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Abstract: Let (A,B) be a cotorsion pair in R -Mod. We define and study notions of A dimension and B dimension

of unbounded complexes, which is given by means of dg -projective resolution and dg -injective resolution, respectively.

As an application, we extend the Gorenstein flat dimension of complexes, which was defined by Iacob. Gorenstein

cotorsion, FP-projective, FP-injective, Ding projective, and Ding injective dimension are also extended from modules to

complexes. Moreover, we characterize Noetherian rings, von Neumann regular rings, and QF rings by the FP-projective,

FP-injective, and Ding projective (injective) dimension of complexes, respectively.
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1. Introduction and preliminaries

In the classical book by Cartan and Eilenberg [4], concepts of projective, injective, and weak (flat) dimensions

were defined for left R -modules over arbitrary rings. The extension of homological algebra from modules to

complexes of modules, which had started already in the last chapter of [4], has produced a theory of homological

dimensions. In that chapter, the projective (or flat) dimension was only defined for complexes that are

homologically bounded below, while the injective dimension was introduced only for those that are homologically

bounded above. However, in [2], Avramov and Foxby defined injective, projective, and flat dimensions for

arbitrary complexes of left R -modules over associative rings in terms of dg -injective, dg -projective, and dg -flat

complexes, respectively. For complexes homologically bounded below over commutative rings, Yassemi [31]

and Christensen [5] introduced a notion of Gorenstein projective dimension. In [6] Christensen et al. gave

generalizations of the Gorenstein projective, Gorenstein injective, and Gorenstein flat dimensions. In [27],

Veliche extended the concept of the Gorenstein projective dimension to the setting of unbounded complexes

over associative rings. In [1], Asadollahi and Salarian defined the dual notion, that of Gorenstein injective

dimension of complexes over arbitrary associative rings. The main purpose of this paper is to give a general

study of homological dimensions of complexes of R -modules related to a cotorsion pair (A,B) in the category

R -Mod of R -modules.

The notion of cotorsion pairs was introduced by Salce in [25], and it provides a good setting for

investigating relative homological dimensions. Given a cotorsion pair (A,B) in R -Mod, Gillespie introduced

the notions of dg -A and dg -B complexes in [18]. We can thus define the A dimension and B dimension
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of unbounded complexes, which are given by means of dg -projective resolution and dg -injective resolution,

respectively. Next we describe our construction and some results in more detail.

In Section 2, we define and study the A dimension and B dimension of complexes. In Theorem 2.7 and

Theorem 2.8, we give characterizations of these new notions. In Theorem 2.9 we also prove that if (A,B) is a

hereditary cotorsion pair in R -Mod, and X,Y are R -complexes, then B-dimR(X) = inf{sup{l ∈ Z | V−l ̸= 0} |

X ≃ V ∈ dgB̃}, and A-dimR(Y ) = inf{sup{l ∈ Z | Tl ̸= 0} | Y ≃ T ∈ dgÃ}. It is well known that the global

dimension gD(R) of R plays an important role in classical homological algebra. Similarly, we define and study

the A dimension and B dimension of R , denoted by A-dim(R) and B-dim(R), as the supremum of A dimension

and B dimension of all R -modules, respectively. Furthermore, we prove that gD(R) ≤ A-dim(R) + B-dim(R).

We give some applications of our main results in Section 3. We show that the projective, injective dimen-

sions of complexes are also obtained in the present framework. We also extend the Gorenstein flat dimension of

complexes, which was defined by Iacob. Gorenstein cotorsion, FP-projective, FP-injective, Ding projective, and

Ding injective dimensions are also extended from modules to complexes. Moreover, we characterize Noetherian

rings, von Neumann regular rings, and QF rings by FP-projective, FP-injective, and Ding projective (injective)

dimensions of complexes, respectively.

We next recall some known notions and facts needed in the sequel.

In this paper, R denotes a ring with unity, R -Mod the category of left R -modules, and Ch(R) the

category of complexes of left R -modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of left R -modules will be denoted (C, δ) or C . Given a left R -module M , we will denote by Dn(M) the

complex

· · · −→ 0 −→ M
id−→ M −→ 0 −→ · · ·

with the M in the n and (n − 1)-th position. We mean by Sn(M) the complex with M in the n -th

place and 0 in the other places. Given a complex C and an integer i , ΣiC denotes the complex such that

(ΣiC)n = Cn−i and whose boundary operators are (−1)iδCn−i . Given a complex C , the n -th homology

module of C is the module Hn(C) = Zn(C)/Bn(C), where Zn(C) = Ker(δCn ), Bn(C) = Im(δCn+1), and we set

Hn(C) = H−n(C), Cn(C) = Coker(δCn+1).

A homomorphism φ : C −→ D of degree n is a family (φi)i∈Z of homomorphisms of R -modules

φi : Ci −→ Dn+i . All such homomorphisms form an abelian group, denoted HomR(C,D)n , and it is clearly

isomorphic to
∏

i∈Z HomR(Ci, Dn+i). We let HomR(C,D) denote the complex of abelian groups with n -th

component HomR(C,D)n and boundary operator

δn((φi)i∈Z) = (δDn+iφi − (−1)nφi−1δ
C
i )i∈Z.

A homomorphism φ ∈ HomR(C,D)n is called a chain map if δ(φ) = 0, that is, if δDn+iφi = (−1)nφi−1δ
C
i for

all i ∈ Z . A chain map of degree 0 is called a morphism. ExtiR(C,D) for i ≥ 1 will denote the groups we get

from the right derived functor of HomR(C,D). A morphism φ : C −→ D is called a quasi-isomorphism if the

induced morphisms Hn(φ) : Hn(C) −→ Hn(D) are isomorphisms for all n ∈ Z .
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Let X be an R -complex and m, n ∈ Z . The soft left-truncation, ⊂mX , of X at m and the soft

right-truncation, X⊃−n , of X at −n are given by

⊂mX : 0 −→ Cm(X)
δXm−→ Xm−1

δXm−1−→ Xm−2

δXm−2−→ · · · ,

X⊃−n : · · · −→ X−n+2

δX−n+2−→ X−n+1

δX−n+1−→ Z−n(X) −→ 0.

The hard left-truncation, <mX , of X at m and the hard right-truncation, X=−n , of X at −n are given by

<mX : 0 −→ Xm
δXm−→ Xm−1

δXm−1−→ Xm−2

δXm−2−→ · · · ,

X=−n : · · · −→ X−n+2

δX−n+2−→ X−n+1

δX−n+1−→ X−n −→ 0.

