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Abstract: The index and the period of an element a of a finite semigroup are defined as the smallest values of m ≥ 1

and r ≥ 1 such that am+r = am , respectively. If m = 1 then a is called an element of index 1. The aim of this paper

is to find some properties of the elements of index 1 in Tn , which we call transformations of index 1.
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1. Introduction

The full transformation semigroup TX on a set X and the semigroup analogue of the symmetric group SX

have been much studied over the last 50 years, both in the finite and in the infinite cases. Here we are concerned

solely with the case where X = Xn = {1, . . . , n} , and we write respectively Tn and Sn rather than TX and

SX . The image, Defect set, defect, kernel, and Fix of α ∈ Tn are defined by

im (α) = {y ∈ Xn : there exists x ∈ Xn such that xα = y},

Def (α) = Xn \ im (α),

def (α) = |Def (α)|,

ker(α) = {(x, y) ∈ Xn ×Xn : xα = yα},

Fix (α) = {x ∈ Xn : xα = x},

respectively. For any α, β ∈ Tn , it is easy to show by using the definitions of Green’s equivalences that

(α, β) ∈ D ⇔ |im (α)| = |im (β)| ⇔ def (α) = def (β),

(α, β) ∈ H ⇔ ker(α) = ker(β) and im (α) = im (β)

(see for definitions of Green’s equivalences [4, pp. 45–47]). We denote Green’s D -class of all singular self maps

of defect k by Dn−k for 1 ≤ k ≤ n − 1, and Green’s H -class containing α ∈ Tn by Hα . The equivalence

relation generated by R ⊆ Y × Y on a set Y is defined by the smallest equivalence relation containing R and

denoted by Re . It is clear that α ∈ Dn−1 if and only if there exists unique (i, j) ∈ Xn ×Xn such that i < j

and ker(α) = {(i, j)}e , or, equivalently, there exists unique l ∈ Xn such that Def (α) = {l} . We denote the

set of all idempotents in any subset U of any semigroup by E(U). It is clear that α ∈ E(Dn−1) if and only
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if there exist unique (i, j) ∈ Xn × Xn such that iα = j and lα = l , for each l ∈ Xn \ {i} . We denote this

idempotent by

(
i
j

)
.

For α ∈ Tn , the equivalence relation ≡ on Xn , defined by

x ≡ y if and only if (∃r, s ≥ 0) xαr = xαs ,

parts Xn into orbits Ω1,Ω2, . . . ,Ωt (t ≥ 1). The orbits are the connected components of the function graph

and provide valuable information about the structure of the map α (for example, see [1], [3]). Typically, an

orbit consists of a cycle with some trees attached. If there are no attached trees, we say that the orbit Ωi is

cyclic; in particular, if Ωi consists of a single fixed point, we say that it is trivial or a loop. For example, let α

be the map (
1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 4 5 3 5 9 9 9 11 12 13 10 14

)
∈ T14.

The orbits of α (with the convention that arrows point towards the cycle or fixed point, and that arrows go

counterclockwise within the cycles) can be depicted thus:
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In the general case, it is clear that, for each x ∈ Xn , the sequence

x, xα, xα2, . . .

eventually arrives in a cycle (or a fixed point, which of course we may regard as a special case of a cycle) and

remains there for all subsequent iterations. Denote the set of all elements contained in the cycle on Ωi by Z(Ωi)

(1 ≤ i ≤ t), and let

Z(α) =

t∪
i=1

Z(Ωi).

In our example,

Z(Ω1) = {3, 4, 5}, Z(Ω2) = {9}, Z(Ω3) = {10, 11, 12, 13}, Z(Ω4) = {14},

Z(α) = {3, 4, 5, 9, 10, 11, 12, 13, 14},

and notice that the orbits are either cyclic or a cycle with some trees attached.

