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Abstract: Let u and ω be weight functions. We shall introduce the weighted Morrey spaces Lp,κ(ω) and investigate

the sufficient condition and necessary condition about the 2-weighted boundedness of the Hardy–Littlewood maximal

operator.
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1. Introduction

Suppose u(x) and ω(x) are weight functions on Rn , and T is an operator taking suitable functions on Rn .

In his survey article [10], Muckenhoupt raised the general question of characterization when the weighted norm

inequality (∫
Rn

|Tf(x)|qω(x)dx
) 1

q

≤ C

(∫
Rn

|f(x)|pu(x)dx
) 1

p

(1.1)

holds for any 1 ≤ p, q ≤ ∞ and all appropriate f . In the case of one weight u = ω , the inequality (1.1)

can be characterized by remarkably simple conditions for many classical operators, e.g., the Hardy–Littlewood

maximal operator, singular integral, and fractional operator (see [1, 9, 11]).

The case of different weights has been far less studied. Only for the Hardy–Littlewood maximal operator

and other positive operators was this characterized in [13], while many classical operators are still open and

only find sufficient conditions on weights for an operator to be bounded from Lp(u) to Lq(ω). For the history

of these results, we refer the reader to [2, 3, 5].

Weighted Morrey spaces Lp,κ(ω) were first introduced recently by Komori and Shirai [7], where the

boundedness of many classical operators was established. Later, many authors found that the weighted Morrey

spaces were also used in harmonic analysis [14, 15]. However, this only gives sufficient conditions for the

boundedness of classical operators. The necessary condition associated with Hilbert transform in Morrey spaces

was discussed by Samko [12].

In this paper, we concentrate our attention on the 2-weighted norm inequality associated with the Hardy–

Littlewood maximal operator in weighted Morrey spaces. The same as the above cases, we only give a sufficient

condition and a necessary condition, respectively.
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Throughout the paper cubes are assumed to have their sides parallel to the coordinate axes. Given cube

Q = Q(x, r) centered at x with side length r , ω(Q) denotes
∫
Q
ω(x)dx and the measure ω(x)dx is often

abbreviated to ωdx . The Lebesgue measure of Q is denoted by |Q| and the characteristic function of Q by
χQ .

2. Some notations and lemmas

In this section, we introduce some basic definitions and lemmas.

Definition 2.1 Let 1 < p < ∞, 0 < κ < 1 , and w be a weight function. For any local integrable function f

in Rn , if it satisfies

∥f∥Lp,κ(ω) := sup
Q

(
1

ω(Q)κ

∫
Q

|f(x)|pw(x)dx
) 1

p

< ∞.

Then f belongs to weighted Morrey spaces and ∥ · ∥Lp,κ(ω) denotes the norm.

Note that if ω = 1 , Lp,κ(ω) = Lp,κ(Rn) is the classical Morrey spaces; if κ = 0 , Lp,0(ω) = Lp(ω) is the

weighted Lebesgue spaces.

Definition 2.2 The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy,

and we define the maximal operator with respect to the measure w(x)dx by

Mωf(x) = sup
x∈Q

1

ω(Q)

∫
Q

|f(y)|ω(y)dy.

Before the next definition, we recall that a dyadic cube is the product of the intervals that are divided

by dyadic decomposition of the coordinate axis with side length 2k , k ∈ Z .

Definition 2.3 Supposing that F is the collection of the dyadic cubes, we define M⋆
t f(x) with translation

operator τt as follows (see [4], p. 112, or [6], p. 431):

M⋆
t f(x) = (τ−t ◦M⋆ ◦ τt)f(x) = M⋆(τtf)(x+ t).

In the definition, M⋆f(x) is a dyadic maximal operator (see [4], p. 111), which is defended by

M⋆f(x) = sup
x∈Q∈F

1

|Q|

∫
Q

|f(y)|dy.

The following definition was considered by Fefferman and Stein (see [4], p. 112):

Definition 2.4 Let ℓ(Q) be the side length of a cube Q . For a positive real number N , we define the locally

maximal operator by

M̄Nf(x) = sup
x∈Q

ℓ(Q)≤N

1

|Q|

∫
Q

|f(y)|dy
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and the locally dyadic maximal operator by

M̄⋆
Nf(x) = sup

x∈Q∈F
ℓ(Q)≤N

1

|Q|

∫
Q

|f(y)|dy.