To every complex C we associate the numbers

supC = sup{i | Ci ̸= 0}, inf C = inf{i | Ci ̸= 0}.

The complex C is called bounded above when supC < ∞ , bounded below when inf C > −∞ , and bounded

when it is bounded below and above.

For objects C and D of Ch(R), Hom(C,D) is the abelian group of morphisms from C to D in Ch(R)

and Exti(C,D) for i ≥ 1 will denote the groups we get from the right derived functor of Hom(C,D), and

pdRC (idRC) denotes the projective (injective) dimension of C .

Let A,B be 2 classes of R -modules. The pair (A,B) is called a cotorsion pair (also called a cotorsion

theory) if A⊥ = B and A = ⊥B . Here A⊥ is the class of R -modules C such that Ext1(A,C) = 0 for all

A ∈ A , and similarly ⊥B is the class of R -modules C such that Ext1(C,B) = 0 for all B ∈ B . A cotorsion

pair (A,B) is said to be hereditary if whenever 0 → Ã → A → Â → 0 is exact with A, Â ∈ A then Ã is also

in A , or, equivalently, if 0 → B̃ → B → B̂ → 0 is exact with B̃, B ∈ B then B̂ is also in B . A cotorsion pair

(A,B) is said to have enough injectives (projectives) [15] if for any object M there exists an exact sequence

0 → M → B → A → 0 (0 → B → A → M → 0) with A ∈ A and B ∈ B . By [[15], Proposition 1.1.5], a

cotorsion pair (A,B) has enough projectives if and only if it has enough injectives. The cotorsion pair (A,B)
is called complete if it has enough projectives and injectives.

Given a class B of objects of Ch(R), a morphism ϕ : X → B is called a B -preenvelope ([11]) if B ∈ B
and Hom(B,B′) → Hom(X,B′) → 0 is exact for all B′ ∈ B . If, moreover, any f : B → B such that fϕ = ϕ

is an automorphism of B then ϕ : X → B is called a B -envelope of X . A complex X is said to have a special

B -preenvelope [14] if there is an exact sequence 0 → X → B → L → 0 with B ∈ B and L ∈⊥ B . A precover,

cover, and special precover of X are defined dually.

2. Main results

Let (A,B) be a cotorsion pair in R -Mod. In this section we introduce 2 dimensions for complexes of R -modules:

the A dimension is defined by dg -projective resolution and the B dimension is defined by dg -injective resolution.

The A and B dimensions of the ring R are also defined and studied.

Recall from [13] that a complex P is said to be dg -projective if each Pm is projective and HomR(P,E)

is exact for any exact complex E . A dg -injective complex is defined dually. Gillespie [[18], Definition 3.3]

introduced the following definitions, which generalize the notions of dg -projective and dg -injective complexes.
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Definition 2.1 ([18], Definition 3.3) Let (A,B) be a cotorsion pair in R-Mod and X an R-complex.

(1) X is called an A complex if it is exact and ZnX ∈ A for all n ∈ Z .

(2) X is called a B complex if it is exact and ZnX ∈ B for all n ∈ Z .

(3) X is called a dg -A complex if Xn ∈ A for each n ∈ Z , and HomR(X,B) is exact whenever B is a B
complex.

(4) X is called a dg -B complex if Xn ∈ B for each n ∈ Z , and HomR(A,X) is exact whenever A is an A
complex.

We denote the class of A complexes by Ã and the class of dg -A complexes by dgÃ . Similarly, the class

of B complexes is denoted by B̃ and the class of dg -B complexes is denoted by dgB̃ .

The next 2 lemmas play an important role in proving our main result.

Lemma 2.2 Let (A,B) be a cotorsion pair in R -M od.

(1) (Ã, dgB̃) and (dgÃ, B̃) are cotorsion pairs in Ch(R) (see [[18], Proposition 3.6]).

(2) If (A,B) is hereditary, then (Ã, dgB̃) and (dgÃ, B̃) are hereditary in Ch(R) (see [[18], Corollary 3.13]).

(3) If (A,B) is hereditary, then dgÃ ∩ E = Ã , and dgB̃ ∩ E = B̃ , where E denotes the class of exact complexes

(see [[18], Theorem 3.12]).

(4) If (A,B) is complete and hereditary, then (Ã, dgB̃) and (dgÃ, B̃) in Ch(R) are both complete (see [[29],

Theorem 3.5]).

Lemma 2.3 ([18], Lemma 3.1) For any R -module C and R -complex X , we have the following natural

isomorphism:

HomR(C,Zn(X)) ∼= HomCh(R)(S
n(C), X).

Definition 2.4 Let (A,B) be a cotorsion pair in R-M od and X an R -complex. A morphism A −→ X is

called a dg -A resolution of X if A −→ X is a quasi-isomorphism and A is a dg -A complex. Dually, a

morphism X −→ B is called a dg -B resolution of X if X −→ B is a quasi-isomorphism and B is a dg -B
complex.

Since every dg -projective complex is a dg -A complex, and every complex has a surjective dg -projective

resolution, every complex has a surjective dg -A resolution. Dually, every complex has an injective dg -B
resolution.

Definition 2.5 Let (A,B) be a cotorsion pair in R -M od and n ∈ Z , X be a complex of left R -modules.

The A dimension of X is defined by A-dimR(X) ≤ n if there is a dg -projective resolution P −→ X such

that supH(P ) ≤ n and Cn(P ) ∈ A . If A-dimR(X) ≤ n but A-dimR(X) ≤ n − 1 does not hold, then

A-dimR(X) = n . Dually, the B dimension of X is defined by B-dimR(X) ≤ n if there is a dg -injective

resolution X −→ I such that inf H(I) ≥ −n and Z−n(I) ∈ B . If B-dimR(X) ≤ n but B-dimR(X) ≤ n−1 does

not hold, then B-dimR(X) = n . If A-dimR(X) ≤ n for each n , then A-dimR(X) = −∞ . If A-dimR(X) ≤ n

does not hold for any n , then A-dimR(X) = ∞ . Similar statements for the B dimension hold.