The index and the period of an element a of a finite semigroup are defined as the smallest values of

m ≥ 1 and r ≥ 1 such that the elements a, a2, . . . , am+r−1 are different and am+r = am , respectively. In

particular, a is called an element of index 1 if m = 1 (see [2, 4] for other terms in semigroup theory that are

not explained here). The aim of this paper is to find some properties of the elements of index 1 in Tn , which
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we call transformations of index 1. First we find the orbit structure of α ∈ Tn where im (αk) = im (α) for

all k ∈ Z+ . Then we prove that α ∈ Tn is a transformation of index 1 if and only if im (αk) = im (α) for all

k ∈ Z+ , and we give some related results.

2. Transformations of index 1

First we state and prove the following lemma, which will be useful throughout this paper.

Lemma 2.1 Let Ω1, . . . ,Ωt be the orbits of α ∈ Tn . Then, for all k ∈ Z+ , im (αk) = im (α) if and only if,

for each x ∈ Xn , there exists unique 1 ≤ i ≤ t such that xα ∈ Z(Ωi) .

Proof (⇒) Let α ∈ Tn and im (αk) = im (α), for all k ∈ Z+ . If the set Def (α) is empty, then α ∈ Sn , and

so the condition is clearly satisfied since the orbits of a permutation are cyclic.

Suppose that Def (α) ̸= ∅ and take any x ∈ Def (α). Then there exists unique 1 ≤ i ≤ t such that

x ∈ Ωi \ Z(Ωi) since Z(Ωi) ⊆ im (α). Moreover, there exists an integer p ≥ 1 such that xαp ∈ Z(Ωi) but

xαp−1 /∈ Z(Ωi). We also suppose that if there exist y ∈ Ωi \ Z(Ωi) and q ∈ Z+ such that yαq ∈ Z(Ωi) but

yαq−1 /∈ Z(Ωi), then q ≤ p .

Since im (α2) = im (α), there exists z ∈ Ωi such that zα2 = xα . It follows from the assumption of x

that z ∈ Z(Ωi) or zα ∈ Z(Ωi). Otherwise, that is, if z ̸∈ Z(Ωi) and zα ̸∈ Z(Ωi), then zαp+1 ∈ Z(Ωi) but

zαp /∈ Z(Ωi), which is a contradiction to the choice of x . Indeed,

z → zα → zα2 = xα → · · · → zαp = xαp−1 /∈ Z(Ωi)

z → zα → zα2 = xα → · · · → zαp+1 = xαp ∈ Z(Ωi).

Since xα = zα2 and z ∈ Z(Ωi) or zα ∈ Z(Ωi), it follows that xα ∈ Z(Ωi); that is, p = 1. Moreover, for all

y ∈ Ωi , it follows from the choice of x that yα ∈ Z(Ωi).

(⇐) Suppose that, for each x ∈ Xn , there exists unique 1 ≤ i ≤ t such that xα ∈ Z(Ωi). For any

α ∈ Tn , since im (αk) ⊆ im (α) for all k ∈ Z+ , it is enough to show that im (α) ⊆ im (αk).

For y ∈ im (α) there exists x ∈ Ωi (1 ≤ i ≤ t) such that xα = y , and so y ∈ Z(Ωi). Since the restriction

of α to Z(Ωi), α|Z(Ωi)
, is a permutation of Z(Ωi), it follows that y ∈ im (αk), and so im (α) ⊆ im (αk), for all

k ∈ Z+ . Therefore, im (αk) = im (α) for all k ∈ Z+ , as required. 2

Now we state an immediate result.

Corollary 2.2 Let Ω1, . . . ,Ωt be the orbits of α ∈ Tn . Then im (αk) = im (α) , for all k ∈ Z+ , if and only if

Def (α) =
∪

1≤i≤t

(
Ωi \ Z(Ωi)

)
= Xn \ Z(α). 2

Let α ∈ T14 be the transformation given above. It is easy to see that im (αk) = im (α), for all k ∈ Z+ .

