Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $394-400$
(c) TÜBİTAK
doi:10.3906/mat-1212-21

Gonality of curves with a singular model on an elliptic quadric surface

Edoardo BALLICO*
Department of Mathematics, University of Trento, Povo (TN), Italy

Received: 17.12.2012 • Accepted: 06.01.2014 • Published Online: 14.03.2014 • Printed: 11.04.2014

Abstract

Let $W \subset \mathbb{P}^{3}$ be a smooth quadric surface defined over a perfect field K and with no line defined over K (e.g., an elliptic quadric surface over a finite field). In this note we study the gonality over K of smooth curves with a singular model contained in W and with mild singularities.

Key words: Gonality, curve over a perfect field, K-gonality, elliptic quadric surface

1. Introduction

Let K be a perfect field such that there is a degree 2 extension L of K. Let $f\left(x_{0}, x_{1}\right) \in K\left[x_{0}, x_{1}\right]$ denote any degree 2 homogeneous polynomial such that $L=K(\alpha)$ with α a root of $f(1, t)$, i.e. take as f any degree 2 homogeneous polynomial that is irreducible over K but reducible over L. The main examples are the case $K=\mathbb{R}, L=\mathbb{C}$ and the case $K=\mathbb{F}_{q}$ and $L=\mathbb{F}_{q^{2}}$. Take homogeneous coordinates $x_{0}, x_{1}, x_{2}, x_{3}$ of \mathbb{P}^{3} (over K and hence over $\bar{K})$. Let $W \subset \mathbb{P}^{3}$ denote the smooth quadric surface with $x_{2} x_{3}+f\left(x_{0}, x_{1}\right)$ as its equation. If $K=\mathbb{R}$, then these types of surfaces are just ellipsoids. If $K=\mathbb{F}_{q}$, then W is an elliptic quadric surface [4]. In this paper we study the K-gonality of smooth curves C either contained in W or with a singular model $Y \subset W$, but with a small number of singularities. We prove the following result.

Corollary 1 Let $Y \subset W$ be a geometrically integral curve defined over K and let $u: C \rightarrow Y$ be the normalization of Y. Let $a>0$ be the positive integer such that $Y \in\left|\mathcal{O}_{W}(a)\right|$. Assume that $Y(\bar{K})$ has only ordinary nodes and ordinary cusps as singularities and set $J:=\operatorname{Sing}(Y(\bar{K}))$. Assume $\sharp(J) \leq a-5$ and that no line of $W(\bar{K})$ contains at least 2 points of J. Let $R \in \operatorname{Pic}^{y}(C)(K)$ be a spanned line bundle on C defined over K and with minimal positive degree. Then $2 a-4 \leq y \leq 2 a$ and R is induced by a subseries of $\left|\mathcal{O}_{W}(1)\right|$.

We have $y=2 a-4$ if and only if there is a degree 2 extension K^{\prime} of K such that $\sharp\left(J\left(K^{\prime}\right)\right) \geq 2$.
We have $y=2 a$ if and only if $Y\left(K^{\prime}\right)=\emptyset$ for each degree 2 extension K^{\prime} of K.
See Theorem 1 for spelling out the possible cases of y. For the foundational results on the gonality of curves over algebraically closed fields, see [8], [5], [9].

Since we work in arbitrary characteristic we cannot use some of the strongest tools in the literature. In our opinion in characteristic zero the best results are still obtained using [7] or the case $e=0$ of [10] and [6],

[^0]Remark 2 on page 351. To get Corollary 1 and related results we need first to work over an algebraically closed field \mathbb{K} and study low degree linear series on smooth models of singular curves on a smooth quadric surface Q (see section 2). As stressed above, in characteristic zero stronger tools are available.

We discuss our method and possible improvements in Subsection 2.1.
Many thanks are due to a referee who improved the exposition.

