

http://journals.tubitak.gov.tr/math/

Research Article

Gonality of curves with a singular model on an elliptic quadric surface

Edoardo BALLICO^{*} Department of Mathematics, University of Trento, Povo (TN), Italy

Received: 17.12.2012 • Accepted: 06.01.2014 • Published Online: 14.03.2014 • Printed: 11.04.2014
--

Abstract: Let $W \subset \mathbb{P}^3$ be a smooth quadric surface defined over a perfect field K and with no line defined over K (e.g., an elliptic quadric surface over a finite field). In this note we study the gonality over K of smooth curves with a singular model contained in W and with mild singularities.

Key words: Gonality, curve over a perfect field, K-gonality, elliptic quadric surface

1. Introduction

Let K be a perfect field such that there is a degree 2 extension L of K. Let $f(x_0, x_1) \in K[x_0, x_1]$ denote any degree 2 homogeneous polynomial such that $L = K(\alpha)$ with α a root of f(1,t), i.e. take as f any degree 2 homogeneous polynomial that is irreducible over K but reducible over L. The main examples are the case $K = \mathbb{R}, L = \mathbb{C}$ and the case $K = \mathbb{F}_q$ and $L = \mathbb{F}_{q^2}$. Take homogeneous coordinates x_0, x_1, x_2, x_3 of \mathbb{P}^3 (over K and hence over \overline{K}). Let $W \subset \mathbb{P}^3$ denote the smooth quadric surface with $x_2x_3 + f(x_0, x_1)$ as its equation. If $K = \mathbb{R}$, then these types of surfaces are just ellipsoids. If $K = \mathbb{F}_q$, then W is an elliptic quadric surface [4]. In this paper we study the K-gonality of smooth curves C either contained in W or with a singular model $Y \subset W$, but with a small number of singularities. We prove the following result.

Corollary 1 Let $Y \subset W$ be a geometrically integral curve defined over K and let $u : C \to Y$ be the normalization of Y. Let a > 0 be the positive integer such that $Y \in |\mathcal{O}_W(a)|$. Assume that $Y(\overline{K})$ has only ordinary nodes and ordinary cusps as singularities and set $J := \operatorname{Sing}(Y(\overline{K}))$. Assume $\sharp(J) \leq a - 5$ and that no line of $W(\overline{K})$ contains at least 2 points of J. Let $R \in \operatorname{Pic}^y(C)(K)$ be a spanned line bundle on C defined over K and with minimal positive degree. Then $2a - 4 \leq y \leq 2a$ and R is induced by a subseries of $|\mathcal{O}_W(1)|$.

We have y = 2a - 4 if and only if there is a degree 2 extension K' of K such that $\sharp(J(K')) \ge 2$.

We have y = 2a if and only if $Y(K') = \emptyset$ for each degree 2 extension K' of K.

See Theorem 1 for spelling out the possible cases of y. For the foundational results on the gonality of curves over algebraically closed fields, see [8], [5], [9].

Since we work in arbitrary characteristic we cannot use some of the strongest tools in the literature. In our opinion in characteristic zero the best results are still obtained using [7] or the case e = 0 of [10] and [6],

^{*}Correspondence: ballico@science.unitn.it

²⁰¹⁰ AMS Mathematics Subject Classification: 14H51; 11G20.

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

Remark 2 on page 351. To get Corollary 1 and related results we need first to work over an algebraically closed field \mathbb{K} and study low degree linear series on smooth models of singular curves on a smooth quadric surface Q (see section 2). As stressed above, in characteristic zero stronger tools are available.

We discuss our method and possible improvements in Subsection 2.1.

Many thanks are due to a referee who improved the exposition.

