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Abstract: In this paper, we discuss some geometric properties of almost contact metric submersions involving symplectic

manifolds. We show that the structures of quasi-K -cosymplectic and quasi-Kenmotsu manifolds are related to (1, 2)-

symplectic structures. For horizontally submersions of contact CR -submanifolds of quasi-K -cosymplectic and quasi-

Kenmotsu manifolds, we study the principal characteristics and prove that their total spaces are CR -product. Curvature

properties between curvatures of quasi-K -cosymplectic and quasi-Kenmotsu manifolds and the base spaces of such

submersions are also established. We finally prove that, under a certain condition, the contact CR -submanifold of a

quasi Kenmotsu manifold is locally a product of a totally geodesic leaf of an integrable horizontal distribution and a

curve tangent to the normal distribution.

Key words: CR -submanifold, almost Hermitian manifold, almost contact metric submersion, symplectic manifold,

horizontal submersion

1. Introduction

Riemannian submersions between Riemannian manifolds were initiated by O’Neill [14]. Almost contact metric

submersions were developed by Chinea [8] and Watson [17]. The theory of almost contact metric submersions

intertwines contact geometry with the almost Hermitian one. For instance, the base space of an almost contact

metric submersion of type II , in the sense of Watson [17], is an almost Hermitian manifold. However, certain

classes of almost Hermitian manifolds are closely related to symplectic manifolds. Specifically, almost Kähler

manifolds are endowed with symplectic manifolds while quasi-Kählerians are related to (1, 2)-symplectic ones.

Symplectic and almost contact manifolds were treated in [4]. Recall that almost contact metric submersions

were initiated by Chinea [7] and Watson [17].

On the other hand, the study of CR -submanifolds of an Hermitian manifold was initiated by Bejancu

in [1]. He generalized both totally real and holomorphic immersions. Given an almost Hermitian manifold,

(M,J, g), a submanifold M is called a CR -submanifold if there exists a differentiable distribution D on M

such it is holomorphic, and its complementary orthogonal distribution D⊥ is totally real JDx ⊆ Dx and

J(D⊥
x ) ⊆ TxM

⊥ , for all x ∈ M . Since then, many authors have treated CR -submanifolds on different ambient

manifolds and have amplified the definition to other decompositions of the tangent bundle (semislant and
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almost semiinvariant submanifolds). In [16], Sahin considered horizontally conformal submersions and proved

that every horizontally homothetic submersion is a Riemannian submersion.

The subject was considered later for Riemannian manifolds with an almost contact structure. In this

sense, Benjacu and Papaghiuc studied semiinvariant submanifolds of a Sasakian manifold or a Sasakian space

form (see [2, 3] and [15] and references therein).

In this paper, we study almost contact metric submersions of type II involving the classes of symplectic

structures. We are interested in the following problem. Let π : M2m+1 −→ M ′2m′
be an almost contact metric

submersion of type II. Under what conditions is the base space M ′ a (1, 2)-symplectic manifold and, conversely,

if the base space is a (1, 2)-symplectic manifold, what is the structure of the total space M ?

The paper is organized in the following way. In Section 2, devoted to the preliminaries on manifolds,

we review the main classes of almost Hermitian manifolds that have some relation with almost symplectic

structures. Almost contact metric manifolds that can be used as total space of fibration are also reviewed.

Section 3 deals with almost contact metric submersions. Here, after recalling some fundamental properties, it

is shown that quasi-K -cosymplectic and quasi-Kenmotsu manifolds, which have a common relation, are related

to (1, 2)-symplectic manifolds, that is, quasi-Kähler manifolds. Almost α -Kenmotsu manifolds are related to

symplectic manifolds. In Section 4, we recall the definition of contact CR -submanifolds given by Yano and Kon

in [18] and give the decomposition of their tangent and normal bundles. In Section 5, we consider Riemannian

submersions of contact CR -submanifolds of quasi-K -cosymplectic, quasi-Kenmotsu manifolds. We study the

integrability of all the distributions involved in the definition of a contact CR -submanifold. We prove that the

base spaces of such submersions are quasi-K -cosymplectic and quasi-Kenmotsu, and under a certain condition,

they are (1, 2)-symplectic. By Theorem 5.15, we show that the total spaces of the submersions involved are CR -

product. Finally, we give, in Section 6, some curvature properties by deriving expressions relating curvatures

of the ambient manifolds and the base spaces of the submersions. Under a certain condition, we prove that the

total space of the submersion of a contact CR -submanifold of a quasi-Kenmotsu manifold is locally a product

M∗ ×C , where M∗ is a totally geodesic leaf of the horizontal distribution D ⊕ {ξ} in Definition 4.1 and C is

a curve tangent to the distribution D⊥ (Theorem 6.3).

2. Preliminaries

An almost Hermitian manifold is a Riemannian manifold, (M, g), endowed with a tensor field J of type (1, 1)

satisfying the following 2 conditions:

(i) J2X = −X , and

(ii) g(JX, JY ) = g(X,Y ), for any X , Y ∈ Γ(TM).

It is known that any almost Hermitian manifold, (M, g, J), is of even dimension, say 2m, and possesses a

fundamental 2-form Ω defined by

Ω(X,Y ) = g(X, JY ).

Following Gray and Hervella [13], an almost Hermitian manifold (M2m, g, J) is said to be quasi-Kählerian if

(∇XΩ)(Y, Z) + (∇JXΩ)(JY, Z) = 0, (2.1)

and almost Kählerian if
dΩ(X,Y, Z) = 0. (2.2)
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Let M be a differentiable manifold of dimension 2m+1. An almost contact structure on M is a triple (φ, ξ, η),

where ξ is a characteristic vector field, η is a 1-form such that η(ξ) = 1, and φ is a tensor field of type (1, 1)

satisfying

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, (2.3)

where I is the identity transformation. If M is equipped with a Riemannian metric g such that

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (2.4)

then (g, φ, ξ, η) is called an almost contact metric structure. So, the quintuple (M2m+1, g, φ, ξ, η) is an almost

contact metric manifold. As in the case of almost Hermitian manifolds, any almost contact metric manifold

admits a fundamental 2-form ϕ defined by

ϕ(X,Y ) = g(X,φY ). (2.5)

In this case, we will be interested in the following structures:

(1) quasi-K -cosymplectic if

(∇Xφ)Y + (∇φXφ)φY − η(Y )(∇φXξ) = 0, (2.6)

(2) quasi-Kenmotsu if dη = 0 and

(∇Xϕ)(Y, Z) + (∇φXϕ)(φY,Z) = η(Y )ϕ(Z,X) + 2η(Z)ϕ(X,Y ), (2.7)

(3) almost α -Kenmotsu if

dϕ(X,Y, Z) =
α

3
G(η(X)ϕ(Y,Z)) and dη = 0, (2.8)

where α is real and G denotes the cyclic sum over X , Y and Z .