2. Over an algebraically closed field \mathbb{K}

Let $Q \subset \mathbb{P}^{3}$ be a smooth quadric surface defined over an algebraically closed field \mathbb{K}. For any coherent sheaf \mathcal{F} on Q and any integer $i \geq 0$ set $H^{i}(\mathcal{F}):=H^{i}(Q, \mathcal{F})$ and $h^{i}(\mathcal{F}):=\operatorname{dim}\left(H^{i}(\mathcal{F})\right)$. For all $(a, b) \in \mathbb{Z}^{2}$ let $\mathcal{O}_{Q}(a, b)$ denote the line bundle on Q with bidegree (a, b). We have $h^{0}\left(\mathcal{O}_{Q}(a, b)\right)=(a+1)(b+1)$ and $h^{1}\left(\mathcal{O}_{Q}(a, b)\right)=0$ if $a \geq 0$ and $b \geq 0$, while $h^{0}\left(\mathcal{O}_{Q}(a, b)\right)=0$ if either $a<0$ or $b<0$. If $a \geq 0, b \geq 0$ and $T \in\left|\mathcal{O}_{Q}(a, b)\right|$, then we say that T has type (a, b). The lines contained in Q are the curves $D \subset Q$ with either type $(1,0)$ or type (0,1). For any zero-dimensional scheme $Z \subset Q$ and any $T \in\left|\mathcal{O}_{Q}(u, v)\right|$, let $\operatorname{Res}_{T}(Z)$ denote the residual scheme of Z with respect to T, i.e. the closed subscheme of Q with $\mathcal{I}_{Z}: \mathcal{I}_{T}$ as its ideal sheaf. We have $\operatorname{Res}_{T}(Z) \subseteq Z$, $\operatorname{deg}(Z)=\operatorname{deg}\left(\operatorname{Res}_{T}(Z)\right)+\operatorname{deg}(Z \cap T)$ and for all $(a, b) \in \mathbb{Z}^{2}$ we have an exact sequence (often called the residual exact sequence)

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{T}(Z)}(a-u, b-v) \rightarrow \mathcal{I}_{Z}(a, b) \rightarrow \mathcal{I}_{Z \cap T, T}(a, b) \rightarrow 0 \tag{1}
\end{equation*}
$$

2.1. Outline of the proof and of possible improvements

Take an integral curve $Y \subset Q$ with bidegree (a, a). Let $u: C \rightarrow Y$ be the normalization map and $w: C \rightarrow Q$ the composition of u with the inclusion $Y \hookrightarrow Q$. Let $\mathcal{J} \subseteq \mathcal{O}_{Q}$ be the conductor of w and $J \subset Q$ the zerodimensional subscheme of Q with \mathcal{J} as its ideal sheaf. Let $J_{\text {red }}$ be the support of J. We assume for instance $\operatorname{deg}(J) \leq a-5$. Let \mathcal{F} be the set of all irreducible $E \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $1 \leq \sharp\left(E \cap J_{\text {red }}\right) \leq 2$. Let \mathcal{G} be the set of all irreducible $E \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\sharp\left(E \cap J_{\text {red }}\right) \geq 3$. Let \mathcal{H} be the set of all reducible $E \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that each component of E meets $J_{\text {red }}$. Take B as in the proof of Lemma 5 . Since $\mathcal{G} \cup \mathcal{H}$ is finite, while B is general, we have $E \cap B=\emptyset$ for all $E \in(\mathcal{G} \cup \mathcal{H})$. To apply Lemmas 1 and 2 to the scheme $Z=J \cup B$ it is sufficient to assume $\operatorname{deg}(J \cap E)+y \leq 2 a-5$ for all $E \in\left|\mathcal{O}_{Q}(1,1)\right|$. With this assumption steps (ii), (iii), (iv) of the proof of Lemma 5 carry over, because $\operatorname{deg}(J \cap E) \leq 2 a-5-y$ for all $E \in \mathcal{F}$ and $\operatorname{deg}(D \cap B) \leq 2$ if $D \in\left|\mathcal{O}_{Q}(1,1)\right|$ is reducible and $b_{1}=b_{2}=1$. Step (i) of the proof of Lemma 5 requires the following modifications for arbitrary singularities. For each $P \in J_{\text {red }}$ let u_{P} be the degree of the effective divisor $w^{-1}(P) \subset C$. For each connected degree 2 zero-dimensional scheme $Z \subset Q$ whose support is a point $P \in J_{\text {red }}$ let $u_{Z, P}$ be the degree of the effective divisor $w^{-1}(Z) \subset C$. We say that Y has either an ordinary node or an ordinary cusp at P if $u_{P}=2$ and for each connected degree 2 scheme $Z \subset Q$ with P as its support either $u_{Z, P}=3$ (if and only if in the plane $T_{P} Q$ the line through Z is in the tangent cone of Y at P) or $u_{Z, P}=2$. In the description of step (i) of the proof of Lemma 5 we use the integers u_{P} (with $u_{P}=2$ for double points) and $u_{Z, P}$ (which are 2 or 3 for ordinary nodes and cusps with 3 if and only if Z corresponds to a branch of Y at P. See for instance [1], [2], [3] for the formal theory of plane and space curves.