2. Over an algebraically closed field \mathbb{K}

Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface defined over an algebraically closed field K. For any coherent sheaf \mathcal{F} on Q and any integer $i \geq 0$ set $H^i(\mathcal{F}) := H^i(Q, \mathcal{F})$ and $h^i(\mathcal{F}) := \dim(H^i(\mathcal{F}))$. For all $(a, b) \in \mathbb{Z}^2$ let $\mathcal{O}_Q(a, b)$ denote the line bundle on Q with bidegree (a, b). We have $h^0(\mathcal{O}_Q(a, b)) = (a+1)(b+1)$ and $h^1(\mathcal{O}_Q(a, b)) = 0$ if $a \geq 0$ and $b \geq 0$, while $h^0(\mathcal{O}_Q(a, b)) = 0$ if either a < 0 or b < 0. If $a \geq 0$, $b \geq 0$ and $T \in |\mathcal{O}_Q(a, b)|$, then we say that T has type (a, b). The lines contained in Q are the curves $D \subset Q$ with either type (1, 0) or type (0, 1). For any zero-dimensional scheme $Z \subset Q$ and any $T \in |\mathcal{O}_Q(u, v)|$, let $\operatorname{Res}_T(Z)$ denote the residual scheme of Z with respect to T, i.e. the closed subscheme of Q with $\mathcal{I}_Z : \mathcal{I}_T$ as its ideal sheaf. We have $\operatorname{Res}_T(Z) \subseteq Z$, $\operatorname{deg}(Z) = \operatorname{deg}(\operatorname{Res}_T(Z)) + \operatorname{deg}(Z \cap T)$ and for all $(a, b) \in \mathbb{Z}^2$ we have an exact sequence (often called the residual exact sequence)

$$0 \to \mathcal{I}_{\operatorname{Res}_T(Z)}(a-u,b-v) \to \mathcal{I}_Z(a,b) \to \mathcal{I}_{Z\cap T,T}(a,b) \to 0 \tag{1}$$

2.1. Outline of the proof and of possible improvements

Take an integral curve $Y \subset Q$ with bidegree (a, a). Let $u: C \to Y$ be the normalization map and $w: C \to Q$ the composition of u with the inclusion $Y \hookrightarrow Q$. Let $\mathcal{J} \subseteq \mathcal{O}_Q$ be the conductor of w and $J \subset Q$ the zerodimensional subscheme of Q with \mathcal{J} as its ideal sheaf. Let J_{red} be the support of J. We assume for instance $\deg(J) \leq a-5$. Let \mathcal{F} be the set of all irreducible $E \in |\mathcal{O}_Q(1,1)|$ such that $1 \leq \sharp(E \cap J_{red}) \leq 2$. Let \mathcal{G} be the set of all irreducible $E \in |\mathcal{O}_Q(1,1)|$ such that $\sharp(E \cap J_{red}) \geq 3$. Let \mathcal{H} be the set of all reducible $E \in |\mathcal{O}_Q(1,1)|$ such that each component of E meets J_{red} . Take B as in the proof of Lemma 5. Since $\mathcal{G} \cup \mathcal{H}$ is finite, while B is general, we have $E \cap B = \emptyset$ for all $E \in (\mathcal{G} \cup \mathcal{H})$. To apply Lemmas 1 and 2 to the scheme $Z = J \cup B$ it is sufficient to assume $\deg(J \cap E) + y \leq 2a - 5$ for all $E \in |\mathcal{O}_Q(1,1)|$. With this assumption steps (ii), (iii), (iv) of the proof of Lemma 5 carry over, because $\deg(J \cap E) \leq 2a - 5 - y$ for all $E \in \mathcal{F}$ and $\deg(D \cap B) \leq 2$ if $D \in |\mathcal{O}_Q(1,1)|$ is reducible and $b_1 = b_2 = 1$. Step (i) of the proof of Lemma 5 requires the following modifications for arbitrary singularities. For each $P \in J_{red}$ let u_P be the degree of the effective divisor $w^{-1}(P) \subset C$. For each connected degree 2 zero-dimensional scheme $Z \subset Q$ whose support is a point $P \in J_{red}$ let $u_{Z,P}$ be the degree of the effective divisor $w^{-1}(Z) \subset C$. We say that Y has either an ordinary node or an ordinary cusp at P if $u_P = 2$ and for each connected degree 2 scheme $Z \subset Q$ with P as its support either $u_{Z,P} = 3$ (if and only if in the plane T_PQ the line through Z is in the tangent cone of Y at P) or $u_{Z,P} = 2$. In the description of step (i) of the proof of Lemma 5 we use the integers u_P (with $u_P = 2$ for double points) and $u_{Z,P}$ (which are 2 or 3 for ordinary nodes and cusps with 3 if and only if Z corresponds to a branch of Y at P. See for instance [1], [2], [3] for the formal theory of plane and space curves.