Moreover,

Ω1 \ Z(Ω1) = {1, 2, 6}, Ω2 \ Z(Ω2) = {7, 8},

Ω3 \ Z(Ω3) = Ω4 \ Z(Ω4) = ∅ and Def (α) = {1, 2, 6, 7, 8},

as stated in Corollary 2.2.
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Theorem 2.3 Let Ω1, . . . ,Ωt be the orbits of α ∈ Tn , and let ri be the cardinality of Z(Ωi) for each 1 ≤ i ≤ t .

Then α is a transformation of index 1 and period r if and only if, for all k ∈ Z+ , im (αk) = im (α) and r is

the lowest common multiple of r1, . . . , rt .

Proof Let Ω1, . . . ,Ωt be the orbits of α ∈ Tn , and let ri be the cardinality of Z(Ωi) for each 1 ≤ i ≤ t .

(⇐) Suppose that im (αk) = im (α) for all k ∈ Z+ , and that r is the lowest common multiple of

r1, . . . , rt . For any x ∈ Xn , there exists 1 ≤ i ≤ t such that x ∈ Ωi . If x ∈ Z(Ωi) it is clear that xαri = x ,

and so xα1+ri = xα . If x ̸∈ Z(Ωi), then it follows from Lemma 2.1 that xα ∈ Z(Ωi), and so xα1+ri = xα .

Moreover, since there exists a qi ∈ Z+ such that r = qiri , it follows that

xα1+r = xα1+qiri = (xα1+ri)α(qi−1)ri = (xα)α(qi−1)ri (1)

= · · · = (xα)αri = xα1+ri = xα.

Thus, α1+r = α and so the index of α is 1.

Now we show that the period of α is r . Suppose that there exists p ∈ Z+ such that α1+p = α . For any

1 ≤ i ≤ t , take any x ∈ Ωi . From the division algorithm, there exist ui, vi ∈ Z such that p = uiri + vi and

0 ≤ vi ≤ ri − 1. Notice that p ≥ ri , since the restriction of α to Z(Ωi) is a permutation (even a cycle) and

|Z(Ωi)| = ri , and so ui ≥ 1. Assume that vi ̸= 0. Since xα1+uiri = xα (as in Eq. (1)), it follows that

xα = xα1+p = xα1+uiri+vi = (xα1+uiri)αvi = (xα)αvi = xα1+vi ,

which is in contradiction with the assumption of ri . Thus, vi must be zero; that is, ri divides p . Therefore, r

divides p , and so the period of α is r .

(⇒) Let α be a transformation of index 1 and period r . If 1 ≤ k ≤ r then, since

im (αk) ⊆ im (α) = im (α1+r) = im (α1+r−kαk) ⊆ im (αk),

we have im (αk) = im (α). If k > r , then, from the division algorithm, there exist u, v ∈ Z such that k = ur+v

and 0 ≤ v ≤ r − 1. Notice that u ≥ 1. If 1 ≤ v ≤ r − 1 then

αk = αur+v = α1+rα(u−1)r+(v−1) = αα(u−1)r+(v−1)

= α(u−1)r+v = · · · = αr+v = α1+rαv−1 = αv.

Thus, since 0 ≤ v < r , it follows that

im (αk) = im (αv) = im (α).

If v = 0, then, since k = ur and u ≥ 2, it follows that

αk = αur = α1+rα(u−1)r−1 = αα(u−1)r−1

= α(u−1)r = · · · = αr.

Therefore,

im (αk) = im (αr) = im (α),

as required. It is easy to show as in the first part of the proof that r is the lowest common multiple of r1, . . . , rt .
2
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Corollary 2.4 α ∈ Tn is a transformation of index 1 if and only if the restriction of α to im (α) is a

permutation. In particular, all permutations and all idempotents in Tn are transformations of index 1 .

Proof (⇒) Let α ∈ Tn be a transformation of index 1. It follows from Theorem 2.3 that (im (α))α =

im (α2) = im (α). That is, the restriction of α to im (α) is onto, and so a permutation.