We prove that the A dimension of X is well defined. The case of B dimension is dual.
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Assume that P̃ −→ X is another dg -projective resolution of X . Then supH(P̃ ) = supH(X) =

supH(P ) ≤ n . We can assume that P −→ X is a surjective dg -projective resolution (if not, let P −→ X

be surjective with P a projective complex, then P ⊕ P −→ X is a surjective dg -projective resolution and

Cn(P )⊕ Cn(P ) ∈ A). Then there exists an exact sequence

0 −→ U −→ P −→ X −→ 0

with U exact. This yields an exact sequence

0 −→ Hom(P̃ , U) −→ Hom(P̃ , P ) −→ Hom(P̃ ,X) −→ Ext1(P̃ , U) = 0

[[13], Proposition 3.6]. Thus, there is a morphism of complexes P̃ −→ P such that the diagram

P̃

�� ��
P // X

commutes. Since both P −→ X and P̃ −→ X are quasi-isomorphisms, so is P̃ −→ P . We can assume that

P̃ −→ P is a surjective quasi-isomorphism (if not, let P̂ −→ P be surjective with P̂ a projective complex, then

P̂ ⊕ P̃ −→ P is a surjective quasi-isomorphism). Then there exists an exact sequence

0 −→ U ′ −→ P̃ −→ P −→ 0

with U ′ an exact complex. Both P̃ and P are dg -projective complexes, so U ′ is a dg -projective complex.

Thus U ′ is exact and dg -projective complex, and so U ′ is a projective complex. On the other hand, we have

an exact sequence

0 −→ Cn(U
′) −→ Cn(P̃ ) −→ Cn(P ) −→ 0

with Cn(P ) ∈ A and Cn(U
′) ∈ A . It follows that Cn(P̃ ) ∈ A .

Remark 2.6 A-dimR(X) = −∞ if and only if X is exact. For each k ∈ Z ,

A-dimR(Σ
kX) = A-dimR(X) + k and A-dimR(X) ≤ pdR(X).

Dually, B-dimR(X) = −∞ if and only if X is exact. For each k ∈ Z ,

B-dimR(Σ
kX) = B-dimR(X)− k and B-dimR(X) ≤ idR(X).

The following 2 results give characterizations of the A and B dimensions of complexes.

Theorem 2.7 Let (A,B) be a hereditary cotorsion pair in R -Mod and X an R -complex. Then the following

assertions are equivalent:

(1) B-dimR(X) ≤ n .

(2) ExtiR(A,X) = 0 for any module A ∈ A and i > n .

(3) inf H(X) ≥ −n and Z−n(I) ∈ B for any dg -injective resolution X −→ I .
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(4) There exists a dg -B resolution X −→ B such that inf H(X) ≥ −n and Z−n(B) ∈ B .

Moreover, if (A,B) is complete, then the above conditions are also equivalent to:

(5) For every dg -B resolution X −→ B′ , we have inf H(B′) ≥ −n and Z−n(B
′) ∈ B .

Proof (1) ⇒ (2). Let X −→ I be a dg -injective resolution, such that inf H(I) ≥ −n and Z−n(I) ∈ B . Then

we have

ExtiR(A,X) = HiHomR(A, I) = H−iHomR(A, I) = 0

for any module A ∈ A and i > n .

(2) ⇒ (3). Since every projective module is in A , we have Hi(X) = 0 for any i < −n by choosing

A to be R especially. It remains to prove that the R -module Z−n(B) is in B . It is sufficient to prove that

Ext1R(A,Z−n(B)) = 0 for any module A ∈ A . This follows from

Ext1R(A,Z−n(B)) = H−1HomR(A,Σ
nI<−n) = H−(n+1)HomR(A, I) = Extn+1

R (A,X) = 0.

(3) ⇒ (4). Since every dg -injective resolution is a dg -B resolution, it holds by definition.

(4) ⇒ (1). If X −→ I is a dg -injective resolution, then inf H(I) = inf H(X) = inf H(B) ≥ −n . We can

assume without loss of generality that X −→ B is an injective dg -B resolution. Then there exists an exact
sequence

0 −→ X −→ B −→ L′ −→ 0

with L′ exact. This yields an exact sequence

0 −→ Hom(L′, I) −→ Hom(B, I) −→ Hom(X, I) −→ Ext1(L′, I) = 0.

Therefore, there is a morphism of complexes B −→ I such that the diagram

X //

��

B

~~
I

commutes. Since both X −→ B and X −→ I are quasi-isomorphisms, so is B −→ I . We can assume that

B −→ I is an injective quasi-isomorphism (if not, let B −→ I be injective with I an injective complex, then

B −→ I⊕I is an injective quasi-isomorphism). Then there exists an exact sequence 0 −→ B −→ I −→ Q −→ 0

with Q an exact complex. Both B and I are dg -B complexes, so Q is a dg -B complex. Since Q is exact and

a dg -B complex, Q is also a B complex. On the other hand, we have an exact sequence 0 −→ Z−n(B) −→
Z−n(I) −→ Z−n(Q) −→ 0 with Z−n(Q) ∈ B and Z−n(B) ∈ B . It follows that Z−n(I) ∈ B .

(4) ⇒ (5). If X −→ B′ is a dg -B resolution, then inf H(B′) = inf H(X) = inf H(B) ≥ −n . We can

assume that X −→ B is a special dg -B preenvelope. Then there exists an exact sequence

0 −→ X −→ B −→ L −→ 0

with L ∈ Ã . This yields an exact sequence

0 −→ Hom(L,B′) −→ Hom(B,B′) −→ Hom(X,B′) −→ Ext1(L,B′) = 0
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by Lemma 2.2. Therefore, there is a morphism of complexes B −→ B′ such that the diagram

X //

��

B

~~
B′

commutes. Since both X −→ B and X −→ B′ are quasi-isomorphisms, so is B −→ B′ . We can assume that

B −→ B′ is an injective quasi-isomorphism (if not, let B −→ I be injective with I an injective complex, then

B −→ B′ ⊕ I is an injective quasi-isomorphism). Then there exists an exact sequence

0 −→ B −→ B′ −→ W −→ 0

with W an exact complex. Both B and B′ are dg -B complexes, so W is a dg -B complex. Thus W is exact

and dg -B complex, and so W is a B complex. On the other hand, we have an exact sequence

0 −→ Z−n(B) −→ Z−n(B
′) −→ Z−n(W ) −→ 0

with Z−n(W ) ∈ B and Z−n(B) ∈ B . It follows that Z−n(B
′) ∈ B .

