Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $419-425$
(c) TÜBITTAK
doi:10.3906/mat-1309-60

On transformations of index 1

Leyla BUGAY ${ }^{1, *}$, Osman KELEKCi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Çukurova University, Adana, Turkey
${ }^{2}$ Department of Mathematics, Niğde University, Niğde, Turkey

Received: 24.09.2013 • Accepted: 08.12.2013 • Published Online: 14.03.2014 • Printed: 11.04 .2014

Abstract

The index and the period of an element a of a finite semigroup are defined as the smallest values of $m \geq 1$ and $r \geq 1$ such that $a^{m+r}=a^{m}$, respectively. If $m=1$ then a is called an element of index 1 . The aim of this paper is to find some properties of the elements of index 1 in T_{n}, which we call transformations of index 1 .

Key words: Transformations, orbit, index, period

1. Introduction

The full transformation semigroup \mathcal{T}_{X} on a set X and the semigroup analogue of the symmetric group \mathcal{S}_{X} have been much studied over the last 50 years, both in the finite and in the infinite cases. Here we are concerned solely with the case where $X=X_{n}=\{1, \ldots, n\}$, and we write respectively T_{n} and S_{n} rather than \mathcal{T}_{X} and \mathcal{S}_{X}. The image, Defect set, defect, kernel, and Fix of $\alpha \in T_{n}$ are defined by

$$
\begin{aligned}
\operatorname{im}(\alpha) & =\left\{y \in X_{n}: \text { there exists } x \in X_{n} \text { such that } x \alpha=y\right\}, \\
\operatorname{Def}(\alpha) & =X_{n} \backslash \operatorname{im}(\alpha), \\
\operatorname{def}(\alpha) & =|\operatorname{Def}(\alpha)|, \\
\operatorname{ker}(\alpha) & =\left\{(x, y) \in X_{n} \times X_{n}: x \alpha=y \alpha\right\}, \\
\operatorname{Fix}(\alpha) & =\left\{x \in X_{n}: x \alpha=x\right\},
\end{aligned}
$$

respectively. For any $\alpha, \beta \in T_{n}$, it is easy to show by using the definitions of Green's equivalences that

$$
\begin{aligned}
& (\alpha, \beta) \in \mathcal{D} \quad \Leftrightarrow|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)| \quad \Leftrightarrow \quad \operatorname{def}(\alpha)=\operatorname{def}(\beta), \\
& (\alpha, \beta) \in \mathcal{H} \quad \Leftrightarrow \operatorname{ker}(\alpha)=\operatorname{ker}(\beta) \text { and } \operatorname{im}(\alpha)=\operatorname{im}(\beta)
\end{aligned}
$$

(see for definitions of Green's equivalences [4, pp. 45-47]). We denote Green's \mathcal{D}-class of all singular self maps of defect k by D_{n-k} for $1 \leq k \leq n-1$, and Green's \mathcal{H}-class containing $\alpha \in T_{n}$ by H_{α}. The equivalence relation generated by $R \subseteq Y \times Y$ on a set Y is defined by the smallest equivalence relation containing R and denoted by R^{e}. It is clear that $\alpha \in D_{n-1}$ if and only if there exists unique $(i, j) \in X_{n} \times X_{n}$ such that $i<j$ and $\operatorname{ker}(\alpha)=\{(i, j)\}^{e}$, or, equivalently, there exists unique $l \in X_{n}$ such that $\operatorname{Def}(\alpha)=\{l\}$. We denote the set of all idempotents in any subset U of any semigroup by $E(U)$. It is clear that $\alpha \in E\left(D_{n-1}\right)$ if and only

[^0]if there exist unique $(i, j) \in X_{n} \times X_{n}$ such that $i \alpha=j$ and $l \alpha=l$, for each $l \in X_{n} \backslash\{i\}$. We denote this idempotent by $\binom{i}{j}$.

