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Abstract: Let W C P? be a smooth quadric surface defined over a perfect field K and with no line defined over K
(e.g., an elliptic quadric surface over a finite field). In this note we study the gonality over K of smooth curves with a

singular model contained in W and with mild singularities.

Key words: Gonality, curve over a perfect field, K -gonality, elliptic quadric surface

1. Introduction

Let K be a perfect field such that there is a degree 2 extension L of K. Let f(xg,z1) € KJzo,x1] denote
any degree 2 homogeneous polynomial such that L = K(«) with « a root of f(1,t), i.e. take as f any degree
2 homogeneous polynomial that is irreducible over K but reducible over L. The main examples are the case
K =R, L =C and the case K =F,; and L = I 2. Take homogeneous coordinates o, x1, 2,23 of P? (over
K and hence over K ). Let W C P3 denote the smooth quadric surface with zoxs + f(z0,21) as its equation.
If K =R, then these types of surfaces are just ellipsoids. If K =T,, then W is an elliptic quadric surface [4].
In this paper we study the K -gonality of smooth curves C either contained in W or with a singular model

Y C W, but with a small number of singularities. We prove the following result.

Corollary 1 Let Y C W be a geometrically integral curve defined over K and let uw : C — Y be the

normalization of Y . Let a > 0 be the positive integer such that Y € |Ow (a)|. Assume that Y (K) has only

ordinary nodes and ordinary cusps as singularities and set J := Sing(Y (K)). Assume #(J) < a —5 and that

no line of W(K) contains at least 2 points of J. Let R € PicY(C)(K) be a spanned line bundle on C defined

over K and with minimal positive degree. Then 2a —4 <y < 2a and R is induced by a subseries of |Ow(1)].
We have y = 2a — 4 if and only if there is a degree 2 extension K' of K such that §(J(K')) > 2.

We have y = 2a if and only if Y(K') =0 for each degree 2 extension K' of K .

See Theorem 1 for spelling out the possible cases of y. For the foundational results on the gonality of
curves over algebraically closed fields, see [3], [5], [9].
Since we work in arbitrary characteristic we cannot use some of the strongest tools in the literature. In

our opinion in characteristic zero the best results are still obtained using [7] or the case e = 0 of [10] and [6],
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Remark 2 on page 351. To get Corollary 1 and related results we need first to work over an algebraically closed
field K and study low degree linear series on smooth models of singular curves on a smooth quadric surface @
(see section 2). As stressed above, in characteristic zero stronger tools are available.

We discuss our method and possible improvements in Subsection 2.1.

Many thanks are due to a referee who improved the exposition.

2. Over an algebraically closed field K

Let @ C P? be a smooth quadric surface defined over an algebraically closed field K. For any coherent sheaf F
on @ and any integer i > 0 set H'(F) := HY(Q,F) and h*(F) := dim(H*(F)). For all (a,b) € Z* let Og(a,b)
denote the line bundle on @ with bidegree (a,b). We have h°(Og(a,b)) = (a+1)(b+1) and h'(Og(a,b)) = 0 if
a >0 and b > 0, while h%(Og(a,b)) =0 if either a <0 or b< 0.1f a >0, b>0 and T € |Og(a,b)|, then we
say that T has type (a,b). The lines contained in @ are the curves D C @ with either type (1,0) or type (0,1).
For any zero-dimensional scheme Z C @ and any T € |Og(u,v)|, let Resp(Z) denote the residual scheme of
Z with respect to T, i.e. the closed subscheme of @) with Zz : Zp as its ideal sheaf. We have Resp(Z) C Z,
deg(Z) = deg(Resr(Z))+deg(ZNT) and for all (a,b) € Z* we have an exact sequence (often called the residual
exact sequence)

0— IReST(Z)(a —u, b— ’U) — Iz(a, b) — IZmT’T(a, b) —0 (].)