(5) ⇒ (1). Obviously. 2

The following result is the dual version of Theorem 2.7.

Theorem 2.8 Let (A,B) be a hereditary cotorsion pair in R-Mod and Y an R -complex. Then the following

assertions are equivalent:

(1) A-dimR(Y ) ≤ n .

(2) ExtiR(Y,B) = 0 for any module B ∈ B and i > n .

(3) supH(Y ) ≤ n and Cn(P ) ∈ A for any dg -projective resolution P −→ Y .

(4) There exists a dg -A resolution A −→ Y such that supH(Y ) ≤ n and Cn(A) ∈ A .

Moreover, if (A,B) is complete, then the above conditions are also equivalent to:

(5) For every dg -A resolution A′ −→ Y , we have supH(Y ) ≤ n and Cn(A
′) ∈ A .

The following theorem will prove that B-dimR(X) can be expressed in the form inf{sup{l ∈ Z | B−l ̸=

0} | X ≃ B ∈ dgB̃} (where ≃ is the equivalence relation defined by quasi-isomorphisms).

Theorem 2.9 Let (A,B) be a hereditary cotorsion pair in R-Mod, X and Y are R -complexes. Then

B-dimR(X) = inf{sup{l ∈ Z | V−l ̸= 0} | X ≃ V ∈ dgB̃},

and

A-dimR(Y ) = inf{sup{l ∈ Z | Tl ̸= 0} | Y ≃ T ∈ dgÃ}.

Proof Let X −→ I be a dg -injective resolution of X . Set

Λ = inf{sup{l ∈ Z | V−l ̸= 0} | X ≃ V ∈ dgB̃}.

If B-dimR(X) = n < ∞ , then Z−n(I) ∈ B and inf H(X) ≥ −n by Definition 2.5. There thus exists an

injective quasi-isomorphism I⊃−n → I . We have an exact sequence of complexes

0 −→ I⊃−n −→ I −→ I/I⊃−n −→ 0.
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Choosing the n -th degree of the above exact sequence, there is an exact sequence of R -modules

0 −→ Z−n(I) −→ I−n −→ I−n/Z−n(I) −→ 0.

Since Z−n(I) and I−n are in B and (A,B) is hereditary, I−n/Z−n(I) ∈ B . Therefore, I/I⊃−n is a bounded

above complex with all entries in B . By [[18], Lemma 3.4], I/I⊃−n ∈ B̃ .

Because all of the modules I⊃−n are in B , the sequence of complexes of Z -modules

0 −→ HomR(A, I⊃−n) −→ HomR(A, I) −→ HomR(A, I/I⊃−n) −→ 0

is exact for any complex A ∈ A . Since HomR(A, I) and HomR(A, I/I⊃−n) are acyclic, it yields that

HomR(A, I⊃−n) is also acyclic. Then it follows from Definition 2.1 that I⊃−n ∈ dgB̃ .

Since X −→ I is a quasi-isomorphism, X⊃−n −→ I⊃−n is a quasi-isomorphism. But X ≃ X⊃−n , and

we get X ≃ I⊃−n . I⊃−n ∈ dgB̃ , which implies that Λ ≤ n .

Now suppose that Λ = n < ∞ . We will show that B-dimR(X) ≤ n . By the hypothesis, there exists a

complex

V = · · · −→ V0 −→ V−1 −→ · · · −→ V−n+1 −→ V−n −→ 0

such that V ∈ dgB̃ and X ≃ V . Since V ≃ X ≃ I , and I is a dg -injective complex, there is a quasi-isomorphism

V −→ I . In addition, there is an injective morphism V −→ I∗ with I∗ injective. Then V −→ I ⊕ I∗ is an

injective quasi-isomorphism. Thus we have an exact sequence

0 −→ V −→ I ⊕ I∗ −→ W −→ 0

with W exact. Since V and I⊕ I∗ are dg -B complexes and (A,B) is hereditary, W is a dg -B complex. Thus

W is a B complex, and so Zj(W ) ∈ B . In the exact sequence

0 −→ Z−n(V ) −→ Z−n(I)⊕ Z−n(I
∗) −→ Z−n(W ) −→ 0,

Z−n(V ) = V−n ∈ B and Z−n(W ) ∈ B , so Z−n(I) ⊕ Z−n(I
∗) ∈ B , which implies that Z−n(I) ∈ B . Since

X −→ I is a dg -injective resolution with inf H(X) ≥ −n and Z−n(I) ∈ B , it follows that B-dimR(X) ≤ n .

By the above, B -dimR(X) = ∞ if and only if Λ = ∞ . In addition, B -dimR(X) = −∞ if and only if X

is exact if and only if Λ = −∞ .

The proof of A-dimR(Y ) is dual. 2

Lemma 2.10 ([27], Proposition 1.3.8) (Horseshoe Lemma) For every exact sequence of complexes 0 −→
X −→ Y −→ Z −→ 0 , there exists a commutative diagram with exact rows

0 // X

��

// Y

��

// Z

��

// 0

0 // IX // IY // IZ // 0

in which the columns are injective dg -injective resolution.

408



WEI et al./Turk J Math

Proposition 2.11 Let (A,B) be a hereditary cotorsion pair in R -Mod and 0 −→ X −→ Y −→ Z −→ 0 be an

exact sequence of complexes of R -modules. If 2 complexes of X,Y, Z have finite B dimension, then so does the

third.

Proof By Lemma 2.10, there is an exact sequence of complexes 0 −→ IX −→ IY −→ IZ −→ 0 with

X −→ IX , Y −→ IY and Z −→ IZ dg -injective resolutions. If 2 of the complexes X,Y, Z have finite B
dimension, then there is n ∈ Z such that Hj(I

X) = Hj(I
Y ) = Hj(I

Z) = 0 for all j ≤ −n . For each j ≤ −n ,

we have an exact sequence

0 −→ Zj(I
X) −→ Zj(I

Y ) −→ Zj(I
Z) −→ 0

in R -Mod. If Zj(I
X) ∈ B , then Zj(I

Y ) ∈ B if and only if Zj(I
Z) ∈ B . If both Zj(I

Y ) ∈ B and Zj(I
Z) ∈ B ,

then B-dim(Zj(I
X)) ≤ 1, and so Zj−1(I

X) ∈ B . 2

Dually we have:

Proposition 2.12 Let (A,B) be a hereditary cotorsion pair in R -Mod, 0 −→ X −→ Y −→ Z −→ 0 be an

exact sequence of complexes of R -modules. If 2 complexes of X,Y, Z have finite A dimension, then so does the

third.