For $\alpha \in T_{n}$, the equivalence relation \equiv on X_{n}, defined by

$$
x \equiv y \text { if and only if }(\exists r, s \geq 0) x \alpha^{r}=x \alpha^{s}
$$

parts X_{n} into orbits $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{t}(t \geq 1)$. The orbits are the connected components of the function graph and provide valuable information about the structure of the map α (for example, see [1], [3]). Typically, an orbit consists of a cycle with some trees attached. If there are no attached trees, we say that the orbit Ω_{i} is cyclic; in particular, if Ω_{i} consists of a single fixed point, we say that it is trivial or a loop. For example, let α be the map

$$
\left(\begin{array}{llllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
3 & 3 & 4 & 5 & 3 & 5 & 9 & 9 & 9 & 11 & 12 & 13 & 10 & 14
\end{array}\right) \in T_{14}
$$

The orbits of α (with the convention that arrows point towards the cycle or fixed point, and that arrows go counterclockwise within the cycles) can be depicted thus:

In the general case, it is clear that, for each $x \in X_{n}$, the sequence

$$
x, x \alpha, x \alpha^{2}, \ldots
$$

eventually arrives in a cycle (or a fixed point, which of course we may regard as a special case of a cycle) and remains there for all subsequent iterations. Denote the set of all elements contained in the cycle on Ω_{i} by $Z\left(\Omega_{i}\right)$ $(1 \leq i \leq t)$, and let

$$
Z(\alpha)=\bigcup_{i=1}^{t} Z\left(\Omega_{i}\right)
$$

In our example,

$$
\begin{aligned}
Z\left(\Omega_{1}\right)=\{3,4,5\}, \quad Z\left(\Omega_{2}\right) & =\{9\}, \quad Z\left(\Omega_{3}\right)=\{10,11,12,13\}, \quad Z\left(\Omega_{4}\right)=\{14\} \\
Z(\alpha) & =\{3,4,5,9,10,11,12,13,14\}
\end{aligned}
$$

and notice that the orbits are either cyclic or a cycle with some trees attached.
The index and the period of an element a of a finite semigroup are defined as the smallest values of $m \geq 1$ and $r \geq 1$ such that the elements $a, a^{2}, \ldots, a^{m+r-1}$ are different and $a^{m+r}=a^{m}$, respectively. In particular, a is called an element of index 1 if $m=1$ (see [2, 4] for other terms in semigroup theory that are not explained here). The aim of this paper is to find some properties of the elements of index 1 in T_{n}, which
we call transformations of index 1. First we find the orbit structure of $\alpha \in T_{n}$ where $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$. Then we prove that $\alpha \in T_{n}$ is a transformation of index 1 if and only if $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$, and we give some related results.

2. Transformations of index 1

First we state and prove the following lemma, which will be useful throughout this paper.

Lemma 2.1 Let $\Omega_{1}, \ldots, \Omega_{t}$ be the orbits of $\alpha \in T_{n}$. Then, for all $k \in \mathbb{Z}^{+}$, $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ if and only if, for each $x \in X_{n}$, there exists unique $1 \leq i \leq t$ such that $x \alpha \in Z\left(\Omega_{i}\right)$.
Proof (\Rightarrow) Let $\alpha \in T_{n}$ and $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$, for all $k \in \mathbb{Z}^{+}$. If the set $\operatorname{Def}(\alpha)$ is empty, then $\alpha \in S_{n}$, and so the condition is clearly satisfied since the orbits of a permutation are cyclic.

Suppose that $\operatorname{Def}(\alpha) \neq \emptyset$ and take any $x \in \operatorname{Def}(\alpha)$. Then there exists unique $1 \leq i \leq t$ such that $x \in \Omega_{i} \backslash Z\left(\Omega_{i}\right)$ since $Z\left(\Omega_{i}\right) \subseteq \operatorname{im}(\alpha)$. Moreover, there exists an integer $p \geq 1$ such that $x \alpha^{p} \in Z\left(\Omega_{i}\right)$ but $x \alpha^{p-1} \notin Z\left(\Omega_{i}\right)$. We also suppose that if there exist $y \in \Omega_{i} \backslash Z\left(\Omega_{i}\right)$ and $q \in \mathbb{Z}^{+}$such that $y \alpha^{q} \in Z\left(\Omega_{i}\right)$ but $y \alpha^{q-1} \notin Z\left(\Omega_{i}\right)$, then $q \leq p$.