As examples of quasi-K -cosymplectic and quasi-Kenmotsu manifolds, we have the following. Let l(t) = cet

with t ∈ R and c ∈ R∗ . It is known that S2 × R4 is a quasi-Kähler manifold according to the almost complex

structure defined by the Cayley numbers. Thus, using the warped product as treated by Kenmotsu, it can be

shown that M = R×l (S
2 × R4) is a quasi-Kenmotsu manifold.

In [10], the author showed that the product S2 × R2n+1 is a quasi-K -cosymplectic manifold.

3. Almost contact metric submersions

In [14], O’Neill defined a Riemannian submersion as a surjective mapping

π : M −→ B

between 2 Riemannian manifolds such that (i) π is of maximal rank and (ii) π∗/(kerπ∗)
⊥ is a linear isometry.

The tangent bundle TM, of the total space M, admits an orthogonal decomposition

TM = V(M)⊕H(M), (3.1)

where V(M) and H(M) denote respectively the vertical and horizontal distributions. We denote by h and v

the vertical and horizontal projections, respectively.
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A vector field X of the horizontal distribution is called a basic vector field if it is π -related to a vector
field X∗ of the base space B. Such a vector field means that π∗X = X∗.

On the base space, tensors and other objects will be denoted by a prime ′ while those tangent to the

fibers will be specified by a carret .̂

When the base space is an almost Hermitian manifold, (B2m′
, g′, J ′), the Riemannian submersion

π : M2m+1 → B2m′

is called an almost contact metric submersion of type II [17] if

π∗φ = J ′π∗.

This type of submersion is called (φ, J)-holomorphic in [5].

Proposition 3.1 Let π : M2m+1 −→ B2m′
be an almost contact metric submersion of type II . Then

(a) π∗Ω′ = ϕ ,

(b) η(X) = 0 , ∀X ∈ H(M) .

Proof See Watson [17]. 2

Proposition 3.2 The fibers of an almost contact metric submersion of type II are almost contact metric

manifolds.

Proof Since the total space is of dimension 2m+ 1 and the base space has 2m′ as its dimension, the fibers

have dimension 2(m−m′)+1. This shows that the dimension of the fibers is odd. Let (ĝ, φ̂, ξ̂, η̂) be the restric-

tion of the almost contact metric structure (g, φ, ξ, η) of the total space on the fibers. We have to show that

(ĝ, φ̂, ξ̂, η̂) is an almost contact metric structure. In fact, (i) φ̂2U = −U+ η̂(U)ξ̂ , (ii) ˆ(η) = ĝ(ξ̂, ξ̂) = g(ξ, ξ) = 1,

(iii) ĝ(φ̂U, φ̂V ) = −ĝ(U, φ̂2V ) = ĝ(U, V ) − ĝ(U, η̂(V )ξ̂). But ĝ(U, η̂(V )ξ̂) = ĝ(U, ξ̂)η̂(V ) = η̂(U)η̂(V ). Thus,

ĝ(φ̂U, φ̂V ) = ĝ(U, V )− η̂(U)η̂(V ), which completes the proof. 2

Definition 3.3 [5] An almost Hermitian manifold (M, g, J) is called a (1, 2)-symplectic manifold if

(∇XJ)Y + (∇JXJ)JY = 0, ∀X, Y ∈ Γ(TM). (3.2)

The (1, 2)-symplectic manifold is also called a quasi-Kähler manifold [11].

Proposition 3.4 Let π : M2m+1 −→ M ′2m′
be an almost contact metric submersion of type II . If the total

space is quasi-K -cosymplectic or quasi-Kenmotsu, then the base space is a quasi-Kähler manifold.

Proof Note that all these manifolds have in common the following relation:

(∇Dϕ)(E,G) + (∇φDϕ)(φE,G) = αη(D)C,

where C is a factor determined by the class of the manifold. For instance, if α = 1 and C = η(E)(∇φDξ),

we get the defining relation of a quasi-K -cosymplectic structure. If α = 1 and C = η(E)ϕ(G,D) +
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2η(G)ϕ(D,E), we obtain the principal defining relation of a quasi-Kenmotsu structure. Let X , Y , and

Z be 3 basic vector fields. Since η vanishes on horizontal vector fields, the common relation becomes

(∇Xϕ)(Y, Z) + (∇φXϕ)(φY,Z) = 0. As π∗Ω′ = ϕ , we get (∇′
X∗

Ω′)(Y∗, Z∗) + (∇′
J′X∗

Ω′)(J ′Y∗, Z∗) = 0. This

relation means that the base space has the quasi-Kählerian structure. Recalling that (∇′
X∗

Ω′)(Y∗, Z∗) =

g′((∇′
X∗

J ′)Y∗, Z∗), and (∇′
J ′X∗

Ω′)(J ′Y∗, Z∗) = g′((∇′
J ′X∗

J ′)J ′Y∗, Z∗), we then obtain g′((∇′
X∗

J ′)Y∗, Z∗) +

g′((∇′
J ′X∗

J ′)J ′Y∗, Z∗) = 0, which is equivalent to g′((∇′
X∗

J ′)Y∗) + (∇′
J′X∗

J ′)J ′Y∗, Z∗) = 0, from which we

have (∇′
X∗

J ′)Y∗ + (∇′
J ′X∗

J ′)J ′Y∗ = 0 following. By Definition 3.3, the base space is a quasi-Kähler manifold,

that is, a (1, 2)-symplectic manifold as noted in [5]. 2

Proposition 3.5 Let π : M2m+1 −→ M ′2m′
be an almost contact metric submersion of type II . If the

base space is a quasi-Kähler manifold, then the horizontal distribution of the total space looks like a quasi-K -

cosymplectic or a quasi-Kenmotsu manifold.

Proof Let X, Y and Z be basic vector fields. It is known that on the base space π∗X = X∗, π∗Y = Y∗

and π∗Z = Z∗. Consider that the base space is defined by (∇′
X∗

J ′)Y∗ + (∇′
J′X∗

J ′)J ′Y∗ = 0. This implies that

(∇′
X∗

Ω′)(Y∗, Z∗) + (∇′
J′X∗

Ω′)(J ′Y∗, Z∗) = 0. Using π∗Ω′ = ϕ , we obtain π∗(∇′
X∗

Ω′)(Y∗, Z∗) = (∇Xϕ)(Y, Z)

and π∗(∇′
J ′X∗

Ω′)J ′Y∗, Z∗) = (∇φXϕ)(φY,Z). These relations lead to (∇Xϕ)(Y, Z)+(∇φXϕ)(φY,Z) = 0. Tak-

ing into account that η vanishes on the horizontal distribution, the last relation means that this distribution is

of kind (∇Xϕ)(Y, Z) + (∇φXϕ)(φY,Z) = η(Z)C, which completes the proof. 2

Proposition 3.6 Let π : M2m+1 −→ M ′2m′
be an almost contact metric submersion of type II . Assume that

the base space admits a (1,2) symplectic structure. Then the total space is an almost α-Kenmotsu manifold.

