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Abstract: In 2003, Garcia and Stichtenoth constructed a recursive tower F = (Fy,)n>0 of algebraic function fields over
the finite field Fy, where ¢ =" with » > 1 and I > 2 is a power of the characteristic of F,. They also gave a lower
bound for the limit of this tower. In this paper, we compute the exact value of the genus of the algebraic function field
F,/Fq for each n > 0. Moreover, we prove that when ¢ = 2% with k > 2, the limit of the tower F attains the lower
bound given by Garcia and Stichtenoth.

Key words: Towers of algebraic function fields, genus, number of places

1. Introduction

Let F, be a finite field and F/F, be an algebraic function field of one variable with the field F, as its full
constant field. Throughout this paper, we shall simply refer to F'/F, as a function field. Here we consider towers
of function fields over F, (for the definition of a tower, see Section 2). The limit A\(F) of a tower F = (F},)n>0

over F, is defined as

i

where N(F),) and g(F,) denote the number of rational places and the genus, respectively, of F,,/IF,. Towers
with A(F) > 0 are called asymptotically good towers. Such towers are quite useful in cryptography and coding
theory. In particular, asymptotically good recursive towers are used to construct algebraic-geometry codes with
good parameters (for the definition of a recursive tower, see Definition 2.1). The Drinfeld-Vladut bound says
that A\(F) < ¢'/? — 1. By using recursive towers with limits attaining this bound, one can construct towers
exceeding the Gilbert—Varshamov bound [8]. Moreover, the function fields in such towers have a large class
number [1].

For a tower F = (Fy,)n>0 over Fy, usually one can estimate the limit of the tower without knowing the
precise value of the genus of each function field F,,/F, (for instance, see [4, 6, 7, 10] ). There are very few towers
for which one knows the exact value of the genus of F,,/F, (for instance, see [2, 5, 9]). However, knowing the
exact value of the genus of F,,/F, is quite useful in some applications. For instance, in [1] it was shown that
to have a good estimation for the class number of F,,/F,, it is good to know the exact value of the genus of

F,/F,. This is the main motivation of this paper. Here, our first aim is to compute the genus of F,, /F, (for
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all n > 0) for a tower constructed by Garcia and Stichtenoth. This tower is defined as follows: let ¢ = I" with
r > 1 and [ > 2 be a power of the characteristic of F,. Assume that » =0 mod 2 or ! = 0 mod 2. In [3,
Theorem 3.11], Garcia and Stichtenoth proved that the polynomial

FX,Y)=Y"'+ (X +b)!"! —~1€F,[X,Y], with b€ Fj,

defines a recursive tower F over F,. They also showed that the limit of this tower satisfies the inequality

A(F) >2/(1 —2). Our second aim is to prove that when ¢ = 2%, with k > 2, the limit of the tower F attains
the lower bound given by Garcia and Stichtenoth.

2. Preliminaries
Throughout this paper, we use basic facts and notations as in [7]. We will consider (algebraic) function fields
F/F, of one variable over F,. In all cases, I, will be the full constant field of F'. We denote by g(F), N(F),
and P(F') the genus, the number of rational places, and the set of all places of F'/IF,, respectively. For a rational
function field F,(x) we will write (z = a) for the place that is the zero of  —a (where a € F;) and (z = o0)
for the pole of . We denote them by P, and P, respectively. This means we have that z(P,) = a and
x(Py) = 00.

Let E/F be a finite separable extension, and let P and @ be places of F/F, and E/F,, respectively.
We will write Q|P if the place @ lies above P. In this case, we will denote by

e(Q[P), f(QIP), and d(Q|P)

the ramification index, the relative degree, and the different exponent, respectively, of Q|P. Moreover, since
P =QnNF, the place P is called the restriction of Q to F'.

An infinite sequence F = (F},),>0 of function fields F,/F, is called a tower over F, if

all extensions F,y1/F, are finite separable, and g(F,,) — oo as n — 0.

Definition 2.1 Let F = (F,)pn>0 be a tower over F, and F(X,Y) € F,[X,Y] be a nonconstant polynomial.
Suppose that there exist elements x,, € F,, (for n > 0) such that

Foy1 = Fo(zny1) with F(x,, xh41) =0 for all n > 0.
Then we say that the tower F is recursively defined over Fy by the polynomial F(X,Y).
For a tower F = (F,)p>0 over F,, one has the following [4, Lemma 3.4]:

(i) The sequence (g(F,)/[F, : Fy]) is convergent in R”% U {co}. The limit of this sequnce is called the

n>0

genus of tower F and it is denoted by ~(F).