Since $\operatorname{im}\left(\alpha^{2}\right)=\operatorname{im}(\alpha)$, there exists $z \in \Omega_{i}$ such that $z \alpha^{2}=x \alpha$. It follows from the assumption of x that $z \in Z\left(\Omega_{i}\right)$ or $z \alpha \in Z\left(\Omega_{i}\right)$. Otherwise, that is, if $z \notin Z\left(\Omega_{i}\right)$ and $z \alpha \notin Z\left(\Omega_{i}\right)$, then $z \alpha^{p+1} \in Z\left(\Omega_{i}\right)$ but $z \alpha^{p} \notin Z\left(\Omega_{i}\right)$, which is a contradiction to the choice of x. Indeed,

$$
\begin{aligned}
& z \rightarrow z \alpha \rightarrow z \alpha^{2}=x \alpha \rightarrow \cdots \rightarrow z \alpha^{p}=x \alpha^{p-1} \notin Z\left(\Omega_{i}\right) \\
& z \rightarrow z \alpha \rightarrow z \alpha^{2}=x \alpha \rightarrow \cdots \rightarrow z \alpha^{p+1}=x \alpha^{p} \in Z\left(\Omega_{i}\right)
\end{aligned}
$$

Since $x \alpha=z \alpha^{2}$ and $z \in Z\left(\Omega_{i}\right)$ or $z \alpha \in Z\left(\Omega_{i}\right)$, it follows that $x \alpha \in Z\left(\Omega_{i}\right)$; that is, $p=1$. Moreover, for all $y \in \Omega_{i}$, it follows from the choice of x that $y \alpha \in Z\left(\Omega_{i}\right)$.
(\Leftarrow) Suppose that, for each $x \in X_{n}$, there exists unique $1 \leq i \leq t$ such that $x \alpha \in Z\left(\Omega_{i}\right)$. For any $\alpha \in T_{n}$, since $\operatorname{im}\left(\alpha^{k}\right) \subseteq \operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$, it is enough to show that $\operatorname{im}(\alpha) \subseteq \operatorname{im}\left(\alpha^{k}\right)$.

For $y \in \operatorname{im}(\alpha)$ there exists $x \in \Omega_{i}(1 \leq i \leq t)$ such that $x \alpha=y$, and so $y \in Z\left(\Omega_{i}\right)$. Since the restriction of α to $Z\left(\Omega_{i}\right), \alpha_{\mid Z\left(\Omega_{i}\right)}$, is a permutation of $Z\left(\Omega_{i}\right)$, it follows that $y \in \operatorname{im}\left(\alpha^{k}\right)$, and so $\operatorname{im}(\alpha) \subseteq \operatorname{im}\left(\alpha^{k}\right)$, for all $k \in \mathbb{Z}^{+}$. Therefore, $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$, as required.

Now we state an immediate result.

Corollary 2.2 Let $\Omega_{1}, \ldots, \Omega_{t}$ be the orbits of $\alpha \in T_{n}$. Then $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$, for all $k \in \mathbb{Z}^{+}$, if and only if

$$
\operatorname{Def}(\alpha)=\bigcup_{1 \leq i \leq t}\left(\Omega_{i} \backslash Z\left(\Omega_{i}\right)\right)=X_{n} \backslash Z(\alpha)
$$

Let $\alpha \in T_{14}$ be the transformation given above. It is easy to see that $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$, for all $k \in \mathbb{Z}^{+}$. Moreover,

$$
\begin{array}{ll}
\Omega_{1} \backslash Z\left(\Omega_{1}\right)=\{1,2,6\}, & \Omega_{2} \backslash Z\left(\Omega_{2}\right)=\{7,8\} \\
\Omega_{3} \backslash Z\left(\Omega_{3}\right)=\Omega_{4} \backslash Z\left(\Omega_{4}\right)=\emptyset \quad \text { and } & \operatorname{Def}(\alpha)=\{1,2,6,7,8\}
\end{array}
$$

as stated in Corollary 2.2.