(⇐) Let the restriction of α to im (α) be a permutation. Then im (α2) = (im (α))α = im (α), and so

im (αk) = im (α) for all k ∈ Z+ . From Theorem 2.3 α ∈ Tn is a transformation of index 1. 2

Corollary 2.5 Let Hα be Green’s H -class containing α ∈ Tn . Then α is a transformation of index 1 if and

only if Hα is a group.

Proof (⇒) Suppose that α is a transformation of index 1 and the period of α is r . Since α1+r = α = αr+1

and ααr−1 = αr = αr−1α , we have αHαr , and so αr ∈ Hα . Moreover, it is easy to see that αr is an

idempotent, and, from [4, Corollary 2.2.6], we have the fact that Hα is a group.

(⇐) Suppose that Hα is a group. Then αk ∈ Hα , and so im (αk) = im (α) for all k ∈ Z+ . Thus, the

result follows from Theorem 2.3. 2

Consider Green’s D -class Dr for each 1 ≤ r ≤ n . Since there exists
(
n
r

)
rn−r many idempotents in Dr

(see, for example, [2]), exactly
(
n
r

)
rn−r many Green’s H -classes are groups (1 ≤ r ≤ n). Since each Green’s

H -class in Dr contains exactly r! elements, we have the following corollary:

Corollary 2.6 There exist

n∑
r=1

(
n

r

)
rn−rr! =

n∑
r=1

n!

(n− r)!
rn−r

transformations of index 1 in Tn . 2

Theorem 2.7 Let α ∈ Tn with defect k ≥ 1 . Then α is a transformation of index 1 if and only if there exist

a permutation β ∈ Sn and γ ∈ E(Dn−k) such that α = βγ and Def (α) = Def (γ) ⊆ Fix (β) .

Proof (⇒) Suppose that α is a transformation of index 1. Then we define the map β : Xn → Xn by

xβ =

{
xα x ∈ im (α)

x x ∈ Def (α)

and the map γ : Xn → Xn by

xγ =

{
x x ∈ im (α)

xα x ∈ Def (α)

for x ∈ Xn . Since α is a transformation of index 1, it follows from Corollary 2.4 that the restriction of α

to im (α) is a permutation, and so β is a permutation. Moreover, it is clear that Def (γ) = Def (α) ⊆ Fixβ ,

γ ∈ E(Dn−k), and α = βγ .

(⇐) Suppose that there exist a permutation β ∈ Sn and γ ∈ E(Dn−k) such that α = βγ and

Def (γ) = Def (α) = {x1, . . . , xk} ⊆ Fix (β).
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Take any z ∈ im (α). Then there exist x ∈ Xn such that xα = z . Since z ∈ im (γ) = im (α) and γ

is an idempotent, it follows that zγ = z . Moreover, since β ∈ Sn , there exist y ∈ Xn such that yβ = z . If

z ∈ Fix (β), then we have

xα2 = (xα)α = zα = (zβ)γ = zγ = z.

If z ̸∈ Fix (β), then y ̸∈ Fix (β) since β is a permutation, and so y ∈ im (α) since Def (α) ⊆ Fix (β). Thus

there exists w ∈ Xn such that wα = y , and so we have

wα2 = (wα)α = yα = (yβ)γ = zγ = z.

In both cases, we have z ∈ im (α2), and so im (α) ⊆ im (α2). Since im (α2) ⊆ im (α) it follows that

(im (α))α = im (α2) = im (α). Therefore, the restriction of α to im (α) is onto, and so a permutation. It

follows from Corollary 2.4 that α is a transformation of index 1. 2

3. Kernel structure

Theorem 3.1 Let α ∈ Tn be a transformation of index 1 , and let Def (α) = {x1, . . . , xk} for k ≥ 1 . Then

there exist m1, . . . ,mk ∈ Z+ (not necessarily different) such that

ker(α) = {(x1, x1α
m1), . . . , (xk, xkα

mk)}e.

