : F_0]} = 1.$$
(3.9)

Now by using Corollary 3.5 and (3.9) we obtain the desired result.

We here conjecture that the limit of the tower \mathcal{F} attains the Garcia and Stichtenoth lower bound for all $r \geq 1$.

References

- Ballet S, Rolland R. Lower bounds on the class number of algebraic function fields defined over any finite field. J Théor Nombres Bordeaux 2012; 24: 505–540.
- [2] Garcia A, Stichtenoth H. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. Invent Math 1995; 121: 211–222.
- [3] Garcia A, Stichtenoth H, Rück HG. On tame towers over finite fields. J Reine Angew Math 2003; 557: 53-80.
- [4] Garcia A, Stichtenoth H, Thomas M. On towers and composita of towers of function fields over finite fields. Finite Fields Th App 1997; 3: 257–274.
- [5] Gerard VDG, Vlugt MVD. An asymptotically good tower of curves over the field with eight elements. B Lond Math Soc 2002; 34.03: 291–300.
- [6] Hess F, Stichtenoth H, Tutdere S. On invariants of towers of function fields over finite fields. J Algebra Appl 2013; 12 477–487.
- [7] Stichtenoth H. Algebraic Function Fields and Codes. 2nd ed. Berlin, Germany: Springer, 2009.
- [8] Tsfasman MA, Vladut SG, Zink T. Modular curves, Shimura curves and Goppa codes, better than the Varshamov-Gilbert bound. Math Nachr 1982; 109: 21–28.
- [9] Tutdere S. On the asymptotic theory of towers of function fields over finite fields. PhD, Sabanci University, İstanbul, Turkey, 2012.
- [10] Wulftange J. Zahme Türme algebraischer Funktionenkörper. PhD, Essen University, Essen, Germany, 2002.