Proof If (M ′2m′
, g′, J ′) admits a (1,2) symplectic structure, we have dΩ′ = 0 on horizontal vector fields.

Referring to Proposition 3.1, π∗Ω′ = ϕ , which implies that d(π∗Ω′) = dϕ. On the other hand, taking dΩ′ = 0

implies that dϕ = 0. To get dϕ = 0 on horizontal vector fields, turn to Proposition 3.1 (b), where η vanishes

on horizontal distribution. Thus, we claim that the total space is an almost α -Kenmotsu manifold. 2

4. Contact CR-submanifolds

In this section, we introduce the notion of the contact CR -submanifold of a manifold (see [18] for details). Let

M be an finite-dimensional isometrically immersed submanifold of a (2m+1)-dimensional manifold M and let

g be the metric tensor on M as well as the induced metric on M .

Definition 4.1 [18] A Riemannian submanifold M of a quasi-K -cosymplectic (resp. quasi-Kenmotsu) mani-

fold M is called a contact CR -submanifold if ξ is tangent to M and there exists on M a differential distribution

D : x 7−→ Dx ⊂ TxM such that

(i) Dx is invariant under φ (i.e. φDx ⊂ Dx ), for each x ∈ M ;

(ii) the orthogonal complementary distribution D⊥ : x 7−→ D⊥
x ⊂ TxM of the distribution D on M is totally

real (i.e. φD⊥ ⊂ TxM
⊥ );

440



MASSAMBA and TSHIKUNA-MATAMBA/Turk J Math

(iii) TM = D ⊕D⊥ ⊕ {ξ} , where TxM and TxM
⊥ are the tangent space and the normal space of M at x ,

respectively, and ⊕ denotes the orthogonal direct sum.

We call D (resp. D⊥ ) the horizontal (resp. vertical) distribution. We denote by g the metric tensor field of M

as well as that induced on M . Let ∇ (resp. ∇) be the covariant differentiation with respect to the Levi-Civita

connection on M (resp. M ). The Gauss and Weingarten formulas for M are respectively given by

∇XY = ∇XY + h(X,Y ) (4.1)

and ∇XV = −AV X +∇⊥
XV, (4.2)

for any X , Y ∈ Γ(TM), V ∈ Γ(TM⊥), where h : Γ(TM) × Γ(TM) −→ Γ(TM⊥) is a normal bundle valued

symmetric bilinear form on M , the linear operator AV is the fundamental form tensor of Weingarten with

respect to the normal section V , and the differential operator ∇⊥ defines a linear connection on the normal

bundle TM⊥ , called the normal connection on M . Moreover, we have

g(h(X,Y ), V ) = g(AV X,Y ). (4.3)

The submanifold M is said to be totally geodesic if h vanishes identically.

The projection of TM to D and D⊥ are denoted by h and v , respectively, i.e. for any X ∈ Γ(TM),

we have
X = hX + vX + η(X)ξ. (4.4)

Applying φ to X , we have,

φX = FX +NX, ∀X ∈ Γ(TM), (4.5)

where FX = φhX and NX = φvX are tangential and normal components of φX , respectively.

The normal bundle to M has the decomposition

TM⊥ = φD⊥ ⊕ ν, (4.6)

where ν denotes the orthogonal complementary distribution of φD⊥ , and is an invariant normal subbundle of

TM⊥ under φ . For any V ∈ TM⊥ , we put

V = pV + qV, (4.7)

where pV ∈ φD⊥ , qV ∈ ν . From the above equation, we have,

φV = fV + nV, ∀V ∈ TM⊥, (4.8)

where fV = φpV ∈ D⊥ and nV = φqV ∈ ν .

5. Contact CR-submersions

Let M be a contact CR -submanifold of a quasi-K -cosymplectic (respectively, quasi-Kenmotsu) manifold M

and M ′ be an almost contact metric manifold with the almost contact metric structure (φ′, ξ′, η′, g′).

Next, we study the distributions involved and we characterize the horizontal one. Assume that there is

a submersion π : M −→ M ′ such that:
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(i) D⊥ = ker(π∗), where π∗ : TM −→ TM ′ is the tangent mapping to π ,

(ii) π∗ : Dx ⊕ {ξ} −→ Tπ(x)M
′ is an isometry for each x that satisfies: π∗ ◦ ϕ = ϕ′ ◦ π∗ , η = η′ ◦ π∗ ,

π∗(ξx) = ξ′π(x) , where Tπ(x)M
′ denotes the tangent space of M ′ at π(x).

Comparing tangential and normal components in (2.3) and (2.4), we obtain the next 2 Lemmas.

Lemma 5.1 For a contact CR -submanifold M of a quasi-K -cosymplectic (resp. quasi-Kenmotsu) manifold

M , the following equalities hold:

F 2 + fN = −I + η ⊗ ξ, (5.1)

NF + nN = 0, (5.2)

Ff + fn = 0, (5.3)

n2 +Nf = −I. (5.4)

Lemma 5.2 Let M be a contact CR -submanifold M of an almost contact manifold (M,φ, ξ, η, g) . Then,

(∇XF )Y −ANY X − fh(X,Y ) = F ((∇Xφ)Y ), (5.5)

(∇XN)Y + h(X,FY )− nh(X,Y ) = N((∇Xφ)Y ), (5.6)

(∇Xf)V −AnV X + FAV X = f((∇Xφ)V ), (5.7)

(∇⊥
Xn)V + h(X, fV ) +NAV X = n((∇Xφ)V ), (5.8)

where F ((∇Xφ)Y ) , f((∇Xφ)V ) , n((∇Xφ)V ) , and N((∇Xφ)Y ) are, respectively, tangential and normal

components of (∇Xφ)Y and (∇Xφ)V , for any X , Y ∈ Γ(TM) and V ∈ Γ(TM⊥) .

Proposition 5.3 For a contact CR -submanifold M of a quasi-K -cosymplectic (resp. quasi-Kenmotsu) man-

ifold M , the following equalities hold:

(i) ker(F ) = D⊥ ⊕ {ξ} ,

(ii) ker(N) = D ⊕ {ξ} ,

(iii) ker(n) = ND⊥ ,

(iv) ker(f) = ν .