Now assume $Y \subset W$ and that Y is defined over K. To extend Theorem 1 one needs to know the integers u_P , $P \in J_{red}(K')$ for any degree 2 extension K' of K and the integers $u_{Z,P}$ with $P \in J_{red}(K)$ and Z defined

BALLICO/Turk J Math

over K. The tools work for all spanned $R \in \operatorname{Pic}^{y}(C)(K)$ with $\deg(J) + y \leq 3a - 5$, without assuming that y is the K-gonality of C.

2.2. Proofs over \mathbb{K}

Lemma 1 Fix an integer $c \ge 2$ and a zero-dimensional scheme $Z \subset Q$. Assume $\deg(Z \cap L) \le 1$ for each line $L \subset Q$, $h^1(\mathcal{I}_Z(c,c)) > 0$ and $\deg(Z) \le 3c + 1$. Then there is an integral $D \in |\mathcal{O}_Q(1,1)|$ such that $\deg(D \cap Z) \ge 2c + 2$.

Proof Set $Z_0 := Z$. Let $T_1 \subset Q$ be any element of $|\mathcal{O}_Q(1,1)|$ such that $e_1 := \deg(T_1 \cap Z)$ is maximal. Set $Z_1 := \operatorname{Res}_{T_1}(Z_0)$. For each integer $i \geq 2$ define recursively the integer e_i , the curve $T_i \in |\mathcal{O}_Q(1,1)|$, and the scheme $Z_i \subseteq Z_{i-1}$ in the following way. Let $T_i \subset Q$ be any element of $|\mathcal{O}_Q(1,1)|$ such that $e_i := \deg(T_i \cap Z_{i-1})$ is maximal. Set $Z_i := \operatorname{Res}_{T_1}(Z_{i-1})$. The sequence $\{e_i\}_{i\geq 1}$ is nonincreasing. Since $h^0(\mathcal{O}_Q(1,1)) = 4$, we have $e_{i+1} = 0$ and $Z_i = \emptyset$ if $e_i \leq 2$. Since $\deg(Z \cap L) \leq 1$ for each line $L \subset Q$, we may take T_i as above and with the additional restriction that each T_i is irreducible. Since $\deg(Z) \leq 3c + 1$, we get $e_{c+1} \leq 1$ and $Z_{c+1} = \emptyset$. From (1) for each $i \in \{1, \ldots, c\}$ we get the exact sequences

$$0 \to \mathcal{I}_{Z_i}(c-i,c-i) \to \mathcal{I}_{Z_{i-1}}(c-i+1,c-i+1) \to \mathcal{I}_{Z_{i-1},T_i}(c-i+1,c-i+1) \to 0$$
(2)

Since $\deg(Z_c) \leq 1$, we have $h^1(\mathcal{I}_{Z_c}) = 0$. Since $h^1(\mathcal{I}_Z(c,c)) > 0$, we get the existence of an integer $i \in \{1, \ldots, c\}$ such that $h^1(T_i, \mathcal{I}_{Z_{i-1},T_i}(c-i+1,c-i+1)) > 0$. Let f be the minimal such integer. Since T_f is irreducible, we have $T_f \cong \mathbb{P}^1$. Since $\deg(\mathcal{O}_{T_f}(c-f+1,c-f+1)) = 2c-2f+2$, we have $h^1(T_f, \mathcal{I}_{Z_{f-1},T_f}(c-f+1,c-f+1)) > 0$ if and only if $e_f \geq 2c - 2f + 4$. If f = 1, then we may take $D := T_1$. Now assume $f \geq 2$. Since $e_i \geq e_f$ for all i < f, we get $\deg(Z) \geq 2f(c-f+2)$. The function $\psi(t) := 2t(c+2-t)$ is increasing in the interval [2, (c+2)/2] and decreasing for t > (c+2)/2. Since $\psi(2) = \psi(c) = 4c$, we get $\deg(Z) \geq 4c$, a contradiction. \Box

Lemma 2 Fix integers $k \ge c \ge 0$ and a zero-dimensional scheme $Z \subset Q$ such that $\deg(Z) \le k + c + 1$ and $\deg(Z \cap L) \le 1$ for each line $L \subset Q$. Then $h^1(\mathcal{I}_Z(k,c)) = 0$.