BUGAY and KELEKCİ/Turk J Math

Theorem 2.3 Let $\Omega_{1}, \ldots, \Omega_{t}$ be the orbits of $\alpha \in T_{n}$, and let r_{i} be the cardinality of $Z\left(\Omega_{i}\right)$ for each $1 \leq i \leq t$.
Then α is a transformation of index 1 and period r if and only if, for all $k \in \mathbb{Z}^{+}, \operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ and r is the lowest common multiple of r_{1}, \ldots, r_{t}.
Proof Let $\Omega_{1}, \ldots, \Omega_{t}$ be the orbits of $\alpha \in T_{n}$, and let r_{i} be the cardinality of $Z\left(\Omega_{i}\right)$ for each $1 \leq i \leq t$.
(\Leftarrow) Suppose that $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$, and that r is the lowest common multiple of r_{1}, \ldots, r_{t}. For any $x \in X_{n}$, there exists $1 \leq i \leq t$ such that $x \in \Omega_{i}$. If $x \in Z\left(\Omega_{i}\right)$ it is clear that $x \alpha^{r_{i}}=x$, and so $x \alpha^{1+r_{i}}=x \alpha$. If $x \notin Z\left(\Omega_{i}\right)$, then it follows from Lemma 2.1 that $x \alpha \in Z\left(\Omega_{i}\right)$, and so $x \alpha^{1+r_{i}}=x \alpha$. Moreover, since there exists a $q_{i} \in \mathbb{Z}^{+}$such that $r=q_{i} r_{i}$, it follows that

$$
\begin{align*}
x \alpha^{1+r} & =x \alpha^{1+q_{i} r_{i}}=\left(x \alpha^{1+r_{i}}\right) \alpha^{\left(q_{i}-1\right) r_{i}}=(x \alpha) \alpha^{\left(q_{i}-1\right) r_{i}} \tag{1}\\
& =\cdots=(x \alpha) \alpha^{r_{i}}=x \alpha^{1+r_{i}}=x \alpha .
\end{align*}
$$

Thus, $\alpha^{1+r}=\alpha$ and so the index of α is 1 .
Now we show that the period of α is r. Suppose that there exists $p \in \mathbb{Z}^{+}$such that $\alpha^{1+p}=\alpha$. For any $1 \leq i \leq t$, take any $x \in \Omega_{i}$. From the division algorithm, there exist $u_{i}, v_{i} \in \mathbb{Z}$ such that $p=u_{i} r_{i}+v_{i}$ and $0 \leq v_{i} \leq r_{i}-1$. Notice that $p \geq r_{i}$, since the restriction of α to $Z\left(\Omega_{i}\right)$ is a permutation (even a cycle) and $\left|Z\left(\Omega_{i}\right)\right|=r_{i}$, and so $u_{i} \geq 1$. Assume that $v_{i} \neq 0$. Since $x \alpha^{1+u_{i} r_{i}}=x \alpha$ (as in Eq. (1)), it follows that

$$
x \alpha=x \alpha^{1+p}=x \alpha^{1+u_{i} r_{i}+v_{i}}=\left(x \alpha^{1+u_{i} r_{i}}\right) \alpha^{v_{i}}=(x \alpha) \alpha^{v_{i}}=x \alpha^{1+v_{i}}
$$

which is in contradiction with the assumption of r_{i}. Thus, v_{i} must be zero; that is, r_{i} divides p. Therefore, r divides p, and so the period of α is r.
(\Rightarrow) Let α be a transformation of index 1 and period r. If $1 \leq k \leq r$ then, since

