http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $454-461$
(c) TÜBİTAK
doi:10.3906/mat-1207-8

On Biharmonic Legendre curves in \mathcal{S}-space forms

Cihan ÖZGÜR*, Şaban GÜVENÇ
Department of Mathematics, Balıkesir University, Çağış, Balıkesir, Turkey

Received: 06.07.2012 • Accepted: 28.11.2012 • Published Online: 14.03.2014 • Printed: 11.04.2014

Abstract

We study biharmonic Legendre curves in \mathcal{S} - space forms. We find curvature characterizations of these special curves in 4 cases.

Key words: \mathcal{S}-space form, Legendre curve, biharmonic curve, Frenet curve

1. Introduction

Let (M, g) and (N, h) be 2 Riemannian manifolds and $f:(M, g) \rightarrow(N, h)$ a smooth map. The energy functional of f is defined by

$$
E(f)=\frac{1}{2} \int_{M}|d f|^{2} v_{g}
$$

If f is a critical point of the energy functional $E(f)$, then it is called harmonic [10]. f is called a biharmonic map if it is a critical point of the bienergy functional

$$
E_{2}(f)=\frac{1}{2} \int_{M}|\tau(f)|^{2} v_{g}
$$

where $\tau(f)$ is the first tension field of f, which is defined by $\tau(f)=$ trace $\nabla d f$. The Euler-Lagrange equation of bienergy functional $E_{2}(f)$ gives the biharmonic map equation [16]

$$
\tau_{2}(f)=-J^{f}(\tau(f))=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f, \tau(f)) d f=0
$$

where J^{f} is the Jacobi operator of f. It is trivial that any harmonic map is biharmonic. If the map is a nonharmonic biharmonic map, then we call it proper biharmonic. Biharmonic submanifolds have been studied by many geometers. For example, see [2], [3], [7], [8], [11], [12], [13], [14], [15], [18], [20], [21], [22], and the references therein. In a different setting, in [9], Chen defined a biharmonic submanifold $M \subset \mathbb{E}^{n}$ of the Euclidean space as its mean curvature vector field H satisfies $\Delta H=0$, where Δ is the Laplacian.

In [12] and [14], Fetcu and Oniciuc studied biharmonic Legendre curves in Sasakian space forms. As a generalization of their studies, in the present paper, we study biharmonic Legendre curves in \mathcal{S}-space forms. We obtain curvature characterizations of these kinds of curves.

The paper is organized as follows: In Section 2, we give a brief introduction about \mathcal{S}-space forms. In Section 3, we give the main results of the study.

[^0]
2. \mathcal{S}-space forms and their submanifolds

Let (M, g) be a $(2 m+s)$-dimensional framed metric manifold [24] with a framed metric structure $\left(f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, that is, f is a $(1,1)$ tensor field defining an f-structure of rank $2 m ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms; and g is a Riemannian metric on M such that for all $X, Y \in T M$ and $\alpha, \beta \in\{1, \ldots, s\}$,

$$
\begin{gather*}
f^{2}=-I+\sum_{\alpha=1}^{s} \eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha}, \quad f\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ f=0 \tag{2.1}\\
g(f X, f Y)=g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y) \tag{2.2}\\
d \eta^{\alpha}(X, Y)=g(X, f Y)=-d \eta^{\alpha}(Y, X), \quad \eta^{\alpha}(X)=g(X, \xi) \tag{2.3}
\end{gather*}
$$

$\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called a framed f-manifold [19] or almost r-contact metric manifold [23]. If the Nijenhuis tensor of f equals $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, then $\left(f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called \mathcal{S}-structure [4].

If $s=1$, a framed metric structure is an almost contact metric structure and an \mathcal{S}-structure is a Sasakian structure. If a framed metric structure on M is an \mathcal{S}-structure, then the following equations hold [4]:

$$
\begin{gather*}
\left(\nabla_{X} f\right) Y=\sum_{\alpha=1}^{s}\left\{g(f X, f Y) \xi_{\alpha}-\eta^{\alpha}(Y) f^{2} X\right\} \tag{2.4}\\
\nabla \xi_{\alpha}=-f, \alpha \in\{1, \ldots, s\} \tag{2.5}
\end{gather*}
$$

In the case of Sasakian structure $(s=1)$, (2.5) can be calculated using (2.4).
A plane section in $T_{p} M$ is an f-section if there exists a vector $X \in T_{p} M$ orthogonal to ξ_{1}, \ldots, ξ_{s} such that $\{X, f X\}$ span the section. The sectional curvature of an f-section is called an f-sectional curvature. In an \mathcal{S}-manifold of constant f-sectional curvature, the curvature tensor R of M is of the form

$$
\begin{align*}
& R(X, Y) Z=\sum_{\alpha, \beta}\left\{\eta^{\alpha}(X) \eta^{\beta}(Z) f^{2} Y-\eta^{\alpha}(Y) \eta^{\beta}(Z) f^{2} X\right. \\
&\left.-g(f X, f Z) \eta^{\alpha}(Y) \xi_{\beta}+g(f Y, f Z) \eta^{\alpha}(X) \xi_{\beta}\right\} \tag{2.6}\\
&+\frac{c+3 s}{4}\left\{-g(f Y, f Z) f^{2} X+g(f X, f Z) f^{2} Y\right\} \\
& \frac{c-s}{4}\{g(X, f Z) f Y-g(Y, f Z) f X+2 g(X, f Y) f Z\}
\end{align*}
$$

for all $X, Y, Z \in T M[6]$. An \mathcal{S}-manifold of constant f-sectional curvature c is called an \mathcal{S}-space form, which is denoted by $M(c)$. When $s=1$, an \mathcal{S}-space form becomes a Sasakian space form [5].