Definition 2.5 A weight function ω satisfies the Ap condition with 1 < p < ∞ , if there exists a constant

C ≥ 1 such that for any cube Q ,(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)1−p′
dx

)p−1

≤ C,

where 1
p + 1

p′ = 1 .

The definition of 2.5 can be found in [8] on page 21. In fact, the Ap weights have the following important

lemma (see [8], p. 22):

Lemma 2.1 Given a weight function w ∈ Ap, 1 < p < ∞ , it also satisfies the doubling condition ∆2 : for any

cube Q , there exists a constant C > 0 such that w(2Q) ≤ Cw(Q) .

The next 2 definitions have a relation with the 2-weighted inequality in weighted Morrey spaces.

Definition 2.6 A weight ω is called a (p, κ)-permission weight if for every cube Q , the inequality

∥χQ∥Lp,κ(ω) < ∞

holds. Furthermore, a weight ω is called a (p, κ)-specific permission weight if it is a (p, κ)-permission weight

and for every cube Q

∥χQσ∥Lp,κ(ω) < ∞,

where σ = ω1−p′
.

Definition 2.7 We say (u, ω) ∈ Sp,κ if u is a (p, κ)-permission weight and ω is a (p, κ)-specific permission

weight, such that the following inequalities hold:

sup
Q

∥χQ∥Lp,κ(u)

∥χ3Q∥Lp,κ(ω)
< ∞ and sup

Q

σ(3Q)

|Q|
×

∥χQ∥Lp,κ(u)

∥χ3Qσ∥Lp,κ(ω)
< ∞.

The following lemmas play an important role in our proofs.

Lemma 2.2 Let 1 < p < ∞ and ω ∈ Ap ; then there exists an index r : 1 < r < p , such that ω ∈ Ar .

This lemma was first obtained by Muckenhoupt in [9], page 214. One can also find a clear statement in

[8], page 26.

Lemma 2.3 Let 1 < p < ∞ . σ is a nonnegative locally integrable weight. Then M⋆
σ is bounded in Lp(σ) .

Lemma 2.10 would be found in [6], page 426. In fact, M⋆
σ is of weak type (1,1) and bounded in L∞(σ).

By using the Marcinkiewicz interpolation theorem we can get this result.
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Lemma 2.4 Suppose f is a locally integrable function in Rn ; then for every integer k and x ∈ Rn we have

M2kf(x) ≤ 21−kn

∫
Q(0,2k+3)

M⋆
t f(x)dt,

where Q(0, 2k+3) means the cube centered at 0 with side length 2k+3 .

As to the proof of Lemma 2.11, we refer to [6], page 431. Note that the notation Q
(
0, 2k+2

)
in [6] means

a cube centered at 0 with half side length 2k+2 , which differs from our argument.

3. A sufficient condition of 2-weighted norm inequalities in weighted Morrey spaces

In this section we give a sufficient condition of 2-weighted boundedness of the Hardy–Littlewood maximal

operator. The statement is the following theorem.

Theorem 3.1 Suppose 1 < p < ∞, 0 < κ < 1 , (u, ω) is a couple of weights, σ = ω1−p′
and ω ∈ Ap . Then the

Hardy–Littlewood maximal operator M is bounded from Lp,κ(ω) to Lp,κ(u) if there exists a constant C > 0 ,

such that for any cubes Q and Q′

1

u(Q)κ

∫
Q′

M(χQ′σ)(x)pudx ≤ C

ω(Q)κ

∫
Q′

σdx < ∞.

To prove Theorem 3.1, we need an auxiliary proposition as follows:

Proposition 3.1 Let 1 < p < ∞, 0 < κ < 1 . If (u, ω) is a couple of weights and σ = ω1−p′
is locally

integrable, then the following statements are equivalent:

(a) There exists a constant C > 0 , such that for any cube Q

1

u(Q)κ

∫
Rn

(Mf(x))
p
udx ≤ C

ω(Q)κ

∫
Rn

|f(x)|pωdx;

(b) There exists a constant C > 0 , such that for any cube Q and Q′

1

u(Q)κ

∫
Q′

(M(χQ′σ)(x))
p
udx ≤ C

ω(Q)κ

∫
Q′

σdx < ∞.