Now assume $Y \subset W$ and that Y is defined over K. To extend Theorem 1 one needs to know the integers $u_{P}, P \in J_{\text {red }}\left(K^{\prime}\right)$ for any degree 2 extension K^{\prime} of K and the integers $u_{Z, P}$ with $P \in J_{\text {red }}(K)$ and Z defined
over K. The tools work for all spanned $R \in \operatorname{Pic}^{y}(C)(K)$ with $\operatorname{deg}(J)+y \leq 3 a-5$, without assuming that y is the K-gonality of C.

2.2. Proofs over \mathbb{K}

Lemma 1 Fix an integer $c \geq 2$ and a zero-dimensional scheme $Z \subset Q$. Assume $\operatorname{deg}(Z \cap L) \leq 1$ for each line $L \subset Q, h^{1}\left(\mathcal{I}_{Z}(c, c)\right)>0$ and $\operatorname{deg}(Z) \leq 3 c+1$. Then there is an integral $D \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}(D \cap Z) \geq 2 c+2$.

Proof Set $Z_{0}:=Z$. Let $T_{1} \subset Q$ be any element of $\left|\mathcal{O}_{Q}(1,1)\right|$ such that $e_{1}:=\operatorname{deg}\left(T_{1} \cap Z\right)$ is maximal. Set $Z_{1}:=\operatorname{Res}_{T_{1}}\left(Z_{0}\right)$. For each integer $i \geq 2$ define recursively the integer e_{i}, the curve $T_{i} \in\left|\mathcal{O}_{Q}(1,1)\right|$, and the scheme $Z_{i} \subseteq Z_{i-1}$ in the following way. Let $T_{i} \subset Q$ be any element of $\left|\mathcal{O}_{Q}(1,1)\right|$ such that $e_{i}:=\operatorname{deg}\left(T_{i} \cap Z_{i-1}\right)$ is maximal. Set $Z_{i}:=\operatorname{Res}_{T_{1}}\left(Z_{i-1}\right)$. The sequence $\left\{e_{i}\right\}_{i \geq 1}$ is nonincreasing. Since $h^{0}\left(\mathcal{O}_{Q}(1,1)\right)=4$, we have $e_{i+1}=0$ and $Z_{i}=\emptyset$ if $e_{i} \leq 2$. Since $\operatorname{deg}(Z \cap L) \leq 1$ for each line $L \subset Q$, we may take T_{i} as above and with the additional restriction that each T_{i} is irreducible. Since $\operatorname{deg}(Z) \leq 3 c+1$, we get $e_{c+1} \leq 1$ and $Z_{c+1}=\emptyset$. From (1) for each $i \in\{1, \ldots, c\}$ we get the exact sequences

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Z_{i}}(c-i, c-i) \rightarrow \mathcal{I}_{Z_{i-1}}(c-i+1, c-i+1) \rightarrow \mathcal{I}_{Z_{i-1}, T_{i}}(c-i+1, c-i+1) \rightarrow 0 \tag{2}
\end{equation*}
$$

Since $\operatorname{deg}\left(Z_{c}\right) \leq 1$, we have $h^{1}\left(\mathcal{I}_{Z_{c}}\right)=0$. Since $h^{1}\left(\mathcal{I}_{Z}(c, c)\right)>0$, we get the existence of an integer $i \in\{1, \ldots, c\}$ such that $h^{1}\left(T_{i}, \mathcal{I}_{Z_{i-1}, T_{i}}(c-i+1, c-i+1)\right)>0$. Let f be the minimal such integer. Since T_{f} is irreducible, we have $T_{f} \cong \mathbb{P}^{1}$. Since $\operatorname{deg}\left(\mathcal{O}_{T_{f}}(c-f+1, c-f+1)\right)=2 c-2 f+2$, we have $h^{1}\left(T_{f}, \mathcal{I}_{Z_{f-1}, T_{f}}(c-f+1, c-f+1)\right)>0$ if and only if $e_{f} \geq 2 c-2 f+4$. If $f=1$, then we may take $D:=T_{1}$. Now assume $f \geq 2$. Since $e_{i} \geq e_{f}$ for all $i<f$, we get $\operatorname{deg}(Z) \geq 2 f(c-f+2)$. The function $\psi(t):=2 t(c+2-t)$ is increasing in the interval $[2,(c+2) / 2]$ and decreasing for $t>(c+2) / 2$. Since $\psi(2)=\psi(c)=4 c$, we get $\operatorname{deg}(Z) \geq 4 c$, a contradiction.

Lemma 2 Fix integers $k \geq c \geq 0$ and a zero-dimensional scheme $Z \subset Q$ such that $\operatorname{deg}(Z) \leq k+c+1$ and $\operatorname{deg}(Z \cap L) \leq 1$ for each line $L \subset Q$. Then $h^{1}\left(\mathcal{I}_{Z}(k, c)\right)=0$.