Let (A,B) be a cotorsion pair in R -Mod. Given an integer n ≥ 0 and an R -module M , we say

B-dim(M) ≤ n , if there exists an exact sequence

0 → M → B0 → B−1 → · · · → B−n+1 → B−n → 0

with each module B−i ∈ B(0 ≤ i ≤ n). Then the deleted complex

B = 0 → B0 → B−1 → · · · → B−n+1 → B−n → 0

is a dg -B complex and there is a quasi-isomorphism S0(M) ≃ B . If no integer n ≥ 0 exists with B-dim(M) ≤ n ,

then we set B-dim(M) = ∞ . Dual statements for the A dimension of module hold, as well.

The following results show that the B (A) dimension of complexes is a generalization for the B (A)

dimension of modules.

Proposition 2.13 Let (A,B) be a hereditary cotorsion pair and M an R-module. Then B-dim(M) =

B-dimR(S
0(M)) .

Proof Let
0 −→ M −→ B0 −→ B−1 −→ · · ·

be an injective resolution of M . Then S0(M) −→ B is a dg -injective resolution, where

B = · · · −→ 0 −→ B0 −→ B−1 −→ · · · .

If B-dim(M) = ∞ and B-dimR(S
0(M)) = n < ∞ , then Zj(B) ∈ B for every j ≤ −n by Theorem 2.7. Since

0 −→ M −→ B0 −→ · · · −→ B−n+1 −→ Z−n(B) −→ 0

is exact, where Z−n(B) ∈ B and Bj ∈ B , it follows that B-dim(M) ≤ n . This contradicts the fact that

B-dim(M) = ∞ . So B-dimR(S
0(M)) = ∞.
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If B-dim(M) = n < ∞ , then Z−n(B) ∈ B , and so Zj(B) ∈ B for every j ≤ −n . Thus S0(M) −→ B is

a dg -B resolution with Zj(B) ∈ B for all j ≤ −n and Hj(B) = 0 for every j ≤ −n− 1. By Theorem 2.7, we

get B-dimR(S
0(M)) ≤ n . Suppose that B-dimR(S

0(M)) ≤ n − 1; then B-dim(M) ≤ n − 1. This contradicts

the fact that B-dim(M) = n . Therefore, B-dimR(S
0(M)) = n . 2

Proposition 2.14 Let (A,B) be a hereditary cotorsion pair and N an R -module. Then A-dim(N) =

A-dimR(S
0(N)) .

It is easily seen that:

Corollary 2.15 Let (A,B) be a hereditary cotorsion pair in the category of R -modules. For an R-module M

and a nonnegative integer n , the following are equivalent:

(1) B-dim(M) ≤ n .

(2) Extn+1
R (A,M) = 0 for any module A ∈ A.

(3) Extn+j
R (A,M) = 0 for any module A ∈ A and j > 1.

(4) If the sequence 0 −→ M −→ B0 −→ B−1 −→ · · · −→ B−n+1 −→ B−n −→ 0 is exact with B0, B−1, . . . ,

B−n+1 ∈ B , then B−n is also in B .

Corollary 2.16 Let (A,B) be a hereditary cotorsion pair in the category of R -modules. For an R -module N

and a nonnegative integer n , the following are equivalent:

(1) A-dim(N) ≤ n .

(2) Extn+1
R (N,B) = 0 for any module B ∈ B.

(3) Extn+j
R (N,B) = 0 for any module B ∈ B and j > 1.

(4) If the sequence 0 −→ An −→ An−1 −→ · · · −→ A1 −→ A0 −→ N −→ 0 is exact with A0, A1, · · · , An−1 ∈
A , then An is also in A .

The global dimension of R plays an important role in describing its homological properties. In the

following, we will define relative homological dimensions of R and discuss the relations between them and the

dimensions of complexes.

Definition 2.17 Let R be a ring and (A,B) be a cotorsion pair in R -Mod. We define the A dimension and

B dimension of R , denoted by A-dim(R) and B-dim(R) , respectively, as follows:

A-dim(R) = sup{A-dim(M) | for any R -module M }.

B-dim(R) = sup{B -dim(N) | for any R-module N }.

Theorem 2.18 Let (A,B) be a hereditary cotorsion pair in R -Mod. Then the following are equivalent for a

nonnegative integer n .

(1) A-dim(R) ≤ n .

(2) A-dim(Y ) ≤ supH(Y ) + n for every complex of R-modules Y .

(3) ExtiR(Y,B) = 0 for every complex of R -modules Y , any module B ∈ B , and i > n+ supH(Y ) .
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Proof (1) ⇒ (2). True if supH(Y ) = ∞ .

Assume supH(Y ) = l < ∞ . Let A → Y be a dg -projective resolution. Then Hj(A) = 0 for any j > l .

So we have an exact complex · · · → Al+1 → Al → Cl(A) → 0. Since A-dim(R) ≤ n , A-dim(Cl(A)) ≤ n . Thus

Cj(A) ∈ A for any j ≥ n+ l . Therefore, A-dim(Y ) ≤ l + n by Theorem 2.8.

(2) ⇒ (1). If Y is a left R -module then by Proposition 2.14, A-dim(Y ) ≤ n . The conclusion is obvious.

(2) ⇔ (3). By Theorem 2.8 it is clear. 2

The case of B-dim is as follows.

Theorem 2.19 Let (A,B) be a hereditary cotorsion pair in R -Mod. Then the following are equivalent for a

nonnegative integer m .

(1) B -dim(R) ≤ m .

(2) B -dim(X) ≤ − inf H(X) +m for every complex of R -modules X .

(3) ExtiR(A,X) = 0 for every complex of R-modules X , any module A ∈ A , and i > m− inf H(X) .

Theorem 2.20 Let (A,B) be a hereditary cotorsion pair in R -Mod. Then

gD(R) ≤ A-dim(R) + B-dim(R).

Proof If A-dim(R) = ∞ or B-dim(R) = ∞ , the conclusion is obvious. So we assume that A-dim(R) = n and

B-dim(R) = m are finite. For any complex Y , it follows from Theorem 2.18 that A-dim(Y ) ≤ supH(Y ) + n .