Proof If c = 0, then one may use k-c residual exact sequences, each time with respect to some $L \in |\mathcal{O}_Q(1,0)|$. If k = c = 1, then the lemma is obvious. If $k = c \geq 2$, then we may apply Lemma 1. Now assume k > c > 0. By the case c = 0 we may assume $\deg(Z) \geq k - c$. Since $h^0(Q, \mathcal{O}_Q(k - c, 0)) = k - c + 1$, there is $F \in |\mathcal{O}_Q(k - c, 0)|$ such that $\deg(F \cap Z) \geq k - c$. Since $\deg(L \cap Z) \leq 1$ for each $L \in |\mathcal{O}_Q(1,0)|$, we have $\deg(F \cap Z) = k - c$. Hence $\deg(\operatorname{Res}_F(Z)) = \deg(Z) - k + c \leq 2c + 1$. Lemma 1 gives $h^1(\mathcal{I}_{\operatorname{Res}_F(Z)}(c,c)) = 0$. We saw that $h^1(\mathcal{I}_{F \cap Z}(k,0)) = 0$ and hence $h^1(\mathcal{I}_{F \cap Z}(k,c)) = 0$. Therefore $h^1(F, \mathcal{I}_{F \cap Z,F}(k,c)) = 0$. A residual exact sequence gives $h^1(\mathcal{I}_Z(k,c)) = 0$.

Lemma 3 Let $T \subset Q$ be an integral element of $|\mathcal{O}_Q(a, a)|$ and $u : C \to T$ its normalization. Let $\mathcal{J} \subset \mathcal{O}_Q$ be the conductor of u and $J \subset Q$ the closed subscheme with \mathcal{J} as its ideal sheaf. Fix integers $x \in \{0, \ldots, a-2\}$ and $y \in \{0, \ldots, a-2\}$. We have $h^0(C, u^*(\mathcal{O}_T(x, y))) = (x+1)(y+1)$ if and only if $h^1(\mathcal{I}_J(a-2-x, b-2-y)) = 0$. **Proof** Since a > x, a > y and T has type (a, a), we have $h^0(\mathcal{I}_T(x, y)) = 0$. Since $h^1(Q, \mathcal{O}_Q(a - x, b - y)) = 0$, the exact sequence (1) for $Z = \emptyset$ gives $h^0(T, \mathcal{O}_T(x, y)) = (x+1)(y+1)$. Hence we have $h^{0}(C, u^{*}(\mathcal{O}_{T}(x, y))) = (x + 1)(y + 1)$ if and only if $h^{1}(C, u^{*}(\mathcal{O}_{T}(x, y))) = h^{1}(T, \mathcal{O}_{T}(x, y)) - \deg(J)$. Since $\omega_{Q} \cong \mathcal{O}_{Q}(-2, -2)$, we have $\omega_{T} \cong \mathcal{O}_{T}(a - 2, a - 2)$. Since $h^{i}(\mathcal{O}_{Q}(-2, -2)) = 0$, i = 0, 1, the restriction map $H^{0}(Q, \mathcal{I}_{J}(a - 2, a - 2)) \to H^{0}(T, \omega_{T})$ is bijective. Hence $h^{1}(C, u^{*}(\mathcal{O}_{T}(x, y))) = h^{1}(T, \mathcal{O}_{T}(x, y)) - \deg(J)$ if and only if $h^{1}(\mathcal{I}_{J}(a - 2 - x, b - 2 - y)) = 0$.