$$
\operatorname{im}\left(\alpha^{k}\right) \subseteq \operatorname{im}(\alpha)=\operatorname{im}\left(\alpha^{1+r}\right)=\operatorname{im}\left(\alpha^{1+r-k} \alpha^{k}\right) \subseteq \operatorname{im}\left(\alpha^{k}\right)
$$

we have $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$. If $k>r$, then, from the division algorithm, there exist $u, v \in \mathbb{Z}$ such that $k=u r+v$ and $0 \leq v \leq r-1$. Notice that $u \geq 1$. If $1 \leq v \leq r-1$ then

$$
\begin{aligned}
\alpha^{k} & =\alpha^{u r+v}=\alpha^{1+r} \alpha^{(u-1) r+(v-1)}=\alpha \alpha^{(u-1) r+(v-1)} \\
& =\alpha^{(u-1) r+v}=\cdots=\alpha^{r+v}=\alpha^{1+r} \alpha^{v-1}=\alpha^{v}
\end{aligned}
$$

Thus, since $0 \leq v<r$, it follows that

$$
\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}\left(\alpha^{v}\right)=\operatorname{im}(\alpha)
$$

If $v=0$, then, since $k=u r$ and $u \geq 2$, it follows that

$$
\begin{aligned}
\alpha^{k} & =\alpha^{u r}=\alpha^{1+r} \alpha^{(u-1) r-1}=\alpha \alpha^{(u-1) r-1} \\
& =\alpha^{(u-1) r}=\cdots=\alpha^{r}
\end{aligned}
$$

Therefore,

$$
\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}\left(\alpha^{r}\right)=\operatorname{im}(\alpha)
$$

as required. It is easy to show as in the first part of the proof that r is the lowest common multiple of r_{1}, \ldots, r_{t}.

BUGAY and KELEKCİ/Turk J Math

Corollary $2.4 \alpha \in T_{n}$ is a transformation of index 1 if and only if the restriction of α to im (α) is a permutation. In particular, all permutations and all idempotents in T_{n} are transformations of index 1.
Proof (\Rightarrow) Let $\alpha \in T_{n}$ be a transformation of index 1. It follows from Theorem 2.3 that (im $\left.(\alpha)\right) \alpha=$ $\operatorname{im}\left(\alpha^{2}\right)=\operatorname{im}(\alpha)$. That is, the restriction of α to $\operatorname{im}(\alpha)$ is onto, and so a permutation.
(\Leftarrow) Let the restriction of α to $\operatorname{im}(\alpha)$ be a permutation. Then $\operatorname{im}\left(\alpha^{2}\right)=(\operatorname{im}(\alpha)) \alpha=\operatorname{im}(\alpha)$, and so $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$. From Theorem $2.3 \alpha \in T_{n}$ is a transformation of index 1.

Corollary 2.5 Let H_{α} be Green's \mathcal{H}-class containing $\alpha \in T_{n}$. Then α is a transformation of index 1 if and only if H_{α} is a group.
Proof (\Rightarrow) Suppose that α is a transformation of index 1 and the period of α is r. Since $\alpha^{1+r}=\alpha=\alpha^{r+1}$ and $\alpha \alpha^{r-1}=\alpha^{r}=\alpha^{r-1} \alpha$, we have $\alpha \mathcal{H} \alpha^{r}$, and so $\alpha^{r} \in H_{\alpha}$. Moreover, it is easy to see that α^{r} is an idempotent, and, from [4, Corollary 2.2.6], we have the fact that H_{α} is a group.
(\Leftarrow) Suppose that H_{α} is a group. Then $\alpha^{k} \in H_{\alpha}$, and so $\operatorname{im}\left(\alpha^{k}\right)=\operatorname{im}(\alpha)$ for all $k \in \mathbb{Z}^{+}$. Thus, the result follows from Theorem 2.3.