Then by Theorem 2.8, we have ExtiR(Y,B) = 0 for any module B ∈ B and Hi(Y ) = 0 for i > supH(Y ) + n .

For any R -module M , there is an exact sequence 0 −→ M −→ I0 −→ I−1 −→ · · · −→ I−m+1 −→ J −→ 0 with

I0, I−1, · · · , I−m+1 injective. Since B-dim(R) = m and every injective module is in B , we have J ∈ B by Corol-

lary 2.15. Set j = m+n+supH(Y )+1. Applying the dimension shifting, one gets ExtjR(Y,M) ∼= Extj−m
R (Y, J).

Since Extj−m
R (Y, J) = 0 from the above argument, then ExtjR(Y,M) vanishes. This implies, by [[2], Theorem

2.4.P.], that pdR(Y ) ≤ m+n+supH(Y ). Hence, it follows from [[2], Proposition 3.1] that gD(R) ≤ m+n . 2

3. Applications

In this section, we give some applications of our main results.

3.1. Projective, injective, flat, and cotorsion dimensions of R-complexes

We use P , I , M to denote the classes of projective and injective R -modules and all R -modules, respectively.

It is trivial that (P,M) and (M, I) are complete and hereditary cotorsion pairs. A complex of R -modules P is

called π -projective (π -injective) if HomR(P,−) ( HomR(−, I)) preserves homology isomorphisms. Let n ∈ Z .

A complex of R -modules M is said to have π -projective dimension of at most n (denoted π -pdR(M) ≤ n),

if there exists an equivalence P ≃ M , with P a π -projective complex of R -modules with Pi = 0 for i > n . If

π -pdR(M) ≤ n holds, but π -pdR(M) ≤ n − 1 does not, we write π -pdR(M) = n ; if π -pdR(M) ≤ n for all

n ∈ Z , we write π -pdR(M) = −∞ ; and if π -pdR(M) ≤ n for no n ∈ Z we write π -pdR(M) = ∞ [2]. Then

we have the characterizations of projective and injective dimensions of complexes as follows.
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Corollary 3.1 ([2], Theorem 2.4.P.) For a complex M of R -modules, the following conditions are equiva-

lent:
(i) pdR(M) ≤ n .

(i)
′
M has a dg-projective resolution P with Pi = 0 for i > n .

(ii) π -pdR(M) ≤ n .

(ii)
′
M has a π -projective resolution P with Pi = 0 for i > n .

(iii) ExtiR(M,N) = 0 for i > n− infN and any complex of R -modules N .

(iv) Extn+1
R (M,N) = 0 for any R-module N and Hi(M) = 0 for i > n+ 1 .

(v) Hi(M) = 0 for i > n and for any (respectively, some) dg-projective complex of R -modules P , such that

P ≃ M , and the R -module Coker(δPn+1 : Pn+1 −→ Pn) is projective.

(vi) For P as in (v) the truncation P −→⊂n P is a homology isomorphism, and ⊂nP is dg-projective.

(vi)
′
For P as in (v) , there is an isomorphism P ∼= P ′ ⊕ P ′′ , with P ′

i = 0 for i > n , and P ′′ contractible.

Corollary 3.2 ([2], Theorem 2.4.I.) ] For a complex N of R -modules the following conditions are equiva-

lent:
(i) idR(N) ≤ n .

(i)
′
N has a dg-injective resolution I with Ii = 0 for i < −n .

(ii) π - idR(N) ≤ n .

(ii)
′
N has a π -injective resolution I with Ii = 0 for i < −n .

(iii) ExtiR(M,N) = 0 for i > n+ supM and any complex of R -modules M .

(iv) Extn+1
R (R/J,N) = 0 for any left ideal J of R and Hi(N) = 0 for i < −n− 1 .

(v) Hi(N) = 0 for i < −n and for any (respectively, some) dg-injective complex of R -modules I , such that

I ≃ N , and the R -module Ker(δI−n : I−n −→ I−n−1) is injective.

(vi) For I as in (v) the truncation I⊃−n −→ I is a homology isomorphism, and I⊃−n is dg-injective.

(vi)
′
For I as in (v) , there is an isomorphism I ∼= I ′ ⊕ I ′′ , with I ′i = 0 for i < −n , and I ′′ contractible.

We recall from [28] that an R -module K is called cotorsion if Ext1R(F,K) = 0 for all flat R -modules F .

We use F , C to denote the classes of flat and cotorsion R -modules, respectively. Since (F , C) is a complete

and hereditary cotorsion pair, we have the characterizations of cotorsion dimension of complex K , denoted by

C-dim(K).

Proposition 3.3 Let R be a ring and K be an R -complex. Then the following are equivalent:

(1) C-dimR(K) ≤ n .

(2) There exists a quasi-isomorphism K ≃ K ′ , where K ′ ∈ dgC̃ with K ′
i = 0 for i < −n .

(3) ExtiR(F,K) = 0 for any module F ∈ F and i > n .

(4) inf H(K) ≥ −n and Z−n(K
′) is a cotorsion module for each dg -cotorsion resolution K −→ K ′ .

(5) inf H(K) ≥ −n and Z−n(I) is a cotorsion module for each dg -injective resolution K −→ I .

(5) ′ inf H(K) ≥ −n and Zj(I) is a cotorsion module for every j ≤ −n , for each dg -injective resolution

K −→ I .

(6) There exists a dg -injective resolution K −→ I ′ such that Hj(I
′) = 0 for every j ≤ −n − 1 , and Z−n(I

′)

is a cotorsion module.
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(6) ′ There exists a dg -injective resolution K −→ I ′ such that Hj(I
′) = 0 for every j ≤ −n− 1 , and Zj(I

′) is

a cotorsion module for every j ≤ −n .

Proof By Theorem 2.7 and Theorem 2.9 the conclusion is obvious. 2

We mention that the notion of dg-cotorsion complex used in Proposition 3.3 is not the same as Garćıa

Rozas’ dg-cotorsion complex. In [[17], Definition 4.3.1], a complex C is called dg-cotorsion if it is exact and

Zn(C) is cotorsion in R -Mod for all n ∈ Z . With the definitions that we are using in this paper, such a complex

is a C -complex where C is the class of cotorsion modules.

Take K to be an R -module, and the cotorsion dimension of R -module K is denoted by cd(K); then

we have the following:

Corollary 3.4 ([22], Proposition 7.2.1) For a left R -module K and a nonnegative integer n , the following

are equivalent:

(1) cd(K) ≤ n .