Proof If $c=0$, then one may use $k-c$ residual exact sequences, each time with respect to some $L \in\left|\mathcal{O}_{Q}(1,0)\right|$. If $k=c=1$, then the lemma is obvious. If $k=c \geq 2$, then we may apply Lemma 1 . Now assume $k>c>0$. By the case $c=0$ we may assume $\operatorname{deg}(Z) \geq k-c$. Since $h^{0}\left(Q, \mathcal{O}_{Q}(k-c, 0)\right)=k-c+1$, there is $F \in\left|\mathcal{O}_{Q}(k-c, 0)\right|$ such that $\operatorname{deg}(F \cap Z) \geq k-c$. Since $\operatorname{deg}(L \cap Z) \leq 1$ for each $L \in\left|\mathcal{O}_{Q}(1,0)\right|$, we have $\operatorname{deg}(F \cap Z)=k-c$. Hence $\operatorname{deg}\left(\operatorname{Res}_{F}(Z)\right)=\operatorname{deg}(Z)-k+c \leq 2 c+1$. Lemma 1 gives $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{F}(Z)}(c, c)\right)=0$. We saw that $h^{1}\left(\mathcal{I}_{F \cap Z}(k, 0)\right)=0$ and hence $h^{1}\left(\mathcal{I}_{F \cap Z}(k, c)\right)=0$. Therefore $h^{1}\left(F, \mathcal{I}_{F \cap Z, F}(k, c)\right)=0$. A residual exact sequence gives $h^{1}\left(\mathcal{I}_{Z}(k, c)\right)=0$.

Lemma 3 Let $T \subset Q$ be an integral element of $\left|\mathcal{O}_{Q}(a, a)\right|$ and $u: C \rightarrow T$ its normalization. Let $\mathcal{J} \subset \mathcal{O}_{Q}$ be the conductor of u and $J \subset Q$ the closed subscheme with \mathcal{J} as its ideal sheaf. Fix integers $x \in\{0, \ldots, a-2\}$ and $y \in\{0, \ldots, a-2\}$. We have $h^{0}\left(C, u^{*}\left(\mathcal{O}_{T}(x, y)\right)\right)=(x+1)(y+1)$ if and only if $h^{1}\left(\mathcal{I}_{J}(a-2-x, b-2-y)\right)=0$. Proof Since $a>x, a>y$ and T has type (a, a), we have $h^{0}\left(\mathcal{I}_{T}(x, y)\right)=0$. Since $h^{1}\left(Q, \mathcal{O}_{Q}(a-\right.$ $x, b-y))=0$, the exact sequence (1) for $Z=\emptyset$ gives $h^{0}\left(T, \mathcal{O}_{T}(x, y)\right)=(x+1)(y+1)$. Hence we have
$h^{0}\left(C, u^{*}\left(\mathcal{O}_{T}(x, y)\right)\right)=(x+1)(y+1)$ if and only if $h^{1}\left(C, u^{*}\left(\mathcal{O}_{T}(x, y)\right)\right)=h^{1}\left(T, \mathcal{O}_{T}(x, y)\right)-\operatorname{deg}(J)$. Since $\omega_{Q} \cong \mathcal{O}_{Q}(-2,-2)$, we have $\omega_{T} \cong \mathcal{O}_{T}(a-2, a-2)$. Since $h^{i}\left(\mathcal{O}_{Q}(-2,-2)\right)=0, i=0,1$, the restriction map $H^{0}\left(Q, \mathcal{I}_{J}(a-2, a-2)\right) \rightarrow H^{0}\left(T, \omega_{T}\right)$ is bijective. Hence $h^{1}\left(C, u^{*}\left(\mathcal{O}_{T}(x, y)\right)\right)=h^{1}\left(T, \mathcal{O}_{T}(x, y)\right)-\operatorname{deg}(J)$ if and only if $h^{1}\left(\mathcal{I}_{J}(a-2-x, b-2-y)\right)=0$.

Corollary 2 Let $T \subset Q$ be an integral element of $\left|\mathcal{O}_{Q}(a, a)\right|$ with only ordinary nodes or ordinary cusps as its singularities. Let $u: C \rightarrow T$ be the normalization map. Set $J:=\operatorname{Sing}(T)$ and assume $\operatorname{deg}(J \cap L) \leq 1$ for every line $L \subset Q$. If $\sharp(J) \leq 3(a-3)+1$, then $h^{0}\left(C, u^{*}\left(\mathcal{O}_{T}(0,1)\right)\right)=h^{0}\left(C, u^{*}\left(\mathcal{O}_{T}(1,0)\right)\right)=2$ and $h^{0}\left(C, u^{*}\left(\mathcal{O}_{T}(1,1)\right)\right)=4$.
Proof Since T has only ordinary nodes and ordinary cusps as singularities, the set J is the conductor scheme used in Lemma 3. Apply Lemmas 1 and 3.