(ii) The sequence (N(F,)/[F, : FO])n> , 1s convergent in RZ?. The limit of this sequence is called the splitting

rate of F and it is denoted by v(F).
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Hence, by using (i) and (ii) it is clear that the sequence (N(F,)/g(F,)) converges in RZC. Its limit is called

n>0
the limit of the tower F and denoted by A(F). By definition, A\(F) = v(F)/vy(F).

A tower F = (F),)n>0 over Fy is said to be a tame tower if all extensions F,41/F,, are tame (i.e. all
ramification indices in F),41/F, are coprime to the characteristic of F,;). Moreover, we recall that for any tower
F over F, the set

R(F):={P € P(Fp): P is ramified in F, for some n > 1}

is called the ramification locus of F.
In this paper, we will study the following tame tower introduced by Garcia and Stichtenoth in [3,

Section 3]:
Theorem 2.2 Let ¢ =1" with r > 1 and | > 2 be a power of the characteristic of F,. Assume that

r=0mod 2 or [ =0 mod 2.

Then the polynomial
FX,Y)=Y"' '+ (X +b)!"' —1€F,[X,Y], withbecTF}, (2.1)

defines a recursive tower F = (Fy,)p>0 over F, with the following properties:

(i) [Fn:Fol=(—-1)" foralln>0.

(i) The place (xo = o0) € P(Fy) splits completely in F .

(iii) Letting F = Fy := F4(zo) be the rational function field, we have that

R(F)={P e P(Fy) : zo(P) = o for some o € F; }.
(iv) The genus of F satisfies the inequality v(F) < (I —2)/2.

(v) MF)>2/(1-2).
Proof For the proof, see [3, Theorem 3.11 and Proposition 3.9]. O

3. Main results

From now on, F = (F,),>0 will denote the tower given in Theorem 2.2.

Theorem 3.1 For all n > 0, we have that

(F,) = ()= =g -2 +1 ifn=0 mod 2
S (%)(lfl)n*(lfl)(nﬂ)/erl ifn=1 mod 2.

We prove Theorem 3.1 via the Lemmas 3.2, 3.3, and 3.4. First, let

f(X):=—(X +b)'"t +1€F,[X], with beTF;.
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Since the tower F is recursively defined by (2.1), we can set Fy = F,(z¢) and F,,11 = Fy,(zp41) where
xi;ll = f(z,) forall n>0. (3.1)

Note that f(«a) = 0 if and only if o € F; \ {—b}. Hence, by Kummer’s extension theorem [7, pp. 122] and

Kummer’s theorem [7, pp. 86], we have the following ramification structure in Fy/Fy(x¢) and Fy/F,(z1):

(1) Any place (zo = a) € P(Fp), with « € F;\ {=b}, is totally ramified in Fy. If P, € P(F}) is a place lying
above (g = ), then z1(P,) =0.
(2) The place (g = —b) € P(Fy) splits completely in Fy. If P € P(F}) is a place lying above (xg = —b),

then z1(P) = «a for some « € F}.

From now on, the numbers in the figures will denote the corresponding ramification indices. To sum up (1) and

(2), we have the following:

NN

(zpg=a) (r]=a)
aE]F?\{*b} (21 =0) (wg = —b) alek‘;*

Figure 1. Ramification structure in Fi/Fq(zo) and Fi/Fq(x1).

Lemma 3.2 Let S :={P € P(Fy) : x9(P) =« for some a € F;\ {=b}}. All P € S are totally ramified in
F.

Proof Let P € S. It follows from Eq. (3.1) that for any @, € P(F,), n > 1, Q,|P, we have x,(Q,) = 0.
Hence, by applying Abhyankar’s lemma [7, pp. 137] in Figure 2, we obtain that P is totally ramified in F,, for

all n > 1.
14/\
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(zg = a) (1 =0) (zg =0)... (zn = 0) (zp41 =0)

Figure 2. Ramification of (zo = «) in F.

Lemma 3.3 Let P := (xg = —b) € P(Fy) and Q be a place of F,/F, lying above P, for some n > 1. We

have the following cases:

(i) z,(Q) € F}. In this case, e(Q|P) =1.
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(ii) xn(Q) = 0. Then there exists 1 < k < n such that at P’ := Q N Fy, we have zx(P') = a for some
acFr\{-b} and

zj(Q)=—-b forall 0<j<k-1
In this case, if n < 2k + 1, then
e(Q|P) = 1.
If n>2k+1, for any P"” € Fo, with P"|P’'|P, we have

e(QIP) = e(QIP") = (1 - 1)" 2"

Proof It follows immediately from Eq. (3.1) and Figure 1 that z,(Q) € F;. Using Figure 1 and applying

Abhyankar’s lemma [7, pp. 137] in Figure 3 yields the desired results in (i) and (ii)
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N 1 \ y i \ i \ 177
N 1—1
P (1 = —b) (xp_1 = —b) (zf = @) (41 =0) (zo—1 =0) (2 =0) ...(zap41 =0)

Figure 3. Ramification of (zg = —b) in F.