Proof Let α be a transformation of index 1, Def (α) = {x1, . . . , xk} for k ≥ 1, and let Ω1, . . . ,Ωt be the

orbits of α . Then, for each 1 ≤ i ≤ k , it follows from Lemma 2.1 that xi ∈ Ωj \ Z(Ωj) and xiα ∈ Z(Ωj) for

unique 1 ≤ j ≤ t . Thus there exist some mi ∈ Z+ , which can be chosen as the cardinality of Z(Ωj), such that

xiα
mi+1 = xiα .

Let R = {(x1, x1α
m1), . . . , (xk, xkα

mk)} . It is clear that (xi, xiα
mi) ∈ ker(α) for all 1 ≤ i ≤ k , and so

Re ⊆ ker(α).

Now, let (x, y) ∈ ker(α) with x ̸= y . Since xα = yα , it follows that both x and y are in the same orbit

of α , say Ωj (1 ≤ j ≤ t). Since at most 1 of x and y is in Z(Ωj), there are 2 cases:

1. neither of them is in Z(Ωj);

2. exactly 1 of them is in Z(Ωj).

First of all, suppose that | Z(Ωj) |= m .

Case 1. Let x, y ∈ Ωj \ Z(Ωj). From Corollary 2.2 we have x, y ∈ Def (α). We also have

xαm = yαm , since xα = yα . Thus, since (x, xαm), (y, yαm) ∈ R , it follows from the definition of Re that

(x, xαm), (yαm, y) ∈ Re , and so (x, y) ∈ Re , as required.

Case 2. Without loss of generality suppose that x ∈ Z(Ωj), and that y ∈ Ωj \ Z(Ωj) ⊆ Def (α). Since

yα ∈ Z(Ωj) and x ∈ Z(Ωj), we have yαm+1 = yα and x = xαm . Moreover, since xαm = yαm , as in Case 1,

and since (y, yαm) ∈ R , it follows that

(y, yαm) = (y, xαm) = (y, x) ∈ R,

and so (x, y) ∈ Re , as required.
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Therefore, in both cases, we have ker(α) ⊆ Re . 2

Let α ∈ Tn be a transformation of index 1 and period r . Now we prove that, if def (α) = k for

1 ≤ k ≤ n− 1, then αr ∈ E(Dn−k) can be written as a product of k idempotents of defect 1, in the following

corollary.

Corollary 3.2 Let α ∈ Tn be a transformation of index 1 and period r , and let Def (α) = {x1, . . . , xk} for

1 ≤ k ≤ n− 1 . Then there exist m1, . . . ,mk ∈ Z+ (not necessarily different) such that

αr =

(
x1

x1α
m1

)
· · ·

(
xk

xkα
mk

)
∈ E(Dn−k).

Proof Let Def (α) = {x1, . . . , xk} for 1 ≤ k ≤ n − 1. From Theorem 2.3, we have the fact that im (αr) =

im (α), and so ker(αr) = ker(α). It follows from Theorem 3.1 that there exist m1, . . . ,mk ∈ Z+ such that

ker(αr) = {(x1, x1α
m1), . . . , (xk, xkα

mk)}e.

Since αr ∈ E(Dn−k) and xiα
mi ∈ im (αr) = im (α) for each 1 ≤ i ≤ k , it follows that

αr =

(
x1

x1α
m1

)
· · ·

(
xk

xkα
mk

)
∈ E(Dn−k),

as required. 2

Let us consider our example given above. With the notation given in Theorem 2.3, r1 = 3, r2 = 1,

r3 = 4, and r4 = 1, and so r = lcm{3, 4, 1} = 12. Notice that

α12 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 5 3 4 5 4 9 9 9 10 11 12 13 14

)
,

and that

α13 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 4 5 3 5 9 9 9 11 12 13 10 14

)
= α.

Moreover, ker(α) = {(1, 5), (2, 5), (6, 4), (7, 9), (8, 9)}e and

α12 =

(
1
5

)(
2
5

)(
6
4

)(
7
9

)(
8
9

)
.
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