Proof The idea follows from [13] and [6]. Once having chosen f = σ(x)χQ(x), we can easily draw the

conclusion (a) ⇒ (b). To verify the opposite, we partition it into 3 steps. First, it suffices to prove the result for

the dyadic maximal operator M⋆ ; second, by using the first step, we show the result for the translation dyadic

maximal operator M⋆
t ; and, third, by using Lemma 2.11, we complete the proof for the maximal operator M .

We first check the case of the dyadic maximal operator. Since (b) is satisfied by M⋆ , let us consider the

locally dyadic maximal operator M̄⋆
N . Recall the definition of M̄⋆

Nf(x): it takes the supremum over all dyadic

cubes Q that contain x with side length of less than N; therefore, under the condition M̄⋆
Nf(x) > 2k , k ∈ Z ,

x ∈ Rn , we get a family of countable such dyadic cubes
{
Qk

l

}
l
satisfying

2k <
1

|Qk
l |

∫
Qk

l

|f(y)|dy. (3.1)
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For any 2 dyadic cubes, either 1 is contained in the other or they are disjoint. Hence, we can choose the

maximum ones in the family
{
Qk

l

}
l
. The collection of these maximum dyadic cubes is denoted by

{
Qk

j

}
j
. They

satisfy the same inequality as in (3.1). Moreover, for any dyadic cube Q ⫌ Qk
j with side length ℓ(Q) ≤ N , we

have

1

|Q|

∫
Q

|f(y)| dy ≤ 2k.

Obviously {
x ∈ Rn|M̄⋆

Nf(x) > 2k
}
=
∪
j

Qk
j .

Let Ek
j = Qk

j \
{
x ∈ Rn|M̄⋆

Nf(x) > 2k+1
}
. For k1 ̸= k2 or j1 ̸= j2 , it is easy to check that Ek1

j1
and Ek2

j2
are

disjoint and ∪
j,k

Ek
j =

∪
j,k

Qk
j .

Hence, for any cube Q , we have

1

u(Q)κ

∫
Rn

(M̄⋆
Nf(x))pudx =

1

u(Q)κ

∑
j,k

∫
Ek

j

(M̄⋆
Nf(x))pudx

≤ 2p

u(Q)κ

∑
j,k

u(Ek
j )

(
1

|Qk
j |

∫
Qk

j

σdx

)p(
1

σ(Qk
j )

∫
Qk

j

|f(x)|ω
p′
p σdx

)p

=
C

u(Q)κ

∑
j,k

γk
j

(
1

σ(Qk
j )

∫
Qk

j

g(x)σdx

)p

, (3.2)

where g = |f |ω
p′
p and

γk
j = u(Ek

j )

(
1

|Qk
j |

∫
Qk

j

σdx

)p

.

Next we define the measure γ on the measure space M where M = Z× Z+ . Let M0 = {(k, j) ∈ M| k, j is

the index of Qk
j } , and

g̃(k, j) =

{(
1

σ(Qk
j )

∫
Qk

j
g(x)σdx

)p
, (k, j) ∈ M0

0, otherwise.

Then we have

C

u(Q)κ

∑
j,k

γk
j

(
1

σ(Qk
j )

∫
Qk

j

g(x)σdx

)p

=
C

u(Q)κ

∫
M

g̃(k, j)dγ

= C

∫ ∞

0

γ(Sλ)

u(Q)κ
dλ, (3.3)

430



YE and WANG/Turk J Math

where

Sλ =

{
(k, j) ∈ M0 |

(
1

σ(Qk
j )

∫
Qk

j

g(x)σdx

)p

> λ

}
.

Note that all the cubes in
{
Qk

j

}
j,k

have side length of at most N . For the same reason, we can choose

maximum dyadic cubes in
{
Qk

j : (k, j) ∈ Sλ

}
. These maximum dyadic cubes are relabeled by {Qλ

i } . Thus:

∪
i

Qλ
i ⊆ {x ∈ Rn|(M⋆

σg(x))
p > λ} .