Proof (i) and (ii) are directly deduced from the definition of a contact CR -submanifold. For (iii), if X ∈ D⊥ ,

then, by (5.2), nNX = −NFX = 0, i.e. nD⊥ ⊂ ker(n). Conversely, let us consider U ∈ ker(n). From (5.3) and

(5.4), it follows that FfU = −fnU = 0 and U = −n2U −NfU = −NfU . From the first equality, fU ∈ D⊥ ,

and then the second one implies that U ∈ ND⊥ . Now let us prove (iv). For V ∈ ker(f), we have fV = 0

and, by (5.2) and (5.4), 0 = FfV + fnV = fnV and n2V +NfV = −V , which implies φnV = n2V = −V ,

using (4.5). Applying φ and n to this equation, we have nφ2nV = −nφV , i.e. V = −nφV ∈ ν . Thus,

ker(f) ⊂ ν . For the other inclusion, notice that, for any V normal to M , fV ∈ D⊥ . Then, using (5.2) and
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(5.4), fnV = FfV = 0 and φfV = NfV = −V − n2V , i.e. n2V = −V . Therefore, fV = 0. 2

For a quasi-Kenmostu manifold, (2.7) is equivalent to, for any X , Y ∈ Γ(TM),

(∇Xφ)Y − φ((∇φXφ)Y ) = g(φX, Y )ξ − 2η(Y )φX. (5.9)

The covariant derivative of the structure vector field ξ is given, for a quasi-K -cosymplectic manifold, by,

∇Xξ = φ(∇φXξ), ∀X, Y ∈ Γ(TM), (5.10)

and for a quasi-Kenmotsu manifold by

∇Xξ = −2φ2X + φ(∇φXξ), ∀X, Y ∈ Γ(TM). (5.11)

Note that, for both ambient almost contact manifolds, the following identities hold:

∇ξξ = 0 and h(ξ, ξ) = 0. (5.12)

Now we study the integrability of all the distributions involved in the definition of contact CR -submanifolds.

First of all, we have:

Lemma 5.4 For any X ∈ Γ(D ⊕ {ξ}) , φX = FX ∈ Γ(D ⊕ {ξ}).

Proof For any X ∈ Γ(D⊕{ξ} , X = hX+η(X)ξ . Applying φ to this equation, one has φX = φhX+η(X)φξ ,

i.e. φX = FX . Therefore, for any Y ∈ Γ(TM), g(φX, vY ) = −g(X,φvY ). Since φvY ∈ Γ(φD⊥) ⊂ Γ(TM⊥),

we have g(X,φvY ) = 0, that is, g(φX, vY ) = 0, which completes the proof. 2

The above lemma means that D ⊕ {ξ} is invariant under φ .

For some other considerations, the submanifold M may be considered to be of odd or even codimension,

but while either the dimension of M is odd or even, the distribution D is always of even dimension.

Lemma 5.5 Let M be a contact CR -submanifold of an almost contact manifold M . Then, if M is quasi-K -

cosymplectic, we have the following identities:

∇Xξ = F (∇FXξ) + fh(FX, ξ), (5.13)

h(X, ξ) = N(∇FXξ) + nh(FX, ξ), ∀ X ∈ Γ(D). (5.14)

Moreover, if M is quasi-Kenmotsu, we have

∇Xξ = 2{X − η(X)ξ}+ F (∇FXξ) + fh(FX, ξ),

h(X, ξ) = N(∇FXξ) + nh(FX, ξ), ∀ X ∈ Γ(D). (5.15)

Proof If M is a quasi-K -cosymplectic, from (5.10), one has, for any X ∈ Γ(D),

∇Xξ + h(X, ξ) = ∇Xξ = φ(∇FXξ) = φ(∇FXξ) + φh(FX, ξ)

= F (∇FXξ) +N(∇FXξ) + fh(FX, ξ) + nh(FX, ξ).

On the other hand, if M is a quasi-Kenmotsu, from (5.11), we get

∇Xξ + h(X, ξ) = ∇Xξ = −2φ2X + φ(∇FXξ) + φh(FX, ξ)

= −2φ2X + F (∇FXξ) +N(∇FXξ) + fh(FX, ξ) + nh(FX, ξ).
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Then, comparing tangential and normal components of both sides of these equations, we complete the

proof. 2

Proposition 5.6 Let M be a contact CR -submanifold of an almost contact manifold M . Then, the following

assertions hold:

(i) The distributions D , D⊥ and D⊕D⊥ are ξ -parallel if and only if h(ξ, FX) ∈ Γ(ν) , for any X ∈ Γ(D) .

(ii) If M is quasi-K -cosymplectic (or quasi-Kenmotsu), then, for any X ∈ Γ(D) , [X, ξ] ∈ Γ(D) if and only

if h(ξ, FX) ∈ Γ(ν) .

(iii) If M is quasi-Kenmotsu (or quasi-K -cosymplectic), then [X, ξ] ∈ Γ(D⊥) , for any X ∈ Γ(D⊥) .

Proof (i) For X ∈ Γ(D), Y ∈ Γ(D⊥), using (5.5), we get

g(∇ξX, ξ) = ξ(g(X, ξ))− g(X,∇ξξ) = 0,

g(∇ξX,Y ) = ξ(g(X,Y ))− g(X,∇ξY ) = g(F 2X,∇ξY ) = −g(FX,F∇ξY )

= −g(FX,∇ξFY ) + g(FX,ANY ξ) + g(FX, fh(ξ, Y ))

= g(h(ξ, FX), φY ),

∇ξX ∈ Γ(D⊥) if and only if h(ξ, FX) ∈ ν . Similarly, we can proceed for D⊥ . Finally, if D and D⊥ are

ξ -parallel, then D ⊕ D⊥ also is. (ii) If M is a contact CR -submanifold of a quasi-K -cosymplectic manifold

M , then, by (5.13) and (5.5), and for any X ∈ Γ(TM) and Y ∈ Γ(D⊥), we have

g(∇Xξ, ξ) = 0, (5.16)

g(∇Xξ, Y ) = g(∇Xξ, Y )− g(h(X, ξ), Y ) = g(φ(∇φXξ), Y )

= −g(h(φX, ξ), φY ). (5.17)

Then, ∇Xξ ∈ Γ(D) if and only if g(h(φX, ξ) ∈ ν . Consequently, [X, ξ] = ∇Xξ −∇ξX ∈ Γ(D) if and only if

g(h(φX, ξ) ∈ ν . On the other hand, if M is a contact CR -submanifold of a quasi-Kenmotsu manifold M , for

any X ∈ Γ(TM) and Y ∈ Γ(D⊥) and since φD⊥ ⊂ TM⊥ , we have

g(∇Xξ, Y ) = g(∇Xξ, Y )− g(h(X, ξ), Y ) = −2g(φ2X,Y ) + g(φ(∇φXξ), Y )