Lemma 4 Fix positive integers c, b_{1}, b_{2} such that $\max \left\{b_{1}, b_{2}\right\} \leq c+1$. Fix a zero-dimensional scheme $J \subset Q$ and a finite set $B \subset Q$ such that $B \cap J=\emptyset, \operatorname{deg}(J \cap I) \leq 1$ for every line $I \subset Q$, no line of Q intersects both J and B, either $I \cap B=\emptyset$ or $I \cap B=b_{1}$ for each $I \in\left|\mathcal{O}_{Q}(1,0)\right|$ and either $I \cap B=\emptyset$ or $I \cap B=b_{2}$ for each $I \in\left|\mathcal{O}_{Q}(0,1)\right|$. Assume $h^{1}\left(\mathcal{I}_{J \cup B}(c, c)\right)>0$.
(a) If $b_{1}=b_{2}=1$ and $\operatorname{deg}(J \cup B) \leq 3 c+1$, then there is an integral $D \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\sharp(D \cap(J \cup B)) \geq 2 c+2$.
(b) If $\delta:=\max \left\{b_{1}, b_{2}\right\} \geq 2$, then $\operatorname{deg}(J) \geq 2 c+2-\sharp(B) / \delta$.

Proof Set $Z=J \cup B$. The case $b_{1}=b_{2}=1$ is true by Lemma 1. Hence we may assume $b_{1} \geq 2$. We have $\sharp(B)=x b_{1}=y b_{2}$ for some positive integers x, y. Without losing generality we may assume $b_{1} \geq b_{2}$. Let $F \in\left|\mathcal{O}_{Q}(x, 0)\right|$ be the union of all lines containing at least one point of B. By assumption $F \cap J=\emptyset$. Since $\sharp(B \cap I)=b_{1} \leq c+1$ for each component I of F, we have $h^{1}\left(F, \mathcal{I}_{Z \cap F}(c, c)\right)=0$. Hence the exact sequence

$$
0 \rightarrow \mathcal{I}_{J}(c-x, c) \rightarrow \mathcal{I}_{Z}(c, c) \rightarrow \mathcal{I}_{F \cap Z, F}(c, c) \rightarrow 0
$$

gives $h^{1}\left(\mathcal{I}_{J}(c-x, c)\right)>0$. Lemma 2 gives $\operatorname{deg}(J) \geq 2 c-x+2$.

Remark 1 In the next lemma the integers b_{1} and b_{2} are positive integers dividing y (they may be 1). In the applications to W (Corollary 1 and Theorem 1) $b_{1}=b_{2}$ and b_{1} divides a. Hence when one needs to apply Lemma 5 to curves in W there is a very small number of possible pairs $\left(b_{1}, b_{2}\right) \neq(1,1)$.

Lemma 5 Let $T \subset Q$ be an integral element of $\left|\mathcal{O}_{Q}\left(a, a^{\prime}\right)\right|, a^{\prime} \geq a \geq 2$, and $u: C \rightarrow T$ its normalization. Let $w: C \rightarrow Q$ be the composition of u with the inclusion $T \hookrightarrow Q$. Assume that T has only ordinary nodes and ordinary cusps as singularities and set $J:=\operatorname{Sing}(T)$. Assume $\operatorname{deg}(J \cap L) \leq 1$ for each line $L \subset Q$. Fix $R \in \operatorname{Pic}^{y}(C), y>0$, such that R has no base points and R is neither $u^{*}\left(\mathcal{O}_{C}(1,0)\right)$ nor $u^{*}\left(\mathcal{O}_{C}(0,1)\right)$. Let $h: C \rightarrow \mathbb{P}^{1}$ be the morphism associated to a general 2-dimensional linear subspace of $H^{0}(C, R)$. Let $u_{1}: C \rightarrow \mathbb{P}^{1}$ and $u_{2}: C \rightarrow \mathbb{P}^{1}$ be the morphisms associated to the 2 projections $Q \rightarrow \mathbb{P}^{1}$. Let b_{i} be the degree of the morphism $\left(h, u_{i}\right)$.
(a) Assume $b_{1}=b_{2}=1$ and $y+\sharp(J) \leq 2 a+a^{\prime}-5$. There is a zero-dimensional scheme $\Gamma \subset Q$ with $0 \leq \operatorname{deg}(\Gamma) \leq 2$ such that $h^{0}(R)=4-\operatorname{deg}(\Gamma)$ and R is induced by the linear system $\left|\mathcal{I}_{\Gamma}(1,1)\right|$. We have $\operatorname{deg}(R)=a+a^{\prime}-\operatorname{deg}\left(\Gamma^{\prime}\right)$, where $\Gamma^{\prime}:=w^{-1}(\Gamma)$.
(b) Assume $\left(b_{1}, b_{2}\right) \neq(1,1)$ and set $\delta:=\max \left\{b_{1}, b_{2}\right\}$. We have $\sharp(J) \geq a^{\prime}+a-2-y / \delta$.