Joining (3.2) and (3.3) and by using condition (b) and Lemma 2.10, we have

1

u(Q)κ

∫
Rn

(
M̄⋆

Nf(x)
)p

udx ≤ C

∫ ∞

0

γ(Sλ)

u(Q)κ
dλ

= C

∫ ∞

0

1

u(Q)κ

∑
i

∑
Qk

j
⊆Qλ

i
(k,j)∈M0

u(Ek
j )

(
1

|Qk
j |

∫
Qk

j

σ

)p

dλ

≤ C

∫ ∞

0

(∑
i

1

u(Q)κ

∫
Qλ

i

(M⋆(χQλ
i
σ)(x))pudx

)
dλ

≤ C

∫ ∞

0

1

ω(Q)κ

∑
i

σ(Qλ
i )dλ

≤ C

ω(Q)κ

∫ ∞

0

σ ({x ∈ Rn|(M⋆
σg(x))

p > λ}) dλ

=
C

ω(Q)κ

∫
Rn

(
M⋆

σ

(
f

σ

)
(x)

)p

σdx

≤ C

ω(Q)κ

∫
Rn

|f(x)|pωdx.

Letting N tend to ∞ , we get

1

u(Q)κ

∫
Rn

(M⋆f(x))pudx ≤ C

ω(Q)κ

∫
Rn

|f(x)|pωdx.

Now we prove the case of maximal operator M . Note that (τtu, τtω) is also a couple of weights and

τtu(Q) = u(Q− t). Then for 2 arbitrary cubes Q and Q′ , we have
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1

τtu(Q)κ

∫
Q′
(M⋆((τtσ)χQ′)(x))pτtu(x)dx

=
1

τtu(Q)κ

∫
Q′
(M⋆(τt(σχQ′−t))(x))

pu(x− t)dx

=
1

τtu(Q)κ

∫
Q′−t

(M⋆
t (σχQ′−t)(y))

pu(y)dy

≤ 1

τtu(Q)κ

∫
Q′−t

(M(σχQ′−t)(x))
pu(x)dx

=
1

τtu(Q)κ

∫
Q′
(M(τtσχQ′)(x))pτtu(x)dx

≤ C

τtω(Q)κ

∫
Q′

τtσdx.

Hence:

1

u(Q)κ

∫
Rn

(M⋆
t f(x))

pu(x)dx

=
1

τtu(Q+ t)κ

∫
Rn

(M⋆(τtf)(x))
p(τtu)dx

≤ C

τtω(Q+ t)κ

∫
Rn

|τtf(x)|pτtωdx

=
C

ω(Q)κ

∫
Rn

|f(x)|pω.

Using Lemma 2.11, for each k ∈ Z , we have(
1

u(Q)κ

∫
Rn

(M2kf(x))
pudx

) 1
p

≤ 21−kn

u(Q)
κ
p

(∫
Rn

(∫
Q(0,2k+3)

M⋆
t f(x)dt

)p

udx

) 1
p

≤ 21−kn

∫
Q(0,2k+3)

(
1

u(Q)κ

∫
Rn

(M⋆
t f(x))

p
udx

) 1
p

dt

≤ C

(
1

ω(Q)κ

∫
Rn

|f(x)|pωdx
) 1

p

.

Letting k tend to ∞ , we get

1

u(Q)κ

∫
Rn

(Mf(x))pudx ≤ C

ω(Q)κ

∫
Rn

|f(x)|pωdx.

This completes the proof. 2
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Next we shall prove Theorem 3.1.

Proof Suppose f = fχ3Q + fχ(3Q)c ≜ f1 + f2. Since ω ∈ Ap , σ is locally integrable, by Proposition 3.2:

(
1

u(Q)κ

∫
Q

(Mf1(x))
pudx

) 1
p

≤
(

C

ω(Q)κ

∫
3Q

|f(x)|pωdx
) 1

p

≤ C∥f∥Lp,κ(ω).