2.1. Outline of the proof and of possible improvements

Take an integral curve Y C @ with bidegree (a,a). Let u: C — Y be the normalization map and w : C — @
the composition of u with the inclusion ¥ — @. Let J C Og be the conductor of w and J C @ the zero-
dimensional subscheme of () with J as its ideal sheaf. Let J.q be the support of J. We assume for instance
deg(J) <a—5. Let F be the set of all irreducible E € |Og(1,1)| such that 1 < §(E N Jreqa) < 2. Let G be the
set of all irreducible E € |Og(1,1)| such that §(E N Jwea) > 3. Let H be the set of all reducible E € |Og(1,1)|
such that each component of E meets J,.q. Take B as in the proof of Lemma 5. Since GUH is finite, while B is
general, we have FNB = () for all E € (GUH). To apply Lemmas 1 and 2 to the scheme Z = JUB it is sufficient
to assume deg(JNE)+y < 2a—>5 for all E € |Og(1,1)|. With this assumption steps (ii), (iii), (iv) of the proof
of Lemma 5 carry over, because deg(J NE) <2a—5—y for all E € F and deg(DNB) <2if D e |0g(1,1)]
is reducible and by = by = 1. Step (i) of the proof of Lemma 5 requires the following modifications for arbitrary
singularities. For each P € Joq let up be the degree of the effective divisor w=!(P) C C. For each connected
degree 2 zero-dimensional scheme Z C () whose support is a point P € Ji.q let ugz p be the degree of the
effective divisor w~=!(Z) C C. We say that Y has either an ordinary node or an ordinary cusp at P if up = 2
and for each connected degree 2 scheme Z C @ with P as its support either uz p = 3 (if and only if in the
plane Tp(Q the line through Z is in the tangent cone of ¥ at P) or uz p = 2. In the description of step (i) of
the proof of Lemma 5 we use the integers up (with up = 2 for double points) and uz p (which are 2 or 3 for
ordinary nodes and cusps with 3 if and only if Z corresponds to a branch of Y at P. See for instance [1], [2],
[3] for the formal theory of plane and space curves.

Now assume Y C W and that Y is defined over K. To extend Theorem 1 one needs to know the integers
up, P € Jrea(K') for any degree 2 extension K’ of K and the integers uy p with P € Jyeq(K) and Z defined
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over K. The tools work for all spanned R € PicY(C)(K) with deg(J) +y < 3a — 5, without assuming that y
is the K -gonality of C'.

2.2. Proofs over K

Lemma 1 Fiz an integer ¢ > 2 and a zero-dimensional scheme Z C Q. Assume deg(Z N L) < 1 for each
line L C Q, h'(Zz(c,c)) > 0 and deg(Z) < 3c + 1. Then there is an integral D € |Og(1,1)| such that
deg(DNZ) > 2c+2.

Proof Set Zy:= Z.Let T1 C Q be any element of |Og(1,1)| such that e; := deg(77 N Z) is maximal. Set
Zy = Resry, (Zy). For each integer ¢ > 2 define recursively the integer e;, the curve T; € |Og(1,1)|, and the
scheme Z; C Z;_, in the following way. Let T; C @ be any element of |Og(1,1)| such that e; := deg(T;NZ;_1)
is maximal. Set Z; := Rest, (Z;—1). The sequence {e;};>1 is nonincreasing. Since h°(Og(1,1)) = 4, we have
e;r1 =0 and Z; =0 if e; < 2. Since deg(Z N L) <1 for each line L C Q, we may take T; as above and with
the additional restriction that each T; is irreducible. Since deg(Z) < 3¢+ 1, we get e.11 <1 and Z.y1 = 0.

From (1) for each i € {1,...,c} we get the exact sequences

0TIz (c—t,c—1) Iy (c—i+1lc—i+1)—=Tz ,1(c—i+1l,c—i+1)—0 (2)

i—1,44

Since deg(Z.) < 1, we have h'(Zz,) = 0. Since h'(Zz(c,c)) > 0, we get the existence of an integer i € {1,...,c}
such that h'(T;,Zz, , 1,(c—i+1,c—i+1)) > 0. Let f be the minimal such integer. Since T is irreducible, we
have Ty 2 P*. Since deg(Or, (c—f+1,¢—f+1)) = 2¢—2f+2, we have h' (T, Lz, , 1,(c—f+1,c—f+1)) >0
if and only if ey > 2c —2f +4. If f = 1, then we may take D := T;. Now assume f > 2. Since e; > ey
for all i < f, we get deg(Z) > 2f(c — f + 2). The function 1 (t) := 2t(c + 2 — t) is increasing in the interval
[2,(c+2)/2] and decreasing for t > (c+2)/2. Since ¥(2) = ¥(c) = 4e, we get deg(Z) > 4c, a contradiction. O

Lemma 2 Fiz integers k > ¢ > 0 and a zero-dimensional scheme Z C @ such that deg(Z) < k+c+1 and
deg(ZNL) <1 for each line L C Q. Then h*(Zz(k,c)) = 0.