Lemma 3.4 For any k>0, set

Ry :={P € P(Fy) : zx(P) =« for some a € F} \ {-b}}.
Then the following hold:

(i) For all k> 1, the place (x) =

a) of Fy(ak)/Fy, with o € Fy \ {—b}, is totally ramified in Fy,.
(ii) #Rr=1—2 and degP =1 for all P € Ry, with k> 0.

(iii) For any k > 0, we have that

S dex— {21—1)“ ifn < 2k+1

_ 1)k 4
QP (F) I—=1)%ifn>2k+1
Q|P
PcRy,
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Proof (i) For k=1, it is clear from Figure 1. For k > 2, let P € Ry,. It follows from Eq. (3.1) (or see Figure
1) that (zo(P) = —b). Hence, by applying Abhyankar’s lemma [7, pp. 137] in Figure 3, we obtain the desired

result.
(ii) For k =0, we have #Ry =1 —2. For k > 1, as by (i) each place (z; = «) is totally ramified in F}, each

has only one extension in Fj. Thus, the result follows.

(iii) Let P € Ry for some k > 0 and @ be a place of F,, lying above P, for some n > k. If k =0, then by
Lemma 3.2, P is totally ramified in F,,, and so (iii) holds. Now suppose that k£ > 1. Then it follows from Eq.
(3.1) that

2p(Q) = xzp(P)=a for some o € F} \ {-b},
2 (Q) = —b forall i<k, and
2, (Q) = 0 forallk<n.

By (ii), deg P = 1. By Lemma 3.3(ii), for all £ < n < 2k the place P is unramified in F,,. Hence, by using
fundamental equality [7, pp. 74] and Theorem 2.2(i),

Y degQ= > f(QIP)degP =[F,: F]=(1-1)"""*
QEP(F,,) QEP(Fy,)
QlP QP

Now suppose that n > 2k + 1. Let R = Q N Fy,. By applying Lemma 3.3 with P” := R, we obtain that
e(Q|R) = (I — 1)"~2% = [F,, : Fy;]. That means that R is totally ramified in F,, for all n > 2k +1,i.e. R has
only one extension in F),, which is @ and deg R = deg@. Since P is unramified in Fb, again by applying
fundamental equality [7, pp. 74] and Theorem 2.2, we have that

> degQ= > degR= > [f(RIP)degP = [Fy: Fy] = (I—1)".
QEP(Fy,) ReP(Fay) REP(Fa)
QP R|P R|P

O

Now we give the proof of Theorem 3.1. We first recall from [7, Definition 3.4.3] that the different of any finite

separable extension of function fields F’/F is defined as follows:

Diff(F'/F)= > Y dQIP)Q

PEeP(F) QeP(F")
QP

Proof [Proof of Theorem 3.1] We know from Theorem 2.2(iii) that
R(F)={P € P(Fy) : zo(P) = « for some o € F;}.

Moreover, since the tower F is tame, for any P € P(Fp) and Q € P(F,) with Q|P, by Dedekind’s
different theorem [7, pp. 100] the different exponent of Q|P is

d(QIP) = e(Q|P) — 1.
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Hence, the degree of the different of F,,/Fy is

degDiff(F,/Fo) = Y, Y (e(Q|P)—1)degQ. (3.2)

PER(F) QeP(F,,)
QP

By Lemma 3.2, all places P of Fy with zo(P) € F;\ {—b} are totally ramified in F, and so for any @ € P(F},)
with Q|P, we have that

«(QIP) = [F: Fo] = (1— 1)™ (33)
Now let Q € P(F,,) and P = (xo = —b) € P(Fp) such that Q|P. Then by Lemma 3.3, we have the following

situations:
(*) z,(Q) € Fy and d(Q|P) =¢(Q|P)—1=0,

(**) 2,(Q) = 0. In this case, there exists 1 < k < n such that at P’ := QNF}, we have x,(P’') = o € Fy\{-b}.
Hence, P’ is in the set of Ry given in Lemma 3.4. Conversely, for any P’ € Ry, with 1 < k < k, it follows
from Eq. (3.1) that P’|(zo = —b). By Lemma 3.3(ii), when n < 2k+1, we have d(Q|P) = e(Q|P)—1=0.
When n > 2k + 1, by using Lemma 3.3(ii), we obtain that

e(QP)—1=(1—-1)""2k_1
e(Q[P") — 1 =d(Q|P"). (3.4)

d(QIP)