Corollary 2 Let $T \subset Q$ be an integral element of $|\mathcal{O}_Q(a, a)|$ with only ordinary nodes or ordinary cusps as its singularities. Let $u : C \to T$ be the normalization map. Set $J := \operatorname{Sing}(T)$ and assume $\operatorname{deg}(J \cap L) \leq 1$ for every line $L \subset Q$. If $\sharp(J) \leq 3(a-3)+1$, then $h^0(C, u^*(\mathcal{O}_T(0,1))) = h^0(C, u^*(\mathcal{O}_T(1,0))) = 2$ and $h^0(C, u^*(\mathcal{O}_T(1,1))) = 4$.

Proof Since T has only ordinary nodes and ordinary cusps as singularities, the set J is the conductor scheme used in Lemma 3. Apply Lemmas 1 and 3. \Box

Lemma 4 Fix positive integers c, b_1, b_2 such that $\max\{b_1, b_2\} \leq c+1$. Fix a zero-dimensional scheme $J \subset Q$ and a finite set $B \subset Q$ such that $B \cap J = \emptyset$, $\deg(J \cap I) \leq 1$ for every line $I \subset Q$, no line of Q intersects both J and B, either $I \cap B = \emptyset$ or $I \cap B = b_1$ for each $I \in |\mathcal{O}_Q(1,0)|$ and either $I \cap B = \emptyset$ or $I \cap B = b_2$ for each $I \in |\mathcal{O}_Q(0,1)|$. Assume $h^1(\mathcal{I}_{J \cup B}(c,c)) > 0$.

(a) If $b_1 = b_2 = 1$ and $\deg(J \cup B) \leq 3c + 1$, then there is an integral $D \in |\mathcal{O}_Q(1,1)|$ such that $\sharp(D \cap (J \cup B)) \geq 2c + 2$.

(b) If $\delta := \max\{b_1, b_2\} \ge 2$, then $\deg(J) \ge 2c + 2 - \sharp(B)/\delta$.

Proof Set $Z = J \cup B$. The case $b_1 = b_2 = 1$ is true by Lemma 1. Hence we may assume $b_1 \ge 2$. We have $\sharp(B) = xb_1 = yb_2$ for some positive integers x, y. Without losing generality we may assume $b_1 \ge b_2$. Let $F \in |\mathcal{O}_Q(x, 0)|$ be the union of all lines containing at least one point of B. By assumption $F \cap J = \emptyset$. Since $\sharp(B \cap I) = b_1 \le c+1$ for each component I of F, we have $h^1(F, \mathcal{I}_{Z \cap F}(c, c)) = 0$. Hence the exact sequence

$$0 \to \mathcal{I}_J(c-x,c) \to \mathcal{I}_Z(c,c) \to \mathcal{I}_{F \cap Z,F}(c,c) \to 0$$

gives $h^1(\mathcal{I}_J(c-x,c)) > 0$. Lemma 2 gives $\deg(J) \ge 2c - x + 2$.

Remark 1 In the next lemma the integers b_1 and b_2 are positive integers dividing y (they may be 1). In the applications to W (Corollary 1 and Theorem 1) $b_1 = b_2$ and b_1 divides a. Hence when one needs to apply Lemma 5 to curves in W there is a very small number of possible pairs $(b_1, b_2) \neq (1, 1)$.

Lemma 5 Let $T \subset Q$ be an integral element of $|\mathcal{O}_Q(a, a')|$, $a' \geq a \geq 2$, and $u: C \to T$ its normalization. Let $w: C \to Q$ be the composition of u with the inclusion $T \to Q$. Assume that T has only ordinary nodes and ordinary cusps as singularities and set $J := \operatorname{Sing}(T)$. Assume $\operatorname{deg}(J \cap L) \leq 1$ for each line $L \subset Q$. Fix $R \in \operatorname{Pic}^y(C)$, y > 0, such that R has no base points and R is neither $u^*(\mathcal{O}_C(1,0))$ nor $u^*(\mathcal{O}_C(0,1))$. Let $h: C \to \mathbb{P}^1$ be the morphism associated to a general 2-dimensional linear subspace of $H^0(C, R)$. Let $u_1: C \to \mathbb{P}^1$ and $u_2: C \to \mathbb{P}^1$ be the morphisms associated to the 2 projections $Q \to \mathbb{P}^1$. Let b_i be the degree of the morphism (h, u_i) .