Proof If ¢ =0, then one may use k—c residual exact sequences, each time with respect to some L € |Og(1,0)]|.
If Kk = c = 1, then the lemma is obvious. If k¥ = ¢ > 2, then we may apply Lemma 1. Now assume
k > ¢ > 0. By the case ¢ = 0 we may assume deg(Z) > k — c. Since h%(Q,0q(k — ¢,0)) = k —c + 1,
thereis F' € |Og(k—c,0)| such that deg(F'NZ) > k—c. Since deg(LNZ) <1 for each L € |Og(1,0)|, we have
deg(FNZ) =k — c. Hence deg(Resp(Z)) = deg(Z) —k+ ¢ < 2c+ 1. Lemma 1 gives h'(Zres,.(2)(c,¢)) = 0.
We saw that h'(Zpnz(k,0)) = 0 and hence h'(Zpnz(k,c)) = 0. Therefore h'(F,Zrnz r(k,c)) = 0. A residual
exact sequence gives h'(Zz(k,c)) = 0. O

Lemma 3 Let T C Q be an integral element of |Og(a,a)| and uw: C — T its normalization. Let J C Og be
the conductor of uw and J C Q the closed subscheme with J as its ideal sheaf. Fiz integers x € {0,...,a—2} and
y€{0,...,a—2}. We have h°(C,u*(Or(z,y))) = (z+1)(y+1) if and only if h*(Z;(a—2—2,b—2—y)) =0.
Proof Since a > z, a > y and T has type (a,a), we have h°(Zr(z,y)) = 0. Since h'(Q,Og(a —
x,b — 1)) = 0, the exact sequence (1) for Z = @ gives h%(T,Or(z,y)) = (z + 1)(y + 1). Hence we have
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RO(C,u*(Or(z,y))) = (z + 1)(y + 1) if and only if h'(C,u*(Or(x,y))) = hY(T,Or(z,y)) — deg(J). Since
wg = Og(—2,-2), we have wr = Or(a — 2,a — 2). Since h*(Og(—2,-2)) =0, i = 0,1, the restriction map
H°(Q,Z;(a—2,a—2)) = H°(T,wr) is bijective. Hence h'(C,u*(Or(z,y))) = h1 (T, Or(z,y)) — deg(J) if and
only if h'(Z;(a —2—2,b—2—1y)) =0. |

Corollary 2 Let T C @ be an integral element of |Og(a,a)| with only ordinary nodes or ordinary cusps as
its singularities. Let u : C — T be the normalization map. Set J := Sing(T) and assume deg(J N L) < 1
for every line L C Q. If #(J) < 3(a — 3) + 1, then h°(C,u*(Or(0,1))) = R°(C,u*(Or(1,0))) = 2 and
RO(C,u*(Or(1,1))) = 4.

Proof Since T has only ordinary nodes and ordinary cusps as singularities, the set J is the conductor scheme

used in Lemma 3. Apply Lemmas 1 and 3. O

Lemma 4 Fiz positive integers c,by,bs such that max{by,bs} < c+ 1. Fiz a zero-dimensional scheme J C Q
and a finite set B C Q such that BNJ =0, deg(JNI) <1 for every line I C Q, no line of Q intersects both
J and B, either INB =0 or INB = by for each I € |Og(1,0)| and either INB =0 or INB = by for each
I €]0g(0,1)]. Assume h*(Z;up(c,c)) > 0.

(a) If by = be = 1 and deg(J U B) < 3c+ 1, then there is an integral D € |Og(1,1)| such that
§(DN(JUB)) > 2c+2.

(b) If 6 := max{by,b2} > 2, then deg(J) >2c+2—H{(B)/J.
Proof Set Z = JU B. The case by = by = 1 is true by Lemma 1. Hence we may assume b; > 2. We
have #(B) = xb; = yby for some positive integers x,y. Without losing generality we may assume b; > by. Let
F € |Og(z,0)| be the union of all lines containing at least one point of B. By assumption F'NJ = (). Since
#(BNI)=b; <c+1 for each component I of F, we have h!(F,Zz~r(c,c)) = 0. Hence the exact sequence

0—=Zj(c—z,¢) > ZIz(c,c) = Ipnzrp(c,c)—0

gives h*(Z;(c — x,¢)) > 0. Lemma 2 gives deg(J) > 2¢c — x + 2. |

Remark 1 In the next lemma the integers by and ba are positive integers dividing y (they may be 1). In the
applications to W (Corollary 1 and Theorem 1) by = by and by divides a. Hence when one needs to apply

Lemma 5 to curves in W there is a very small number of possible pairs (by,bs) # (1,1).