Consider Green's \mathcal{D}-class D_{r} for each $1 \leq r \leq n$. Since there exists $\binom{n}{r} r^{n-r}$ many idempotents in D_{r} (see, for example, [2]), exactly $\binom{n}{r} r^{n-r}$ many Green's \mathcal{H}-classes are groups $(1 \leq r \leq n)$. Since each Green's \mathcal{H}-class in D_{r} contains exactly r ! elements, we have the following corollary:

Corollary 2.6 There exist

$$
\sum_{r=1}^{n}\binom{n}{r} r^{n-r} r!=\sum_{r=1}^{n} \frac{n!}{(n-r)!} r^{n-r}
$$

transformations of index 1 in T_{n}.
Theorem 2.7 Let $\alpha \in T_{n}$ with defect $k \geq 1$. Then α is a transformation of index 1 if and only if there exist a permutation $\beta \in S_{n}$ and $\gamma \in E\left(D_{n-k}\right)$ such that $\alpha=\beta \gamma$ and $\operatorname{Def}(\alpha)=\operatorname{Def}(\gamma) \subseteq \operatorname{Fix}(\beta)$.
Proof (\Rightarrow) Suppose that α is a transformation of index 1 . Then we define the map $\beta: X_{n} \rightarrow X_{n}$ by

$$
x \beta= \begin{cases}x \alpha & x \in \operatorname{im}(\alpha) \\ x & x \in \operatorname{Def}(\alpha)\end{cases}
$$

and the map $\gamma: X_{n} \rightarrow X_{n}$ by

$$
x \gamma= \begin{cases}x & x \in \operatorname{im}(\alpha) \\ x \alpha & x \in \operatorname{Def}(\alpha)\end{cases}
$$

for $x \in X_{n}$. Since α is a transformation of index 1 , it follows from Corollary 2.4 that the restriction of α to $\operatorname{im}(\alpha)$ is a permutation, and so β is a permutation. Moreover, it is clear that $\operatorname{Def}(\gamma)=\operatorname{Def}(\alpha) \subseteq \operatorname{Fix} \beta$, $\gamma \in E\left(D_{n-k}\right)$, and $\alpha=\beta \gamma$.
(\Leftarrow) Suppose that there exist a permutation $\beta \in S_{n}$ and $\gamma \in E\left(D_{n-k}\right)$ such that $\alpha=\beta \gamma$ and $\operatorname{Def}(\gamma)=\operatorname{Def}(\alpha)=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \operatorname{Fix}(\beta)$.

BUGAY and KELEKCİ/Turk J Math

Take any $z \in \operatorname{im}(\alpha)$. Then there exist $x \in X_{n}$ such that $x \alpha=z$. Since $z \in \operatorname{im}(\gamma)=\operatorname{im}(\alpha)$ and γ is an idempotent, it follows that $z \gamma=z$. Moreover, since $\beta \in S_{n}$, there exist $y \in X_{n}$ such that $y \beta=z$. If $z \in \operatorname{Fix}(\beta)$, then we have

$$
x \alpha^{2}=(x \alpha) \alpha=z \alpha=(z \beta) \gamma=z \gamma=z
$$

If $z \notin \operatorname{Fix}(\beta)$, then $y \notin \operatorname{Fix}(\beta)$ since β is a permutation, and so $y \in \operatorname{im}(\alpha)$ since $\operatorname{Def}(\alpha) \subseteq \operatorname{Fix}(\beta)$. Thus there exists $w \in X_{n}$ such that $w \alpha=y$, and so we have

$$
w \alpha^{2}=(w \alpha) \alpha=y \alpha=(y \beta) \gamma=z \gamma=z
$$

In both cases, we have $z \in \operatorname{im}\left(\alpha^{2}\right)$, and so $\operatorname{im}(\alpha) \subseteq \operatorname{im}\left(\alpha^{2}\right)$. Since $\operatorname{im}\left(\alpha^{2}\right) \subseteq \operatorname{im}(\alpha)$ it follows that $(\operatorname{im}(\alpha)) \alpha=\operatorname{im}\left(\alpha^{2}\right)=\operatorname{im}(\alpha)$. Therefore, the restriction of α to $\operatorname{im}(\alpha)$ is onto, and so a permutation. It follows from Corollary 2.4 that α is a transformation of index 1 .