= 2g(X,Y ) + g(φ(∇φXξ), Y ) + g(φh(φX, ξ), Y )

= 2g(X,Y )− g(h(φX, ξ), φY ). (5.18)

The latter vanishes if and only if g(h(φX, ξ) ∈ ν , for any X ∈ Γ(D). Thus, [X, ξ] = ∇Xξ − ∇ξX ∈ Γ(D) if

and only if g(h(φX, ξ) ∈ ν , ∀X ∈ Γ(D). The assertion (iii) is obvious, using the relations in (2.6) and (5.9),

which completes the proof. 2

The differential of the second fundamental form ϕ in (2.5) gives, for any X , Y , Z ∈ Γ(TM),

3dϕ(X,Y, Z) = X(ϕ(Y,Z)) + Y (ϕ(Z,X)) + Z(ϕ(X,Y ))

− ϕ([X,Y ], Z)− ϕ([Z,X], Y )− ϕ([Y, Z], X). (5.19)
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Using this differential, we have, for any Y , Z ∈ Γ(D⊥),

3dϕ(X,Y, Z) = −ϕ([Y, Z], X) = −g([Y, Z], φX) = g(φ[Y, Z], X). (5.20)

So, dϕ(X,Y, Z) = 0 if and only if [Y, Z] ∈ ker(F ) = D⊥ ⊕ {ξ} . This is equivalent to

[Y,Z] = v[Y, Z] + η([Y, Z])ξ.

But,

η([Y, Z]) = g(ξ,∇Y Z)− g(ξ,∇ZY )

= g(∇Zξ, Y )− g(∇Y ξ, Z).

If M is a quasi-K -cosymplectic manifold, we have, ∇Zξ = φ(∇φZξ) and this implies that, for any Y ,

Z ∈ Γ(D⊥),

g(∇Zξ, Y ) = −g(∇φZξ, φY )− g(h(φZ, ξ), φY )

= −g(AφY ξ, φZ) = 0, (5.21)

since AφY ξ ∈ Γ(TM) and φZ ∈ Γ(φD⊥). Consequently, η([Y, Z]) = 0 and [Y, Z] ∈ D⊥ . On the other hand,

if M is a quasi-Kenmotsu manifold, then, by its definition, 0 = 2dη(Y,Z) = −η([Y, Z]) and [Y,Z] ∈ D⊥ .

Therefore, we have:

Lemma 5.7 Let M be a contact CR -submanifold of a quasi-K -cosymplectic (or quasi-Kenmotsu) manifold

M . The distribution D⊥ is integrable if and only if dϕ(X,Y, Z) = 0 , for any X tangent to M and Y ,

Z ∈ Γ(D⊥) .

From this Lemma, we deduce:

Theorem 5.8 Let M be a contact CR -submanifold of a quasi-Kenmotsu manifold M . Then, the distribution

D⊥ is always integrable .

Proof For any X , Y , Z ∈ Γ(D⊥), 3dϕ(X,Y, Z) = −g([Y, Z], φX) = 0, since [Y, Z] ∈ Γ(TM) and

φX ∈ Γ(φD⊥) ⊂ Γ(TM⊥). By Lemma 5.7, we complete the proof. 2

Finally, we characterize the integrability of D ⊕ {ξ} .

Theorem 5.9 Let M be a contact CR -submanifold of a quasi-K -cosymplectic manifold M . If the horizontal

distribution D ⊕ {ξ} is integrable, then,

h(FX, Y ) = h(X,FY ), ∀X, Y ∈ Γ(D ⊕ {ξ}). (5.22)

Proof For any X , Y ∈ Γ(D ⊕ {ξ}), we have,

φ[φX,φY ] = ∇φXφ2Y − (∇φXφ)φY −∇φY φ
2X + (∇φY φ)φX

= −∇φXY + φX(η(Y ))ξ + η(Y )∇φXξ − (∇φXφ)φY

+∇φY X − φY (η(X))ξ − η(X)∇φY ξ + (∇φY φ)φX

= ∇φY X −∇φXY + {φX(η(Y ))− φY (η(X))}ξ + η(Y )(∇φXξ)

− (∇φXφ)φY − η(X)(∇φY ξ) + (∇φY φ)φX. (5.23)
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Likewise, using the Gauss equation, we get, for any X , Y ∈ Γ(D ⊕ {ξ}),

φ[X,Y ] = ∇XφY −∇Y φX + (∇Y φ)X − (∇Xφ)Y

+ h(X,φY )− h(φX, Y ), (5.24)

since M is a quasi-K -cosymplectic manifold. Then, we have,

(∇Xφ)Y + (∇φXφ)φY = η(Y )(∇φXξ),

and the relation (5.23) becomes

φ[φX,φY ] = ∇φY X −∇φXY + h(X,φY )− h(φX, Y )

+ {φX(η(Y ))− φY (η(X))}ξ + (∇Xφ)Y − (∇Y φ)X. (5.25)

Adding (5.25) and (5.24), one obtains

φ[φX,φY ] + φ[X,Y ] + {φY (η(X))− φX(η(Y ))}ξ

= ∇φY X −∇φXY +∇XφY −∇Y φX

+ 2{h(X,φY )− h(φX, Y )}.

If D ⊕ {ξ} is integrable and since φX = FX , for any X ∈ Γ(D ⊕ {ξ}), the terms on the left-hand side are

tangential to M . Then, equating normal components in the above equation, we obtain the desired relation. 2

A vector field X on M is said to be basic if X ∈ Γ(Dx ⊕ {ξ}) and X is π -related to a vector field on

M ′ , i.e. there exists a vector field X∗ ∈ TM ′ such that π∗(Xx) = X∗π(x) , for each x ∈ M . Note that, by

condition (ii) above Lemma 5.1, it shows that the structural vector field ξ is a basic vector field.

Lemma 5.10 [15] Let X and Y be basic vector fields on M . Then

(i) g(X,Y ) = g′(X∗, Y∗) ◦ π ;

(ii) the component h([X,Y ]) + η([X,Y ])ξ of [X,Y ] is a basic vector field and corresponds to [X∗, Y∗] , i.e.

π∗(h([X,Y ]) + η([X,Y ])ξ) = [X∗, Y∗] ;

(iii) [U,X] ∈ D⊥ , for any U ∈ D⊥ ;

(iv) h([X,Y ]) + η([X,Y ])ξ is a basic vector field corresponding to ∇∗
X∗

Y∗ , where ∇∗ denotes the Levi-Civita

connection on M ′ .