(a) Assume $b_1 = b_2 = 1$ and $y + \sharp(J) \le 2a + a' - 5$. There is a zero-dimensional scheme $\Gamma \subset Q$ with $0 \le \deg(\Gamma) \le 2$ such that $h^0(R) = 4 - \deg(\Gamma)$ and R is induced by the linear system $|\mathcal{I}_{\Gamma}(1,1)|$. We have $\deg(R) = a + a' - \deg(\Gamma')$, where $\Gamma' := w^{-1}(\Gamma)$.

(b) Assume $(b_1, b_2) \neq (1, 1)$ and set $\delta := \max\{b_1, b_2\}$. We have $\sharp(J) \ge a' + a - 2 - y/\delta$.

Proof Set $R' := u^*(\mathcal{O}_Q(1,1))$. Lemma 3 gives $h^0(C, R') = 4$. Hence |R'| is induced by $|\mathcal{O}_Q(1,1)|$.

(i) Assume for the moment that |R| is induced by a linear subseries M of $|\mathcal{O}_Q(1,1)|$, after deleting a base locus. Let $\Gamma \subset Q$ be the base locus of M. Since R is neither $u^*(\mathcal{O}_C(1,0))$ nor $u^*(\mathcal{O}_C(0,1))$, Γ is not a line. Hence Γ is a zero-dimensional scheme (it may be empty). Set $\Gamma' := w^{-1}(\Gamma)$. Since $\mathcal{O}_Q(1,1)$ is very ample, we have $h^0(\mathcal{I}_E(1,1)) = 4 - \deg(E)$ for all zero-dimensional schemes $E \subset Q$ with $\deg(E) \leq 2$. Notice that $h^0(\mathcal{I}_E(1,1)) = 1$ for each degree 3 scheme $E \subset Q$ not contained in a line of Q. Since every line $L \subset \mathbb{P}^3$ with $\deg(L \cap Q) \geq 3$ is contained in Q, we get $\deg(\Gamma) \leq 2$ and $h^0(R) = 4 - \deg(\Gamma)$. Moreover, $\mathcal{I}_{\Gamma}(1,1)$ is spanned, unless $\deg(\Gamma) = 2$ and Γ is contained in a line of Q. The latter case does not occur for R, because the line would be in the base locus Γ , while $\dim(\Gamma) = 0$. Hence $\mathcal{I}_{\Gamma}(1,1)$ is spanned. Since $\mathcal{I}_{\Gamma}(1,1)$ and R are spanned, we have $R \cong R'(-\Gamma')$.

(ii) Fix a general $A \in |R|$ and set B := u(A). Let $f : C \to \mathbb{P}^1$ be the degree y morphism induced by |R|. Since f is induced by a general pencil of the complete linear system |R|, it cannot factor through the Frobenius of order p. Since \mathbb{K} is perfect, we get that f is separable. Since A is general, A is a reduced set of y points. Since |R| is spanned, we may also assume $A \cap u^{-1}(\operatorname{Sing}(T)) = \emptyset$. Hence $B \cap J = \emptyset$ and $\sharp(B) = y$.

Claim: We have $h^1(\mathcal{I}_{J\cup B}(a-2, a'-2)) > 0.$

Proof of the Claim: Fix $O \in A$. Since R is spanned, we have $h^0(R(-O)) = h^0(R) - 1$, i.e. $h^0(\omega_C(-(A \setminus \{O\}))) = h^0(\omega_C(-A))$ (Riemann-Roch and Serre duality). Hence $h^1(\omega_C(-A)) > 0$. We have $\omega_Q \cong \mathcal{O}_Q(-2, -2)$. Hence the adjunction formula gives $\omega_T \cong \mathcal{O}_T(a-2, a'-2)$. Since $h^i(\mathcal{O}_Q(-2, -2)) = 0$, i = 0, 1, the restriction map $H^0(\mathcal{O}_Q(a-2, a'-2)) \to H^0(T, \omega_T)$ is bijective. Since T has only ordinary nodes and ordinary cusps as singularities, we have $H^0(C, \omega_C) \cong H^0(\mathcal{I}_J(a-2, a'-2))$. Hence $h^1(\mathcal{I}_{J\cup B}(a-2, a'-2)) > 0$.