3. Kernel structure

Theorem 3.1 Let $\alpha \in T_{n}$ be a transformation of index 1 , and let $\operatorname{Def}(\alpha)=\left\{x_{1}, \ldots, x_{k}\right\}$ for $k \geq 1$. Then there exist $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$(not necessarily different) such that

$$
\operatorname{ker}(\alpha)=\left\{\left(x_{1}, x_{1} \alpha^{m_{1}}\right), \ldots,\left(x_{k}, x_{k} \alpha^{m_{k}}\right)\right\}^{e}
$$

Proof Let α be a transformation of index 1 , $\operatorname{Def}(\alpha)=\left\{x_{1}, \ldots, x_{k}\right\}$ for $k \geq 1$, and let $\Omega_{1}, \ldots, \Omega_{t}$ be the orbits of α. Then, for each $1 \leq i \leq k$, it follows from Lemma 2.1 that $x_{i} \in \Omega_{j} \backslash Z\left(\Omega_{j}\right)$ and $x_{i} \alpha \in Z\left(\Omega_{j}\right)$ for unique $1 \leq j \leq t$. Thus there exist some $m_{i} \in \mathbb{Z}^{+}$, which can be chosen as the cardinality of $Z\left(\Omega_{j}\right)$, such that $x_{i} \alpha^{m_{i}+1}=x_{i} \alpha$.

Let $R=\left\{\left(x_{1}, x_{1} \alpha^{m_{1}}\right), \ldots,\left(x_{k}, x_{k} \alpha^{m_{k}}\right)\right\}$. It is clear that $\left(x_{i}, x_{i} \alpha^{m_{i}}\right) \in \operatorname{ker}(\alpha)$ for all $1 \leq i \leq k$, and so $R^{e} \subseteq \operatorname{ker}(\alpha)$.

Now, let $(x, y) \in \operatorname{ker}(\alpha)$ with $x \neq y$. Since $x \alpha=y \alpha$, it follows that both x and y are in the same orbit of α, say $\Omega_{j}(1 \leq j \leq t)$. Since at most 1 of x and y is in $Z\left(\Omega_{j}\right)$, there are 2 cases:

1. neither of them is in $Z\left(\Omega_{j}\right)$;
2. exactly 1 of them is in $Z\left(\Omega_{j}\right)$.

First of all, suppose that $\left|Z\left(\Omega_{j}\right)\right|=m$.
Case 1. Let $x, y \in \Omega_{j} \backslash Z\left(\Omega_{j}\right)$. From Corollary 2.2 we have $x, y \in \operatorname{Def}(\alpha)$. We also have $x \alpha^{m}=y \alpha^{m}$, since $x \alpha=y \alpha$. Thus, since $\left(x, x \alpha^{m}\right),\left(y, y \alpha^{m}\right) \in R$, it follows from the definition of R^{e} that $\left(x, x \alpha^{m}\right),\left(y \alpha^{m}, y\right) \in R^{e}$, and so $(x, y) \in R^{e}$, as required.

Case 2. Without loss of generality suppose that $x \in Z\left(\Omega_{j}\right)$, and that $y \in \Omega_{j} \backslash Z\left(\Omega_{j}\right) \subseteq \operatorname{Def}(\alpha)$. Since $y \alpha \in Z\left(\Omega_{j}\right)$ and $x \in Z\left(\Omega_{j}\right)$, we have $y \alpha^{m+1}=y \alpha$ and $x=x \alpha^{m}$. Moreover, since $x \alpha^{m}=y \alpha^{m}$, as in Case 1 , and since $\left(y, y \alpha^{m}\right) \in R$, it follows that

$$
\left(y, y \alpha^{m}\right)=\left(y, x \alpha^{m}\right)=(y, x) \in R
$$

and so $(x, y) \in R^{e}$, as required.