For basic vector fields on M , we define the operator ∇̃∗ corresponding to ∇∗ by setting, for any X , Y ∈
Γ(D ⊕ {ξ}),

∇̃∗
XY = h(∇XY ) + η(∇XY )ξ. (5.26)

By (iv) of Lemma 5.10, ∇̃∗
XY is a basic vector field, and we have

π∗(∇̃∗
XY ) = ∇∗

X∗
Y∗. (5.27)
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Define the tensor field C by, for any X , Y ∈ Γ(D ⊕ {ξ}),

∇XY = ∇̃∗
XY + C(X,Y ), (5.28)

where C(X,Y ) is the vertical part of ∇XY . It is known that C is skew-symmetric and satisfies

C(X,Y ) =
1

2
v[X,Y ], X, Y ∈ Γ(D ⊕ {ξ}). (5.29)

Next, we want to examine the influence of a given structure defined on the ambient M on the determination

of the corresponding structure on the contact CR -submanifold M and the base space M ′ .

The curvature tensors R , R∗ of the connection ∇ , ∇∗ on M and M ′ , respectively, are related by [15],

for any X , Y , Z , W ∈ Γ(D ⊕ {ξ}),

R(X,Y, Z,W ) = R∗(X∗, Y∗, Z∗,W∗)− g(C(Y, Z), C(X,W ))

+ g(C(X,Z), C(Y,W )) + 2g(C(X,Y ), C(Z,W )), (5.30)

where π∗X = X∗ , π∗Y = Y∗ , π∗Z = Z∗ , and π∗W = W∗ .

We now pay attention to the different ambient manifolds involved, namely quasi-K -cosymplectic and

quasi-Kenmotsu manifolds. First of all, we have, for any X , Y ∈ Γ(D ⊕ {ξ}),

∇XY = ∇XY + h(X,Y ) = ∇XY + ph(X,Y ) + qh(X,Y )

= ∇̃∗
XY + C(X,Y ) + ph(X,Y ) + qh(X,Y ). (5.31)

Using this, we have

φ(∇XY ) = φ∇̃∗
XY + φC(X,Y ) + φph(X,Y ) + φqh(X,Y ). (5.32)

Replacing Y with φY into the relation (5.31), we obtain

∇XφY = ∇̃∗
XφY + C(X,φY ) + ph(X,φY ) + qh(X,φY ). (5.33)

If M is a quasi-K -cosymplectic manifold, we find

(∇Xφ)Y = ∇XφY − φ(∇XY ) = −(∇Xφ)φY + η(Y )(∇φXξ). (5.34)

Substituting (5.32) and (5.33) in (5.34), one obtains

∇̃∗
XφY + C(X,φY ) + ph(X,φY ) + qh(X,φY )− φ∇̃∗

XY

− φC(X,Y )− φph(X,Y )− φqh(X,Y )

= −(∇φXφ)φY + η(Y )(∇φXξ). (5.35)

On the other hand, if M is a quasi-Kenmotsu manifold, we get

(∇Xφ)Y = φ((∇φXφ)Y ) + g(φX, Y )ξ − 2η(Y )φX. (5.36)
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Putting (5.32) and (5.33) in (5.36), with (∇Xφ)Y = ∇XφY − φ(∇XY ), one has

∇̃∗
XφY + C(X,φY ) + ph(X,φY ) + qh(X,φY )− φ∇̃∗

XY

− φC(X,Y )− φph(X,Y )− φqh(X,Y )

= φ((∇φXφ)Y ) + g(φX, Y )ξ − 2η(Y )φX. (5.37)

We have the following results.

Theorem 5.11 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a manifold M onto an

almost contact metric manifold M ′ . Then:

(i) If M is quasi-K -cosymplectic, for any X , Y ∈ Γ(D ⊕ {ξ}) ,

(∇̃∗
Xφ)Y + (∇̃∗

φXφ)φY = η(Y )∇̃∗
φXξ, (5.38)

C(X,φY )− C(φX, Y ) = f{h(X,Y ) + h(φX,φY ), (5.39)

q{h(X,φY )− h(φX, Y )} = n{h(X,Y ) + h(φX,φY )}, (5.40)

p{h(X,φY )− h(φX, Y )} = φ{C(X,Y ) + C(φX,φY ). (5.41)

(ii) If M is quasi-Kenmotsu, for any X , Y ∈ Γ(D ⊕ {ξ}) ,

(∇̃∗
Xφ)Y − φ((∇̃∗

φXφ)Y ) = g(φX, Y )ξ − 2η(Y )φX, (5.42)

C(X,φY )− C(φX, Y ) = fh(X,Y ), (5.43)

C(X,Y ) = −C(φX,φY ), (5.44)

ph(X,φY ) = φqh(X,Y ). (5.45)

Proof (i) If M is a quasi-K -cosymplectic manifold, we have,

∇φXξ = ∇φXξ + h(φX, ξ) = ∇̃∗
φXξ + C(φX, ξ) + h(φX, ξ), (5.46)

and

(∇φXφ)φY = ∇φXφ2Y − φ(∇φXφY )

= ∇φXφ2Y + h(φX,φ2Y )− φ(∇φXφY + h(φX,φY ))

= ∇̃∗
φXφ2Y + C(φX,φ2Y ) + h(φX,φ2Y )− φ(∇̃∗

φXφY )

− φC(φX,φY )− φh(φX,φY )

= (∇̃∗
φXφ)φY − C(φX, Y ) + η(Y )C(φX, ξ)− h(φX, Y )

+ η(Y )h(φX, ξ)− φC(φX,φY )− φh(φX,φY ) (5.47)
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for any X , Y ∈ Γ(D ⊕ {ξ}). Putting the pieces (5.46) and (5.47) into (5.35), we have

(∇̃∗
Xφ)Y + C(X,φY ) + ph(X,φY ) + qh(X,φY )− φC(X,Y )

− φnh(X,Y )− φqh(X,Y )

= −(∇̃∗
φXφ)φY + η(Y )∇̃∗

φXξ + C(φX, Y ) + h(φX, Y )

+ φC(φX,φY ) + φh(φX,φY ). (5.48)

Comparing the components of D ⊕ {ξ} , D⊥ , φD⊥ , and ν , respectively, on both sides of (5.48), we find

(∇̃∗
Xφ)Y + (∇̃∗

φXφ)φY = η(Y )∇̃∗
φXξ,

C(X,φY )− C(φX, Y ) = φp{h(X,Y ) + h(φX,φY ),

q{h(X,φY )− h(φX, Y )} = φq{h(X,Y ) + h(φX,φY )},

p{h(X,φY )− h(φX, Y )} = φ{C(X,Y ) + C(φX,φY )}.