(2) Extn+1
R (F,K) = 0 for any flat left R -module F.

(3) Extn+j
R (F,K) = 0 for any flat left R -module F and j > 1.

(4) If the sequence 0 −→ M −→ K0 −→ K−1 −→ · · · −→ K−n+1 −→ K−n −→ 0 is exact with

K0,K−1, · · · ,K−n+1 cotorsion, then K−n is also cotorsion.

(5) cd(F (K)) ≤ n , where F (K) denotes the flat cover of M .

We omit the characterization for flat dimension of complex, which can be obtained by specifying Theorem

2.8 and Theorem 2.9 to (F , C).

3.2. Gorenstein flat and Gorenstein cotorsion dimensions of R-complexes

Bennis [3] proved that if the Gorenstein flat dimension of M is finite (GfdR(M) < ∞), then GfdR(M) = sup{i ∈

N | TorRi (E,M) ̸= 0 for some E with idR(E) < ∞} = sup{i ∈ N | TorRi (I,M) ̸= 0 for some injective right R

-module I} over a new class of rings, which he called left GF-closed. These are the rings for which the class

of Gorenstein flat left R -modules is closed under extensions. The class of left GF-closed rings includes strictly

that of right coherent rings and that of rings of finite weak dimension.

An R -module G is called Gorenstein flat if there exists an exact sequence of flat R -modules · · · −→
F1 −→ F0 −→ F−1 −→ F−2 −→ · · · with G = Ker(F0 −→ F−1) and that remains exact after applying I ⊗R −
for any injective right R -module I [12]. Recall from [16] that an R -module C is called Gorenstein cotorsion

if Ext1R(G,C) = 0 for all Gorenstein flat R -modules G . The class of Gorenstein flat (cotorsion) R -modules is

denoted by GF (GC ). By [[30], Theorem 3.4], (GF ,GC) is a complete hereditary cotorsion pair over a GF-closed

ring. Using Theorem 2.8 and Theorem 2.9 to (GF ,GC), we can extend [[20], Theorem 1] as follows.

Proposition 3.5 Let R be a left GF-closed ring and G be an R -complex. Then the following are equivalent:

(1) GF-dimR(G) ≤ n .

(2) There exists a quasi-isomorphism G′ ≃ G , where G′ ∈ dgG̃F with G′
i = 0 for i > n .

(3) ExtiR(G,C) = 0 for any module C ∈ GC and i > n .

(4) supH(G) ≤ n and Cn(G
′) is a Gorenstein flat module for each dg -Gorenstein flat resolution G′ −→ G .

(5) supH(G) ≤ n and Cn(F ) is a Gorenstein flat module for each dg -flat resolution F −→ G .
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(6) supH(G) ≤ n and Cn(P ) is a Gorenstein flat module for each dg -projective resolution P −→ G .

(6) ′ supH(G) ≤ n and Cj(P ) is a Gorenstein flat module for every j ≥ n , for each dg -projective resolution

P −→ G .

(7) There exists a dg -projective resolution P ′ −→ G such that Hj(P
′) = 0 for every j ≥ n+1 , and Cn(P

′) is

a Gorenstein flat module.

(7) ′ There exists a dg -projective resolution P ′ −→ G such that Hj(P
′) = 0 for every j ≥ n + 1 , and Cj(P

′)

is a Gorenstein flat module for every j > n .

Proof (1) ⇔ (2). By Theorem 2.9.

(1) ⇔ (3) ⇔ (4) ⇔ (6) ⇔ (7) are obvious by Theorem 2.8.

(5) ⇔ (6). By [[20], Theorem 1].

(6) ⇒ (6′) is obvious, since (GF ,GC) is complete and hereditary.

(7) ⇒ (7′) is obvious, since (GF ,GC) is complete and hereditary. 2

For unbounded complexes, Iacob defined the Gorenstein flat dimension (Gfd) of complexes over left

GF-closed rings [[20], Definition 15].

Remark 3.6 Let R be a left GF-closed ring and G an R -complex. Then GF-dimR(G) = GfdG .

Proof By Definition 2.5 and [[20], Theorem 1] the conclusion is obvious. 2

By [[20], Remark 3], for a homologically bounded below complex, [[20], Definition 15] agreed with [[6],

Definition 2.7]. Thus, our definition agrees with [[6], Definition 2.7] by the preceding remark.

The dual statements of Proposition 3.5 hold, which is the characterization of Gorenstein cotorsion

dimensions of complexes, and we omit it.

3.3. FP-projective and FP-injective dimensions of R-complexes

Recall that an R -module M is FP-injective [26] if Ext1R(F,M) = 0 for every finitely presented R -module F .

An R -module N is FP-projective [21] if Ext1R(N,M) = 0 for every FP-injective R -module M . Let FP,FI
denote the class of FP-projective R -modules and FP-injective R -modules, respectively. If R is coherent, then

the cotorsion pair (FP,FI) is complete and hereditary [[23], Proposition 3.6]. Hence, the cotorsion pair

(FP,FI) induces FP-projective and FP-injective dimensions for any complex Y , denoted by FP-dim(Y ) and

FI-dim(Y ), respectively. Applying Theorem 2.8 and Theorem 2.9 to (FP,FI) will yield the following results

of the FP-projective dimension of a complex.

Proposition 3.7 Let R be left coherent. Then the following are equivalent:

(1) FP-dimR(Y ) ≤ n .

(2) There exists a quasi-isomorphism Y ′ ≃ Y , where Y ′ ∈ dgF̃P with Y ′
i = 0 for i > n .

(3) ExtiR(Y,X) = 0 for any module X ∈ FI and i > n .

(4) supH(Y ) ≤ n and Cn(Y
′) is a FP-projective module for each dg -FP-projective resolution Y ′ −→ Y .

(5) supH(Y ) ≤ n and Cn(P ) is a FP-projective module for each dg -projective resolution P −→ Y .

(5) ′ supH(Y ) ≤ n and Cj(P ) is a FP-projective module for every j ≥ n , for each dg -projective resolution

P −→ Y .

(6) There exists a dg -projective resolution P ′ −→ Y such that Hj(P
′) = 0 for every j ≥ n+1 , and Cn(P

′) is

a FP-projective module.
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(6) ′ There exists a dg -projective resolution P ′ −→ Y such that Hj(P
′) = 0 for every j ≥ n + 1 , and Cj(P

′)

is a FP-projective module for every j ≥ n .