(iii) In this step we assume a' = a and $h^0(R) = 2$. We first prove that R is a subsheaf of $u^*(\mathcal{O}_T(1,1))$.

(a) Assume $b_1 = b_2 = 1$. Since $y + \sharp(J) \leq 3a - 5$ and $h^1(\mathcal{I}_{J \cup B}(a - 2, a - 2)) > 0$ by the Claim, Lemma 4 gives the existence of a divisor $D \in |\mathcal{O}_Q(1, 1)|$ such that $\deg(D \cap (J \cup B)) \geq 2a - 2$. Since R has no base points and $h^0(R) = 2$, we get $B = B \cap D$. Moving $A \in |R|$ the set B moves and hence D moves, but Y and the set $J \cap D$ are the same for all general A. Hence |R| is induced by a subseries M of the linear system $|\mathcal{O}_Q(1, 1)|$. Let $\Gamma \subset Q$ be the base locus of M. Since $h^0(R) = 2$, step (i) gives $\deg(\Gamma) = 2$. Step (i) gives $y = 2a - \deg(\Gamma')$.

(b) Assume $\delta \geq 2$ and say $b_1 \geq b_2$. Since B is general, either $I \cap B = \emptyset$ or $\sharp(I \cap B) = b_1$ for each $I \in |\mathcal{O}_Q(1,0)|$ and either $I \cap B = \emptyset$ or $\sharp(I \cap B) = b_2$ for each $I \in |\mathcal{O}_Q(0,1)|$. Since $R \neq u^*(\mathcal{O}_T(1,0))$, we have $\delta < a$. Lemma 4 gives $\sharp(J) \geq 2a - 2 - y/\delta$.

(iv) Assume a' > a and $h^0(R) = 2$. Let $F \subset Q$ be a union of a' - a lines of type (0,1), each of them meeting B. Notice that $F \cap J = \emptyset$ and $\sharp(L \cap B) = b_1$ for each component L of F. Since $b_1 \leq a + 1$, we have $h^1(F, \mathcal{I}_{F \cap (B \cup J), F}(a, a')) = 0$. Hence $h^1(\mathcal{I}_{J \cup B}(a, a')) \leq h^1(\mathcal{I}_{J \cup (B \setminus B \cap F)}(a, a))$ by a residual exact sequence like (1). Apply step (iii). (v) Assume $h^0(R) > 2$. By steps (iii) and (iv) a general pencil of R is induced by a 2-dimensional linear subspace of $|\mathcal{O}_Q(1,1)|$. Hence R is induced by a subseries of $|\mathcal{O}_Q(1,1)|$ after deleting the base points. Use step (i).

Corollary 3 In the set-up of Lemma 5 assume a = a'. Then $y \ge 2a - 2 - \min\{2, \deg(J)\}$ and for each y with $2a - 2 - \min\{2, \sharp(J)\} \le y \le 2a$ there is a spanned $R \in \operatorname{Pic}^y(C)$ with |R| induced by a linear subspace of $|\mathcal{O}_Q(1,1)|$.

3. The quadric surface W

Let K be a perfect field having a quadratic extension. Fix homogeneous coordinates x_0, x_1, x_2, x_3 on \mathbb{P}^3 . Fix $f \in K[x_0, x_1]$ with f homogeneous of degree 2 and with no nontrivial zero in K. Set $W := \{x_2x_3 + f(x_0, x_1) = 0\} \subset \mathbb{P}^3$. W is a geometrically smooth quadric surface containing no line defined over K. Hence $\operatorname{Pic}(W)(K)$ is freely generated by $\mathcal{O}_W(1)$. Let $Y \subset W$ be a geometrically irreducible curve defined over K and $u : C \to Y$ the normalization map. C is a geometrically connected smooth curve and C and u are defined over K. Let a be the only integer such that $Y \in |\mathcal{O}_W(a, a)|$. Set $Q := W(\overline{K})$.