Now let

A=) > d(Q|P)degQ.
PeR(F) Q|P
Io(P):fb

Then by using Eq. (3.4), (*), (**), and Lemma 3.4, we get the following:

252
A= 3 Y dQIP)degQ

k=1 P'eRy
QP

[22*]
= #Re((I—1)" 2 — 1)1 —1)*

k=1

|51 %51

_ _ _ n 1 _ o k+1
= ( 2)((1 1) 2 Ty kz=o (1-1) )

= (1-2)(1-1)"! ((1—1)1L1 - 1) (g_é) —

()

= (-l - —a-plE L a—). (3.5)
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Now let @ be a place of F,,. By using Theorem 2.2(iii) and combining (3.2), (3.3), and (3.5), we obtain
forall n>1

degDiff(F,/Fo) = > > dQIP)degQ+ > Y d(Q[P)degQ
PER(F) QIP PER(F) Q|P
zo(P)EF\{—b} zo(P)=—b

= (-D-v-y-@-y-=l -1 -
(-pl=1+ -1

(-1 — (-] — g - pl=t]+

11— —1(1—1)~/? ifn=0 mod 2
I(1—1)" =21 —1)+0/2 ifn=1 mod?2.

Now by using the Hurwitz genus formula [7, pp.99] for the extension F,/Fy, the desired result follows:

2(F,) =2 = [Fu: Fol(29(Fy) — 2) + deg Diff(Fo/Fy)
= (I—1)"(2g(oF) — 2) + deg Diff(F,, /Fy)

_{(

The following corollary is an immediate consequence of Theorem 3.1:

(
2)(1 — )™ —1(1 —1)"/? ifn=0 mod 2
2)(1 —1)™ — 2(1 — 1)(n+D/2 ifn=1 mod 2.

Corollary 3.5 The genus of the tower F/Fy is

Next we show that when ¢ = 2% with &k > 2 the limit of the tower F over F, attains the Garcia and
Stichtenoth lower bound given in Theorem 2.2(v).

Theorem 3.6 Suppose that r =1, i.e. 1 is a power of 2 and q =1. Then

2

3

Proof We know that A(F) = v(F)/v(F). As v(F) is given in Corollary 3.5, it is enough to compute v(F).

For this, we need to estimate N(F),) for all n > 0. Since ¢ = [ and each rational place of F,,/F, lies over a

AF) =

rational place of Fy/F,, we have that

NF)= > 1+ > 1+ > L (3.6)

QEP(Fy,,) QEP(F,,) QEP(Fy,)
zo(Q)EF\{—-b} z0(Q)=—b zo(Q)=00

Let P € P(Fp) be a rational place and n > 1. If P is totally ramified in F,, then P has only one rational
extension in F,,. If P splits completely in F,, then P has [F,, : Fp] rational extensions in F,,. Hence, by
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Lemmas 3.2, 3.3, and 3.4 and Theorem 2.2(ii), for any n,k > 1 with n > k, we have

> o1 =1-1, ) 1=(@-1" and (3.7)

QEP(Fy) QEP(Fy)
zo(Q)EF \{—b} zo(Q)=00
n—1 n—1
DIEED 5B DD DI EPARTI b S SR
QEP(Fy,) k=1 P.eRy Q€EP(Fy) k=1 P Ry Q€P(F,)
zo(Q)=-b Q| Py Q| Py

By using Lemma 3.4(iii), we obtain the following:

LanlJ n—1
B < Y #R-(-1"+ Y #R,- -1k
k=1 k=l_n;1J+1
[=]-1 n |
= (1_2)( o=t ra-nr N (z—1)k>

k=0 k=25t |+1

(1—1)l=] —1] .

= -20-n| S

(uz)(l—l)”{(l_i)n,+1 - (l_l)imﬂ} (lz__ll)

= (-yje-y=t -1 -

1 1
(- 1)”+1 {(l el - (- 1)L"21J+1}
(2 ] St ) ) S RO D el
= (-pl=pg-p-l=t -0 (3.8)
Now by substituting each value of (3.7) and (3.8) for the sums involved in Eq. (3.6), the following follows:
(-1D)"+(I-1D)<<NF)<(I-1D)"+(1-1)+ A,
where

4 (=12 -1 ifn=0 mod 2
" l20-1)N/2 1 ifn=1 mod 2.

Hence, the splitting rate of F/Fy is

oy VW)
Now by using Corollary 3.5 and (3.9) we obtain the desired result. O

We here conjecture that the limit of the tower F attains the Garcia and Stichtenoth lower bound for all
r>1.
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