Take Y be an R -module and the FP-projective dimension of R -module Y is denoted by fpd(Y ); then

we have the following:

Corollary 3.8 ([21], Proposition 7.2.1) Let R be a left coherent ring. For a left R -module Y and an

integer n , the following are equivalent:

(1) fpd(Y ) ≤ n .

(2) Extn+1
R (Y,X) = 0 for any FP-injective left R -module X.

(3) Extn+j
R (Y,X) = 0 for any FP-injective left R -module X and j > 1.

(4) If the sequence 0 −→ Yn −→ Yn−1 −→ · · · −→ Y1 −→ Y0 −→ Y −→ 0 is exact with Y0, Y1, · · · , Yn−1

FP-projective, then Yn is also FP-projective.

We omit the characterization for the FP-injective dimension of complexes and modules, which is dual to

Theorem 3.7 and Corollary 3.8.

Now we give some characterizations of von Neumann regular and left Noetherian rings.

Corollary 3.9 Let R be a left coherent ring. The following are equivalent:

(1) R is von Neumann regular.

(2) FI-dimRX = − inf H(X) for every complex of R-modules X .

(3) ExtiR(Y,X) = 0 for every complex of R -modules X , any FP-projective module Y , and i > − inf H(X) .

Proof By [[26], Proposition 3.6] and Theorem 2.19 the conclusion is obvious. 2

Corollary 3.10 Let R be a left coherent ring. The following are equivalent:

(1) R is Noetherian .

(2) FP-dimRY = supH(Y ) for every complex of R -modules Y .

(3) ExtiR(Y,X) = 0 for every complex of R -modules Y , any FP-injective module X , and i > supH(Y ) .

Proof By [[21], Proposition 2.6], Proposition 2.14, and Theorem 2.18, the conclusion is obvious. 2

3.4. Ding projective and Ding injective dimensions of R-complexes

Ding and Chen extended FC rings to n -FC rings [7, 8], which are seen to have many properties similar to

those of n-Gorenstein rings. Just as a ring is called Gorenstein when it is n -Gorenstein for some nonnegative

integer n (a ring R is called n -Gorenstein if it is a left and right Noetherian ring with self-injective dimension

of at most n on both sides for some nonnegative integer n), Gillespie first called a ring Ding–Chen when it

is n -FC for some n [[19], Definition 4.1]. An R -module M is called Ding projective if there exists an exact

sequence of projective R -modules · · · −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · with M = Ker(P0 −→ P−1)

and that remains exact after applying Hom(−, F ) for any flat R -module F [10]. The class of Ding projective

R -modules is denoted by DP . An R -module N is called Ding injective if there exists an exact sequence of

injective R -modules · · · −→ I1 −→ I0 −→ I−1 −→ I−2 −→ · · · with N = Ker(I0 −→ I−1) and that remains
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exact after applying Hom(E,−) for any FP-injective R -module E [24]. The class of Ding injective R -modules

is denoted by DI . Note that every Ding injective (respectively, Ding projective) R -module N is Gorenstein

injective (respectively, Gorenstein projective), and if R is Gorenstein, then every Gorenstein injective R -module

is Ding injective (respectively, Gorenstein projective) [19].

From [[19], Theorem 4.2], we know that for a Ding–Chen ring R , the class of all modules with finite

flat dimension and the class of all modules with finite FP-injective dimension are the same, and we use W to

denote this class throughout this section. Ding and Mao proved that (⊥W,W) forms a complete cotorsion pair

when R is a Ding–Chen ring [[9], Theorem 3.8]. Also, (W,W⊥) forms a complete cotorsion pair when R is a

Ding–Chen ring [[23], Theorem 3.4]. Moreover, Gillespie proved that an R -module M is Ding projective if and

only if M ∈⊥ W , and an R -module N is Ding injective if and only if N ∈ W⊥ [[19], Corollaries 4.5 and 4.6]. So

(DP,W) and (W,DI) are complete hereditary cotorsion pairs (each cogenerated by a set). Hence, they induce

Ding projective and Ding injective dimensions for complex O , denoted by DP-dimR(O) and DI-dimR(O),

respectively. Applying Theorem 2.8 and Theorem 2.9 to (DP,W) will yield the following results of the Ding

projective dimension of a complex.

Proposition 3.11 Let R be a Ding–Chen ring. Then the following assertions are equivalent for an R -complex

O :
(1) DP-dimR(O) ≤ n .

(2) There exists a quasi-isomorphism O′ ≃ O , where O′ ∈ dgD̃P with O′
i = 0 for i > n .

(3) ExtiR(O,N ′) = 0 for any module N ′ ∈ W and i > n .

(4) supH(O) ≤ n and Cn(O
′) is a Ding projective R -module for each dg -Ding projective resolution O′ −→ O .

(5) supH(O) ≤ n and Cn(P ) is a Ding projective R -module for each dg -projective resolution P −→ O .

(5) ′ supH(O) ≤ n and Cj(P ) is a Ding projective R -module for every j ≥ n , for each dg -projective resolution

P −→ O .

(6) There exists a dg -projective resolution P ′ −→ O such that Hj(P
′) = 0 for every j ≥ n+1 , and Cn(P

′) is

a Ding projective R-module.

(6) ′ There exists a dg -projective resolution P ′ −→ O such that Hj(P
′) = 0 for every j ≥ n + 1 , and Cj(P

′)

is a Ding projective R -module for every j ≥ n .

The case of Ding injective dimension of complex is dual.

Now we give some characterizations of QF rings.

Corollary 3.12 Let R be a Ding–Chen ring. The following are equivalent:

(1) R is a QF ring (that is, R is a 0-Gorenstein ring).

(2) DP-dimRO = supH(O) for every complex of R-modules O .

(3) ExtiR(O,N) = 0 for every complex of R -modules O , any Ding injective R-module N , and i > supH(O) .

(4) DI -dimO = − inf H(O) for every complex of R-modules O .

(5) ExtiR(M,O) = 0 for every complex of R -modules O , any Ding projective R -module M , and i > − inf H(O) .

Proof By [[10], Proposition 2.16], [[24], Proposition 4.5], Theorem 2.18, and Theorem 2.19, the conclusion is

obvious. 2
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