(ii) Suppose that M is a quasi-Kenmotsu manifold. Using the fact that C is vertical, for any X , Y ∈ Γ(D⊕{ξ}),

φ(∇φXφ)Y = φ(∇φXφY )− φ2(∇φXY )

= φ(∇̃∗
φXφY )− φ2(∇̃∗

φXY ) + φC(φX,φY )− φ2(C(φX, Y ))

= φ((∇̃∗
φXφ)Y ) + φC(φX,φY ) + C(φX, Y ). (5.49)

Putting (5.49) in (5.37), we get,

(∇̃∗
Xφ)Y + C(X,φY ) + ph(X,φY ) + qh(X,φY )− φC(X,Y )

− φph(X,Y )− φqh(X,Y )

= φ((∇̃∗
φXφ)Y ) + g(φX, Y )ξ − 2η(Y )φX + φC(φX,φY )

+ C(φX, Y ). (5.50)

Also, comparing the components of D ⊕ {ξ} , D⊥ , φD⊥ and ν , respectively, on both sides of (5.50), we
have (∇̃∗

Xφ)Y − φ((∇̃∗
φXφ)Y ) = g(φX, Y )ξ − 2η(Y )φX , C(X,φY ) − C(φX, Y ) = φph(X,Y ), C(X,Y ) =

−C(φX,φY ) and ph(X,φY ) = φqh(X,Y ), which completes the proof. 2

Following the nature of ambient manifolds, that is, if M is a quasi-K -cosymplectic manifold, for any X ∈
Γ(D ⊕ {ξ}),

C(X,φX) =
1

2
φp{h(X,X) + h(φX,φX)}, (5.51)

and if M is a quasi-Kenmotsu manifold, for any X ∈ Γ(D ⊕ {ξ}),

C(X,φX) =
1

2
φph(X,X). (5.52)

Lemma 5.12 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a quasi-K -cosymplectic

manifold M onto an almost contact metric manifold M ′ . Then, C(ξ, ξ) = 0 , h(ξ, ξ) = 0 , and C(X, ξ) =

φph(φX, ξ) , ∀X ∈ Γ(D ⊕ {ξ}) .
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Proof Putting Y = ξ in the relation (iv) of Theorem 5.11 and using the fact that φξ = 0, we get

ph(φX, ξ) = −φC(X, ξ). Applying φ to this equation and using (2.3), we have, for any X ∈ Γ(D ⊕ {ξ}),
φph(φX, ξ) = −φ2C(X, ξ) = C(X, ξ) − η(C(X, ξ))ξ = C(X, ξ), since η(C(X, ξ)) = 0 because of the fact that

C is vertical and ξ is a basic vector, and this proves the last relation. The first 2 relations are obvious. 2

Theorem 5.13 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a manifold M onto an

almost contact metric manifold M ′ . Then:

(1) If M is quasi-K -cosymplectic, then M ′ is also a quasi-K -cosymplectic manifold.

(2) If M is quasi-Kenmotsu, then M is D⊕{ξ}-totally geodesic and M ′ is also a quasi-Kenmotsu manifold.

Proof (1) Using (i) of Theorem 5.11, we have, for any X , Y ∈ Γ(D ⊕ {ξ}),

(∇̃∗
Xφ)Y + (∇̃∗

φXφ)φY = η(Y )∇̃∗
φXξ.

Applying π∗ to the above equation and using Lemma 5.10, equation (5.27), we derive

π∗((∇̃∗
Xφ)Y ) + π∗((∇̃∗

φXφ)φY ) = π∗(η(Y )∇̃∗
φXξ).

That is,

(∇∗
X∗

φ′)Y∗ + (∇∗
φ′X∗

φ′)φ′Y∗ = η′(Y∗)∇∗
φ′X∗

ξ′,

which proves that M ′ is a quasi-K -cosymplectic manifold. (2) From (5.45), we have ph(X,Y ) = 0 and

qh(X,Y ) = 0, and, therefore, h(X,Y ) = 0, ∀X , Y ∈ Γ(D ⊕ {ξ}). This proves that M is D ⊕ {ξ} -totally
geodesic. The last assertion follows from (5.42), mimicking the techniques used in (1). 2

By Proposition 3.4, we deduce the following results.

Theorem 5.14 Let π : M −→ M ′ be a submersion of type II of contact CR -submanifold of a quasi-K -

cosymplectic (or quasi-Kenmotsu) manifold M onto an almost contact metric manifold M ′ with dimD⊥ = 2k .

Then, the base space M ′ is a quasi-Kähler manifold.

It is known that by a result of Chen [6] that the antiinvariant distribution D⊥ of a CR -submanifold of a Kähler

manifold is always integrable. This is still true for a CR -submanifold of a locally conformal Kähler manifold

[12]. Now, we have:

Theorem 5.15 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a quasi-K -cosymplectic

(or quasi-Kenmotsu) manifold M onto an almost contact metric manifold M ′ . If the horizontal distribution

D ⊕ {ξ} is integrable and the vertical distribution D⊥ is parallel, then M is CR -product.

Proof Since the horizontal distribution D ⊕ {ξ} is integrable, then, for any X , Y ∈ Γ(D ⊕ {ξ}), we have

[X,Y ] ∈ Γ(D ⊕ {ξ}). Therefore, v[X,Y ] = 0. Now, using the equation (5.29), we have C(X,Y ) = 0, ∀X ,

Y ∈ Γ(D ⊕ {ξ}). Putting the value of C(X,Y ) in (5.28), we have ∇XY = ∇̃∗
XY ∈ Γ(D ⊕ {ξ}), which shows

that D ⊕ {ξ} is parallel since the horizontal distribution D ⊕ {ξ} and vertical distribution D⊥ are both par-

allel. Thus, using de Rham’s theorem, it follows that M is the product M1 ×M2 , where M1 is the invariant

submanifold of M and M2 is the totally real submanifold of M . Hence, M is a CR -product. 2
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6. Curvature properties

Next, we discuss the holomorphic sectional curvature of quasi-K -cosymplectic, quasi-Kenmotsu manifold M

and M ′ , respectively.

Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a manifold M .