On the other hand, from [7] we know that, for every x ∈ Q ,

Mωf2(x) ≤ sup
R:Q⊆3R

(
1

ω(R)

∫
R

|f(x)|ωdx
)
. (3.4)

Noting that ω ∈ Ap , by Lemma 2.9, there exists an index r : 1 < r < p , such that ω ∈ Ar , and then

Mf2(x) ≤ C(Mω|f2|r(x))
1
r . By inequality (3.4), for every x ∈ Q , we have

Mf2(x) ≤ C (Mω|f2|r(x))
1
r

≤ C sup
R:Q⊆3R

(
1

ω(R)

∫
R

|f(x)|rωdx
) 1

r

≤ C sup
R:Q⊆3R

(
1

ω(R)κ

∫
R

|f(y)|pωdy
) 1

p

ω(R)
κ−1
p

≤ C∥f∥Lp,κ(ω)ω(Q)
κ−1
p .

Hence: (
1

u(Q)κ

∫
Q

(Mf2(x))
pudx

) 1
p

≤ Cu(Q)
1−κ
p ω(Q)

κ−1
p ∥f∥Lp,κ(ω).

Using Proposition 3.2 again, let f = χQ ; then for every x ∈ Qo , M(χQ)(x) ≡ 1. We have

u(Q)
1−κ
p =

(
1

u(Q)κ

∫
Q

(M(χQ)(x))
pudx

) 1
p

≤ Cω(Q)
1−κ
p ,

and then (
1

u(Q)κ

∫
Q

(Mf2(x))
pudx

) 1
p

≤ C∥f∥Lp,κ(ω).

Therefore, we complete the proof of Theorem 3.1. 2

4. A necessary condition of 2-weighted norm inequalities in weighted Morrey spaces

In this section we give a necessary condition of 2-weighted boundedness of the Hardy–Littlewood maximal

operator. The idea goes back to Samko [12].
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Theorem 4.1 If u , ω , and σ = ω1−p′
are respectively (p, κ)-permission weight, (p, κ)-specific permission

weight, and a doubling weight, then (u, ω) ∈ Sp,κ is the necessary condition of ∥Mf∥Lp,κ(u) ≤ C∥f∥Lp,κ(ω) .

Proof Suppose Q1, Q2, ..., Q2n are any neighboring cubes that have the same edge length but no intersecting

interior whose union is a new big cube, which is denoted by Q0 . Let x ∈ Qi , i ∈ {1, 2, ..., 2n} . Then for j ̸= i :

M(χQj )(x) = sup
x∈Q

(
1

|Q|

∫
Q

χQj (y)dy

)
≥ 1

|Q0|

∫
Qj

dy =
1

2n
.

Hence:

sup
Q

(
1

u(Q)κ

∫
Q

χQi(y)udy

)
≤ 2npsup

Q

(
1

u(Q)κ

∫
Q

∩
Qi

(M(χQj )(y))
pudy

)
≤ 2npCp∥χQj∥

p
Lp,κ(ω).

Note that Qj ⊆ 3Qi ,

∥χQi∥Lp,κ(u) ≤ 2nC∥χQj∥Lp,κ(ω) ≤ C∥χ3Qi∥Lp,κ(ω).

On the other hand, for every x ∈ Qj , we have

M(χQiσ)(x) = sup
x∈Q

1

|Q|

∫
Q

∩
Qi

σdx ≥ 1

|Q0|

∫
Qi

σdx =
1

2n|Qi|

∫
Qi

σdx.

Then (
1

|Qi|

∫
Qi

σdx

)p

sup
Q

1

u(Q)κ

∫
Q

∩
Qj

udy

≤ 2np sup
Q

1

u(Q)κ

∫
Q

∩
Qj

(M(χQiσ)(y))
p
udy

≤ C∥χQiσ∥
p
Lp,κ(ω).

Since σ is a doubling weight and 3Qi ⊆ 5Qj , we have σ(3Qi) ≤ σ(5Qj) ≤ Cσ(Qj) and

∥χQi∥Lp,κ(u)

∥χ3Qiσ∥Lp,κ(ω)
≤ C

|3Qi|
σ(Qj)

≤ C
|Qi|

σ(3Qi)
.

This completes the proof. 2
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