Proof Set $R^{\prime}:=u^{*}\left(\mathcal{O}_{Q}(1,1)\right)$. Lemma 3 gives $h^{0}\left(C, R^{\prime}\right)=4$. Hence $\left|R^{\prime}\right|$ is induced by $\left|\mathcal{O}_{Q}(1,1)\right|$.
(i) Assume for the moment that $|R|$ is induced by a linear subseries M of $\left|\mathcal{O}_{Q}(1,1)\right|$, after deleting a base locus. Let $\Gamma \subset Q$ be the base locus of M. Since R is neither $u^{*}\left(\mathcal{O}_{C}(1,0)\right)$ nor $u^{*}\left(\mathcal{O}_{C}(0,1)\right)$, Γ is not a line. Hence Γ is a zero-dimensional scheme (it may be empty). Set $\Gamma^{\prime}:=w^{-1}(\Gamma)$. Since $\mathcal{O}_{Q}(1,1)$ is very ample, we have $h^{0}\left(\mathcal{I}_{E}(1,1)\right)=4-\operatorname{deg}(E)$ for all zero-dimensional schemes $E \subset Q$ with $\operatorname{deg}(E) \leq 2$. Notice that $h^{0}\left(\mathcal{I}_{E}(1,1)\right)=1$ for each degree 3 scheme $E \subset Q$ not contained in a line of Q. Since every line $L \subset \mathbb{P}^{3}$ with $\operatorname{deg}(L \cap Q) \geq 3$ is contained in Q, we get $\operatorname{deg}(\Gamma) \leq 2$ and $h^{0}(R)=4-\operatorname{deg}(\Gamma)$. Moreover, $\mathcal{I}_{\Gamma}(1,1)$ is spanned, unless $\operatorname{deg}(\Gamma)=2$ and Γ is contained in a line of Q. The latter case does not occur for R, because the line would be in the base locus Γ, while $\operatorname{dim}(\Gamma)=0$. Hence $\mathcal{I}_{\Gamma}(1,1)$ is spanned. Since $\mathcal{I}_{\Gamma}(1,1)$ and R are spanned, we have $R \cong R^{\prime}\left(-\Gamma^{\prime}\right)$.
(ii) Fix a general $A \in|R|$ and set $B:=u(A)$. Let $f: C \rightarrow \mathbb{P}^{1}$ be the degree y morphism induced by $|R|$. Since f is induced by a general pencil of the complete linear system $|R|$, it cannot factor through the Frobenius of order p. Since \mathbb{K} is perfect, we get that f is separable. Since A is general, A is a reduced set of y points. Since $|R|$ is spanned, we may also assume $A \cap u^{-1}(\operatorname{Sing}(T))=\emptyset$. Hence $B \cap J=\emptyset$ and $\sharp(B)=y$.