For any manifold M and putting Y = φX , Z = φY , W = Y in the Gauss equation,

R(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y, Z))

+ g(h(X,Z), h(Y,W )), (6.1)

to obtain the following equation, for any X , Y ∈ Γ(D ⊕ {ξ}),

R(X,φX,φY, Y ) = R(X,φX,φY, Y )− g(h(X,Y ), h(φX,φY ))

+ g(h(X,φY ), h(φX, Y )). (6.2)

Substituting h = ph+ qh , in the above equation and using (5.30), we derive

R(X,φX,φY, Y ) = R(X,φX,φY, Y )− g(h(X,Y ), h(φX,φY ))

+ g(h(X,φY ), h(φX, Y ))

= R∗(X∗, φ
′X∗, φ

′Y∗, Y∗)− g(C(X,Y ), C(φX,φY ))

+ g(C(X,φY ), C(φX, Y )) + 2g(C(X,φX), C(φY, Y ))

− g(ph(X,Y ), ph(φX,φY ))− g(qh(X,Y ), qh(φX,φY ))

+ g(ph(X,φY ), ph(φX, Y )) + g(qh(X,φY ), qh(φX, Y )). (6.3)

Suppose that the distribution D ⊕ {ξ} is integrable. Then, we have

C(X,Y ) =
1

2
v[X,Y ] = 0, (6.4)

for any X , Y ∈ Γ(D ⊕ {ξ}). Thus, from the definition of C , we have ∇XY = ∇̃∗
XY ∈ Γ(D ⊕ {ξ}), i.e.

D ⊕ {ξ} is parallel. By relation (5.22) and since φX = FX , h(φX, ξ) = 0, which implies that h(X, ξ) = 0,

since h(ξ, ξ) = 0. Taking Y = φY in (5.22), one obtains

h(φX,φY ) = −h(X,Y ), ∀X, Y ∈ Γ(D ⊕ {ξ}). (6.5)

Using this, the relation (6.3) becomes, for any X , Y ∈ Γ(D ⊕ {ξ}),

R(X,φX,φY, Y ) = R∗(X∗, φ
′X∗, φ

′Y∗, Y∗)− g(ph(X,Y ), ph(φX,φY ))

− g(qh(X,Y ), qh(φX,φY )) + g(ph(X,φY ), ph(φX, Y ))

+ g(qh(X,φY ), qh(φX, Y ))

= R∗(X∗, φ
′X∗, φ

′Y∗, Y∗) + ||ph(X,Y )||2 + ||qh(X,Y )||2

+ ||ph(X,φY )||2 + ||qh(X,φY )||2. (6.6)
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It is easy to check that, for any X , Y ∈ Γ(D⊕{ξ}), ||h(X,Y )||2 = ||ph(X,Y )||2 + ||qh(X,Y )||2. Therefore, we
have,

R(X,φX,φY, Y ) = R∗(X∗, φ
′X∗, φ

′Y∗, Y∗) + ||h(X,Y )||2

+ ||h(X,φY )||2, (6.7)

which implies that

H(X) = H ′(X∗) + ||h(X,X)||2 + ||h(X,φX)||2, (6.8)

where H(X) = R(X,φX,φX,X) and H ′(X∗) = R∗(X∗, φ
′X∗, φ

′X∗, X∗) are the holomorphic sectional curva-

tures of M and M ′ , respectively.

Theorem 6.1 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a quasi-K -cosymplectic

manifold M onto an almost contact metric manifold M ′ with integrable D ⊕ {ξ} . Then, the holomorphic

sectional curvatures H and H∗ of M and M ′ , respectively, satisfy

H(X) ≥ H ′(X∗), ∀X ∈ Γ(D ⊕ {ξ}), ||X|| = 1, π∗X = X∗, (6.9)

and the equality holds if and only if M is D ⊕ {ξ}-totally geodesic.

Proof The first assertion holds from (6.8). The equality holds if and only if h(X,X) = 0 and h(X,φX) = 0,

for any X ∈ Γ(D ⊕ {ξ}), ||X|| = 1. From h(X,X) = 0, X ∈ Γ(D ⊕ {ξ}), ||X|| = 1, and linearity of h it

follows immediately that h(X,Y ) = 0, for any X , Y ∈ Γ(D ⊕ {ξ}), and proves that M is D ⊕ {ξ} -totally
geodesic. 2

This result is similar to the one found in [11] for CR -submanifolds of a quasi-Kähler manifold onto an almost

Hermitian manifold.

When the ambient manifold M is quasi-Kenmotsu, then, using (5.44), (6.3), (5.52), and (2) in Theorem

5.13, the curvature tensors R and R∗ are related as

R(X,φX,φY, Y ) = R∗(X∗, φ
′X∗, φ

′Y∗, Y∗)− g(C(X,Y ), C(φX,φY ))

+ g(C(X,φY ), C(φX, Y )) + 2g(C(X,φX), C(φY, Y ))

= R∗(X∗, φ
′X∗, φ

′Y∗, Y∗) + ||C(X,Y )||2 + ||C(X,φY )||2

+ 2g(C(X,φX), C(φY, Y ))

= R∗(X∗, φ
′X∗, φ

′Y∗, Y∗) + ||C(X,Y )||2 + ||C(X,φY )||2, (6.10)

for any X , Y ∈ Γ(D ⊕ {ξ}), since C(X,φX) = 1
2φph(X,X) = 0. The relation (6.10) reduces to

H(X) = H ′(X∗) + ||C(X,X)||2 + ||C(X,φX)||2. (6.11)

Theorem 6.2 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a quasi-Kenmotsu manifold

M onto an almost contact metric manifold M ′ . Then, the holomorphic sectional curvatures H and H∗ of M

and M ′ , respectively, satisfy

H(X) ≥ H ′(X∗), ∀X ∈ Γ(D ⊕ {ξ}), ||X|| = 1, π∗X = X∗, (6.12)

and the equality holds if and only if the distribution D ⊕ {ξ} is integrable.
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Proof The inequality follows the relation (6.11). If H(X) = H ′(X∗) if and only the skew-symmetric tensor

C vanishes, the distribution D ⊕ {ξ} is parallel and this completes the proof. 2

Also, we have:

Theorem 6.3 Let π : M −→ M ′ be a submersion of a contact CR -submanifold of a quasi-Kenmotsu manifold

M onto an almost contact metric manifold M ′ such that the holomorphic sectional curvatures H and H∗ of

M and M ′ , respectively, coincide on D ⊕ {ξ} . Then, M is locally a product M∗ × C , where M∗ is a totally

geodesic leaf of D ⊕ {ξ} and C is a curve tangent to the distribution D⊥ .

Proof By Theorem 6.2, we have that the distribution D ⊕ {ξ} is integrable. We deduce that D ⊕ {ξ}
determines a foliation and if M∗ is a leaf of D ⊕ {ξ} , it is totally geodesic. By Theorem 5.8, the distribution

D⊥ is integrable, and then it defines a foliation. So with TM = D ⊕D⊥ ⊕ {ξ} , we complete the proof. 2
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