Lemma 5 Let T C @ be an integral element of |Og(a,a’)|, a’ > a > 2, and u: C — T its normalization.
Let w: C — @Q be the composition of u with the inclusion T — Q. Assume that T has only ordinary nodes
and ordinary cusps as singularities and set J := Sing(T). Assume deg(J N L) < 1 for each line L C Q.
Fiz R € PicY(C), y > 0, such that R has no base points and R is neither u*(Oc(1,0)) nor u*(Oc(0,1)).
Let h : C — P! be the morphism associated to a general 2-dimensional linear subspace of H°(C,R). Let
uy : C = P! and us : C — P! be the morphisms associated to the 2 projections QQ — P'. Let b; be the degree
of the morphism (h,u;).
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(a) Assume by = by =1 and y+ 4(J) < 2a +a’ — 5. There is a zero-dimensional scheme T' C Q with
0 < deg(T") < 2 such that h°(R) = 4 — deg(T') and R is induced by the linear system |Ir(1,1)|. We have
deg(R) = a + a’ — deg(I"”), where T" := w=1(T).

(b) Assume (b1,b2) # (1,1) and set § := max{by,ba}. We have §(J) >a' +a—2—1y/s.
Proof Set R':=u*(Og(1,1)). Lemma 3 gives h°(C, R") = 4. Hence |R/| is induced by |Og(1,1)].

(i) Assume for the moment that |R| is induced by a linear subseries M of |Og(1,1)|, after deleting a
base locus. Let T' C @ be the base locus of M. Since R is neither u*(O¢(1,0)) nor v*(Oc(0,1)), T is not a
line. Hence T' is a zero-dimensional scheme (it may be empty). Set IV := w=(T). Since Og(1,1) is very ample,
we have h°(Zg(1,1)) = 4 — deg(E) for all zero-dimensional schemes E C @Q with deg(FE) < 2. Notice that
h(Zg(1,1)) = 1 for each degree 3 scheme E C @ not contained in a line of Q. Since every line L C P? with
deg(L N Q) > 3 is contained in Q, we get deg(I') <2 and h°(R) = 4 — deg(T"). Moreover, Zr(1,1) is spanned,
unless deg(I') = 2 and T is contained in a line of @. The latter case does not occur for R, because the line
would be in the base locus T', while dim(T") = 0. Hence Zr(1,1) is spanned. Since Zr(1,1) and R are spanned,
we have R = R'(-T").

(ii) Fix a general A € |R| and set B := u(A). Let f: C — P! be the degree y morphism induced by
|R|. Since f is induced by a general pencil of the complete linear system |R|, it cannot factor through the
Frobenius of order p. Since K is perfect, we get that f is separable. Since A is general, A is a reduced set of

y points. Since |R| is spanned, we may also assume A Nu~!(Sing(T)) = 0. Hence BNJ =0 and #(B) = y.
Claim: We have h'(Z;up(a —2,a' —2)) > 0.

Proof of the Claim: Fix O € A. Since R is spanned, we have h%(R(—0)) = h°(R)—1,i.e. h®(wc(—(A\{0}))) =
h%(we(—A)) (Riemann-Roch and Serre duality). Hence h'(we(—A)) > 0. We have wg = Og(—2,—2). Hence
the adjunction formula gives wr = Or(a — 2,a’ — 2). Since h*(Og(—2,-2)) = 0, i = 0,1, the restriction
map HY(Og(a —2,a’ —2)) — H(T,wr) is bijective. Since T has only ordinary nodes and ordinary cusps as
singularities, we have H°(C,wc) = H%(Z;(a — 2,a’ —2)). Hence h*(Z;up(a —2,a’ —2)) > 0.

(iii) In this step we assume a’ = a and h°(R) = 2. We first prove that R is a subsheaf of u*(O7(1,1)).