Therefore, in both cases, we have $\operatorname{ker}(\alpha) \subseteq R^{e}$.
Let $\alpha \in T_{n}$ be a transformation of index 1 and period r. Now we prove that, if $\operatorname{def}(\alpha)=k$ for $1 \leq k \leq n-1$, then $\alpha^{r} \in E\left(D_{n-k}\right)$ can be written as a product of k idempotents of defect 1 , in the following corollary.

Corollary 3.2 Let $\alpha \in T_{n}$ be a transformation of index 1 and period r, and let $\operatorname{Def}(\alpha)=\left\{x_{1}, \ldots, x_{k}\right\}$ for $1 \leq k \leq n-1$. Then there exist $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$(not necessarily different) such that

$$
\alpha^{r}=\binom{x_{1}}{x_{1} \alpha^{m_{1}}} \cdots\binom{x_{k}}{x_{k} \alpha^{m_{k}}} \in E\left(D_{n-k}\right)
$$

Proof Let $\operatorname{Def}(\alpha)=\left\{x_{1}, \ldots, x_{k}\right\}$ for $1 \leq k \leq n-1$. From Theorem 2.3, we have the fact that $\operatorname{im}\left(\alpha^{r}\right)=$ $\operatorname{im}(\alpha)$, and so $\operatorname{ker}\left(\alpha^{r}\right)=\operatorname{ker}(\alpha)$. It follows from Theorem 3.1 that there exist $m_{1}, \ldots, m_{k} \in \mathbb{Z}^{+}$such that

$$
\operatorname{ker}\left(\alpha^{r}\right)=\left\{\left(x_{1}, x_{1} \alpha^{m_{1}}\right), \ldots,\left(x_{k}, x_{k} \alpha^{m_{k}}\right)\right\}^{e}
$$

Since $\alpha^{r} \in E\left(D_{n-k}\right)$ and $x_{i} \alpha^{m_{i}} \in \operatorname{im}\left(\alpha^{r}\right)=\operatorname{im}(\alpha)$ for each $1 \leq i \leq k$, it follows that

$$
\alpha^{r}=\binom{x_{1}}{x_{1} \alpha^{m_{1}}} \cdots\binom{x_{k}}{x_{k} \alpha^{m_{k}}} \in E\left(D_{n-k}\right)
$$

as required.
Let us consider our example given above. With the notation given in Theorem 2.3, $r_{1}=3, r_{2}=1$, $r_{3}=4$, and $r_{4}=1$, and so $r=\operatorname{lcm}\{3,4,1\}=12$. Notice that

$$
\alpha^{12}=\left(\begin{array}{llllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
5 & 5 & 3 & 4 & 5 & 4 & 9 & 9 & 9 & 10 & 11 & 12 & 13 & 14
\end{array}\right)
$$

and that

$$
\alpha^{13}=\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
3 & 3 & 4 & 5 & 3 & 5 & 9 & 9 & 9 & 11 & 12 & 13 & 10 & 14
\end{array}\right)=\alpha
$$

Moreover, $\operatorname{ker}(\alpha)=\{(1,5),(2,5),(6,4),(7,9),(8,9)\}^{e}$ and

$$
\alpha^{12}=\binom{1}{5}\binom{2}{5}\binom{6}{4}\binom{7}{9}\binom{8}{9} .
$$

Acknowledgments

Our sincere thanks are due to Prof Dr Hayrullah Ayık and Prof Dr Gonca Ayık for their helpful suggestions and encouragement.

References

[1] Ayık G, Ayık H, Ünlü Y, Howie JM. The structure of elements in finite full transformation semigroups. Bull Austral Math Soc 2005; 71: 69-74.
[2] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer, 2009.
[3] Higgins PM. Combinatorial results for semigroups of order-preserving mappings. Math Proc Camb Phil Soc 1993; 113: 281-296.
[4] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.

[^0]: *Correspondence: ltanguler@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 20M20.