In the set-up of Remark 1 and Corollary 3 the curve $Y(\overline{K})$ has $b_1 = b_2$. For any field $K' \supseteq K$ let J(K') denote the set of all $P \in J$ defined over K'.

The following statement implies Corollary 1.

Theorem 1 Take the set-up of Corollary 1.

(a) If $\sharp(J(K')) \geq 2$ for some quadratic extension K' of K, then y = 2a - 4.

(b) If $\sharp(J(K)) = 1$, J(K) = J(K') for every quadratic extension K' of K and $Y(K) \setminus J(K) \neq \emptyset$, then y = 2a - 3.

(c) Assume $\sharp(J(K)) = 1$, J(K) = J(K') for every quadratic extension K' of K and Y(K) = J(K). Set $\{P\} := J(K)$. If Y has an ordinary node at P and the formal branches of Y at P are not defined over K, then y = 2a - 2; otherwise, y = 2a - 3.

(d) If $J(K'') = \emptyset$ for every quadratic extension K'' of K and there is a quadratic extension K' of K with $\sharp(Y(K')) \ge 2$, then y = 2a - 2.

(e) If Y(K) has a unique point P, $P \notin J$ and $Y(K') = \{P\}$ for every quadratic extension K' of K, then y = 2a - 1.

(f) If $J(K') = Y(K') = \emptyset$ for every quadratic extension K' of K, then y = 2a.

In case (e) the only line bundle evincing y is the pull-back of $\mathcal{O}_Y(1)(-P)$ and we have $h^0(R) = 3$.

In case (f) the only line bundle R evincing y is the one induced by the pull-back of $\mathcal{O}_W(1)$ and we have $h^0(R) = 4$.

Proof Since $\mathcal{O}_W(1)$ is spanned, we have $y \leq 2a$. Part (b) of Lemma 5 shows that $b_1 = b_2 = 1$. Theorem 1 follows from Corollary 3 and step (i) of the proof of Lemma 5.

Notice that if $J(K') \supseteq J(K)$ for some quadratic extension K' of K, then $J(K') \setminus J(K)$ contains at least 2 elements and hence we are in case (a) with y = 2a - 4.

BALLICO/Turk J Math

References

- [1] Campillo, A.: Algebroid curves in positive characteristic. Lecture Notes in Mathematics, 813. Springer, Berlin, 1980.
- [2] Campillo, A., Castellanos, J.: On projections of space algebroid curves. Algebraic geometry (La Rábida, 1981), 22–31, Lecture Notes in Math., 961, Springer, Berlin, 1982.
- [3] Galindo, C., Monserrat, F.: The Poincaré series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface. Adv. Math. 225, no. 2, 1046–1068 (2010).
- [4] Hirschfeld, J. W. P. : Finite projective spaces of three dimensions. Oxford, Clarendon Press 1985.
- [5] Nguyen, K. V. Saito, M.-H.: d-gonality of modular curves and bounding torsions (March 29, 1996), preprint, arXiv:alg-geom/9603024.
- [6] Martens, G.: The gonality of curves on a Hirzebruch surface. Arch. Math. 67, 349–352 (1996).
- [7] Paoletti, R.: Free pencils on divisors. Math. Ann. 303, no. 1, 109–123 (1995).
- [8] Pellikaan, R.: On the gonality of curves, abundant codes and decoding. In: Coding theory and algebraic geometry (Luminy, 1991), 132–144, Lecture Notes in Math., 1518, Springer, Berlin (1992).
- [9] Poonen, B.: Gonality of modular curves in characteristic p. Math. Res. Lett. 14, no. 4, 691–701 (2007).
- [10] Serrano, F.: Extension of morphisms defined on a divisor. Math. Ann. 277, no. 1, 395-413 (1987).