(a) Assume by = by = 1. Since y+4#(J) < 3a—5 and h'(Z;up(a—2,a—2)) > 0 by the Claim, Lemma 4
gives the existence of a divisor D € |Og(1,1)| such that deg(DN(JUB)) > 2a —2. Since R has no base points
and h°(R) =2, we get B= BN D. Moving A € |R| the set B moves and hence D moves, but Y and the set
J N D are the same for all general A. Hence |R| is induced by a subseries M of the linear system |Og(1,1)].
Let I' C Q be the base locus of M. Since h°(R) = 2, step (i) gives deg(I') = 2. Step (i) gives y = 2a — deg(I").

(b) Assume 6 > 2 and say by > by. Since B is general, either I N B = or #(I N B) = b for each
I € 10¢(1,0)| and either INB =0 or (I N B) = by for each I € |Og(0,1)|. Since R # u*(Or(1,0)), we have
0 < a. Lemma 4 gives §(J) > 2a —2 —y/J.

(iv) Assume o’ > a and h°(R) = 2. Let F' C @ be a union of a’ — a lines of type (0,1), each of them
meeting B. Notice that FNJ =0 and #(L N B) = b; for each component L of F. Since by < a+ 1, we have
h(F,Zrnsugy,rla,a’)) = 0. Hence h'(Zyup(a,a’)) < hN(Z;us\Bnr)(a,a)) by a residual exact sequence like
(1). Apply step (iii).
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(v) Assume h°(R) > 2. By steps (iii) and (iv) a general pencil of R is induced by a 2-dimensional linear
subspace of |Og(1,1)|. Hence R is induced by a subseries of |Og(1,1)| after deleting the base points. Use step

(i). O

Corollary 3 In the set-up of Lemma 5 assume a = a'. Then y > 2a — 2 — min{2,deg(J)} and for each y
with 2a —2 — min{2,4(J)} < y < 2a there is a spanned R € Pic’(C) with |R| induced by a linear subspace of
|0q(L,1)].

3. The quadric surface W

Let K be a perfect field having a quadratic extension. Fix homogeneous coordinates g, x1, z2, x5 on P3. Fix
f € K[zg, 1] with f homogeneous of degree 2 and with no nontrivial zero in K. Set W := {23+ f(z0,21) =
0} C P3. W is a geometrically smooth quadric surface containing no line defined over K. Hence Pic(W)(K)
is freely generated by Ow(1). Let Y C W be a geometrically irreducible curve defined over K and u: C —Y
the normalization map. C' is a geometrically connected smooth curve and C' and wu are defined over K. Let a
be the only integer such that Y € |Ow (a,a)|. Set Q := W (K).

In the set-up of Remark 1 and Corollary 3 the curve Y (K) has by = by. For any field K’ D K let J(K')

denote the set of all P € J defined over K.
The following statement implies Corollary 1.

Theorem 1 Tuke the set-up of Corollary 1.

(a) If $(J(K")) > 2 for some quadratic extension K' of K, then y = 2a —4.

(b) If #(J(K)) =1, J(K) = J(K') for every quadratic extension K' of K and Y(K)\ J(K) # 0, then
y=2a—-3.

(c) Assume §(J(K)) =1, J(K) = J(K') for every quadratic extension K' of K and Y(K) = J(K).
Set {P} := J(K). If Y has an ordinary node at P and the formal branches of Y at P are not defined over
K, then y = 2a — 2; otherwise, y = 2a — 3.

(d) If J(K") =0 for every quadratic estension K" of K and there is a quadratic extension K' of K
with §(Y (K')) > 2, then y = 2a — 2.

(e) If Y(K) has a unique point P, P ¢ J and Y(K') = {P} for every quadratic extension K' of K,
then y =2a —1.

() If J(K')=Y(K') =0 for every quadratic extension K' of K, then y = 2a.

In case (e) the only line bundle evincing y is the pull-back of Oy (1)(—P) and we have h°(R) = 3.

In case (f) the only line bundle R evincing y is the one induced by the pull-back of Ow (1) and we have
h°(R) = 4.
Proof Since Ow (1) is spanned, we have y < 2a. Part (b) of Lemma 5 shows that b; = b = 1. Theorem 1
follows from Corollary 3 and step (i) of the proof of Lemma 5. O

Notice that if J(K') 2 J(K) for some quadratic extension K’ of K, then J(K’)\ J(K) contains at

least 2 elements and hence we are in case (a) with y = 2a — 4.
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