Claim: We have $h^{1}\left(\mathcal{I}_{J \cup B}\left(a-2, a^{\prime}-2\right)\right)>0$.
Proof of the Claim: Fix $O \in A$. Since R is spanned, we have $h^{0}(R(-O))=h^{0}(R)-1$, i.e. $h^{0}\left(\omega_{C}(-(A \backslash\{O\}))\right)=$ $h^{0}\left(\omega_{C}(-A)\right)$ (Riemann-Roch and Serre duality). Hence $h^{1}\left(\omega_{C}(-A)\right)>0$. We have $\omega_{Q} \cong \mathcal{O}_{Q}(-2,-2)$. Hence the adjunction formula gives $\omega_{T} \cong \mathcal{O}_{T}\left(a-2, a^{\prime}-2\right)$. Since $h^{i}\left(\mathcal{O}_{Q}(-2,-2)\right)=0, i=0,1$, the restriction map $H^{0}\left(\mathcal{O}_{Q}\left(a-2, a^{\prime}-2\right)\right) \rightarrow H^{0}\left(T, \omega_{T}\right)$ is bijective. Since T has only ordinary nodes and ordinary cusps as singularities, we have $H^{0}\left(C, \omega_{C}\right) \cong H^{0}\left(\mathcal{I}_{J}\left(a-2, a^{\prime}-2\right)\right)$. Hence $h^{1}\left(\mathcal{I}_{J \cup B}\left(a-2, a^{\prime}-2\right)\right)>0$.
(iii) In this step we assume $a^{\prime}=a$ and $h^{0}(R)=2$. We first prove that R is a subsheaf of $u^{*}\left(\mathcal{O}_{T}(1,1)\right)$.
(a) Assume $b_{1}=b_{2}=1$. Since $y+\sharp(J) \leq 3 a-5$ and $h^{1}\left(\mathcal{I}_{J \cup B}(a-2, a-2)\right)>0$ by the Claim, Lemma 4 gives the existence of a divisor $D \in\left|\mathcal{O}_{Q}(1,1)\right|$ such that $\operatorname{deg}(D \cap(J \cup B)) \geq 2 a-2$. Since R has no base points and $h^{0}(R)=2$, we get $B=B \cap D$. Moving $A \in|R|$ the set B moves and hence D moves, but Y and the set $J \cap D$ are the same for all general A. Hence $|R|$ is induced by a subseries M of the linear system $\left|\mathcal{O}_{Q}(1,1)\right|$. Let $\Gamma \subset Q$ be the base locus of M. Since $h^{0}(R)=2$, step (i) gives $\operatorname{deg}(\Gamma)=2$. Step (i) gives $y=2 a-\operatorname{deg}\left(\Gamma^{\prime}\right)$.
(b) Assume $\delta \geq 2$ and say $b_{1} \geq b_{2}$. Since B is general, either $I \cap B=\emptyset$ or $\sharp(I \cap B)=b_{1}$ for each $I \in\left|\mathcal{O}_{Q}(1,0)\right|$ and either $I \cap B=\emptyset$ or $\sharp(I \cap B)=b_{2}$ for each $I \in\left|\mathcal{O}_{Q}(0,1)\right|$. Since $R \neq u^{*}\left(\mathcal{O}_{T}(1,0)\right)$, we have $\delta<a$. Lemma 4 gives $\sharp(J) \geq 2 a-2-y / \delta$.
(iv) Assume $a^{\prime}>a$ and $h^{0}(R)=2$. Let $F \subset Q$ be a union of $a^{\prime}-a$ lines of type $(0,1)$, each of them meeting B. Notice that $F \cap J=\emptyset$ and $\sharp(L \cap B)=b_{1}$ for each component L of F. Since $b_{1} \leq a+1$, we have $h^{1}\left(F, \mathcal{I}_{F \cap(B \cup J), F}\left(a, a^{\prime}\right)\right)=0$. Hence $h^{1}\left(\mathcal{I}_{J \cup B}\left(a, a^{\prime}\right)\right) \leq h^{1}\left(\mathcal{I}_{J \cup(B \backslash B \cap F)}(a, a)\right)$ by a residual exact sequence like (1). Apply step (iii).
(v) Assume $h^{0}(R)>2$. By steps (iii) and (iv) a general pencil of R is induced by a 2-dimensional linear subspace of $\left|\mathcal{O}_{Q}(1,1)\right|$. Hence R is induced by a subseries of $\left|\mathcal{O}_{Q}(1,1)\right|$ after deleting the base points. Use step (i).

Corollary 3 In the set-up of Lemma 5 assume $a=a^{\prime}$. Then $y \geq 2 a-2-\min \{2, \operatorname{deg}(J)\}$ and for each y with $2 a-2-\min \{2, \sharp(J)\} \leq y \leq 2 a$ there is a spanned $R \in \operatorname{Pic}^{y}(C)$ with $|R|$ induced by a linear subspace of $\left|\mathcal{O}_{Q}(1,1)\right|$.

3. The quadric surface W

Let K be a perfect field having a quadratic extension. Fix homogeneous coordinates $x_{0}, x_{1}, x_{2}, x_{3}$ on \mathbb{P}^{3}. Fix $f \in K\left[x_{0}, x_{1}\right]$ with f homogeneous of degree 2 and with no nontrivial zero in K. Set $W:=\left\{x_{2} x_{3}+f\left(x_{0}, x_{1}\right)=\right.$ $0\} \subset \mathbb{P}^{3} . W$ is a geometrically smooth quadric surface containing no line defined over K. Hence $\operatorname{Pic}(W)(K)$ is freely generated by $\mathcal{O}_{W}(1)$. Let $Y \subset W$ be a geometrically irreducible curve defined over K and $u: C \rightarrow Y$ the normalization map. C is a geometrically connected smooth curve and C and u are defined over K. Let a be the only integer such that $Y \in\left|\mathcal{O}_{W}(a, a)\right|$. Set $Q:=W(\bar{K})$.

In the set-up of Remark 1 and Corollary 3 the curve $Y(\bar{K})$ has $b_{1}=b_{2}$. For any field $K^{\prime} \supseteq K$ let $J\left(K^{\prime}\right)$ denote the set of all $P \in J$ defined over K^{\prime}.

The following statement implies Corollary 1.

Theorem 1 Take the set-up of Corollary 1.
(a) If $\sharp\left(J\left(K^{\prime}\right)\right) \geq 2$ for some quadratic extension K^{\prime} of K, then $y=2 a-4$.
(b) If $\sharp(J(K))=1, J(K)=J\left(K^{\prime}\right)$ for every quadratic extension K^{\prime} of K and $Y(K) \backslash J(K) \neq \emptyset$, then $y=2 a-3$.
(c) Assume $\sharp(J(K))=1, J(K)=J\left(K^{\prime}\right)$ for every quadratic extension K^{\prime} of K and $Y(K)=J(K)$. Set $\{P\}:=J(K)$. If Y has an ordinary node at P and the formal branches of Y at P are not defined over K, then $y=2 a-2$; otherwise, $y=2 a-3$.
(d) If $J\left(K^{\prime \prime}\right)=\emptyset$ for every quadratic extension $K^{\prime \prime}$ of K and there is a quadratic extension K^{\prime} of K with $\sharp\left(Y\left(K^{\prime}\right)\right) \geq 2$, then $y=2 a-2$.
(e) If $Y(K)$ has a unique point $P, P \notin J$ and $Y\left(K^{\prime}\right)=\{P\}$ for every quadratic extension K^{\prime} of K, then $y=2 a-1$.
(f) If $J\left(K^{\prime}\right)=Y\left(K^{\prime}\right)=\emptyset$ for every quadratic extension K^{\prime} of K, then $y=2 a$.

In case (e) the only line bundle evincing y is the pull-back of $\mathcal{O}_{Y}(1)(-P)$ and we have $h^{0}(R)=3$.
In case (f) the only line bundle R evincing y is the one induced by the pull-back of $\mathcal{O}_{W}(1)$ and we have $h^{0}(R)=4$.
Proof Since $\mathcal{O}_{W}(1)$ is spanned, we have $y \leq 2 a$. Part (b) of Lemma 5 shows that $b_{1}=b_{2}=1$. Theorem 1 follows from Corollary 3 and step (i) of the proof of Lemma 5.

Notice that if $J\left(K^{\prime}\right) \supsetneq J(K)$ for some quadratic extension K^{\prime} of K, then $J\left(K^{\prime}\right) \backslash J(K)$ contains at least 2 elements and hence we are in case (a) with $y=2 a-4$.

BALLICO/Turk J Math

References

[1] Campillo, A.: Algebroid curves in positive characteristic. Lecture Notes in Mathematics, 813. Springer, Berlin, 1980.
[2] Campillo, A., Castellanos, J.: On projections of space algebroid curves. Algebraic geometry (La Rábida, 1981), 22-31, Lecture Notes in Math., 961, Springer, Berlin, 1982.
[3] Galindo, C., Monserrat, F.: The Poincaré series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface. Adv. Math. 225, no. 2, 1046-1068 (2010).
[4] Hirschfeld, J. W. P. : Finite projective spaces of three dimensions. Oxford, Clarendon Press 1985.
[5] Nguyen, K. V. Saito, M.-H.: d-gonality of modular curves and bounding torsions (March 29, 1996), preprint, arXiv:alg-geom/9603024.
[6] Martens, G.: The gonality of curves on a Hirzebruch surface. Arch. Math. 67, 349-352 (1996).
[7] Paoletti, R.: Free pencils on divisors. Math. Ann. 303, no. 1, 109-123 (1995).
[8] Pellikaan, R.: On the gonality of curves, abundant codes and decoding. In: Coding theory and algebraic geometry (Luminy, 1991), 132-144, Lecture Notes in Math., 1518, Springer, Berlin (1992).
[9] Poonen, B.: Gonality of modular curves in characteristic p. Math. Res. Lett. 14, no. 4, 691-701 (2007).
[10] Serrano, F.: Extension of morphisms defined on a divisor. Math. Ann. 277, no. 1, 395-413 (1987).

[^0]: *Correspondence: ballico@science.unitn.it 2010 AMS Mathematics Subject Classification: 14H51; 11G20.
 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