A submanifold of an \mathcal{S}-manifold is called an integral submanifold if $\eta^{\alpha}(X)=0, \alpha=1, \ldots, s$, for every tangent vector X [17]. We call a 1-dimensional integral submanifold of an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ a Legendre curve of M. In other words, a curve $\gamma: I \rightarrow M=\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called a Legendre curve if $\eta^{\alpha}(T)=0$, for every $\alpha=1, \ldots s$, where T is the tangent vector field of γ.

3. Biharmonic Legendre curves in \mathcal{S}-space forms

Let $\gamma: I \rightarrow M$ be a curve parametrized by arc length in an n-dimensional Riemannian manifold (M, g). If there exists orthonormal vector fields $E_{1}, E_{2}, \ldots, E_{r}$ along γ such that

$$
\begin{align*}
E_{1}= & \gamma^{\prime}=T \\
\nabla_{T} E_{1}= & \kappa_{1} E_{2} \\
\nabla_{T} E_{2}= & -\kappa_{1} E_{1}+\kappa_{2} E_{3} \tag{3.7}\\
& \cdots \\
\nabla_{T} E_{r}= & -\kappa_{r-1} E_{r-1},
\end{align*}
$$

then γ is called a Frenet curve of osculating order r, where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions on I and $1 \leq r \leq n$.

A Frenet curve of osculating order 1 is a geodesic; a Frenet curve of osculating order 2 is called a circle if κ_{1} is a nonzero positive constant; a Frenet curve of osculating order $r \geq 3$ is called a helix of order r if $\kappa_{1}, \ldots, \kappa_{r-1}$ are nonzero positive constants; a helix of order 3 is shortly called a helix.

Now let $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form and $\gamma: I \rightarrow M$ a Legendre Frenet curve of osculating order r. Differentiating

$$
\begin{equation*}
\eta^{\alpha}(T)=0 \tag{3.8}
\end{equation*}
$$

and using (3.7), we find

$$
\begin{equation*}
\eta^{\alpha}\left(E_{2}\right)=0, \alpha \in\{1, \ldots, s\} \tag{3.9}
\end{equation*}
$$

By the use of (2.1), (2.2), (2.3), (2.6), (3.7), and (3.9), it can be seen that

$$
\begin{gathered}
\nabla_{T} \nabla_{T} T=-\kappa_{1}^{2} E_{1}+\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}, \\
\nabla_{T} \nabla_{T} \nabla_{T} T=-3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) E_{2} \\
\\
+\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
R\left(T, \nabla_{T} T\right) T=-\kappa_{1} \frac{(c+3 s)}{4} E_{2}-3 \kappa_{1} \frac{(c-s)}{4} g\left(f T, E_{2}\right) f T .
\end{gathered}
$$

Thus, we have

$$
\begin{align*}
\tau_{2}(\gamma)= & \nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T \\
= & -3 \kappa_{1} \kappa_{1}^{\prime} E_{1} \\
& +\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}+\kappa_{1} \frac{(c+3 s)}{4}\right) E_{2} \tag{3.10}\\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& +3 \kappa_{1} \frac{(c-s)}{4} g\left(f T, E_{2}\right) f T
\end{align*}
$$

Let $k=\min \{r, 4\}$. From (3.10), the curve γ is proper biharmonic if and only if $\kappa_{1}>0$ and
(1) $c=s$ or $f T \perp E_{2}$ or $f T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) $g\left(\tau(\gamma), E_{i}\right)=0$, for any $i=\overline{1, k}$.

We can therefore state the following theorem:

Theorem 3.1 Let γ be a Legendre Frenet curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, and $k=\min \{r, 4\}$. Then γ is proper biharmonic if and only if
(1) $c=s$ or $f T \perp E_{2}$ or $f T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) the first k of the following equations are satisfied (replacing $\kappa_{k}=0$) :

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{4}\left[g\left(f T, E_{2}\right)\right]^{2} \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{3}\right)=0 \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} g\left(f T, E_{2}\right) g\left(f T, E_{4}\right)=0
\end{gathered}
$$

Now we give the interpretations of Theorem 3.1.
Case I. $c=s$.
In this case γ is proper biharmonic if and only if

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=s \\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gathered}
$$

Theorem 3.2 Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, $c=s$, and $(2 m+s)>3$. Then γ is proper biharmonic if and only if either γ is a circle with $\kappa_{1}=\sqrt{s}$ or a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=s$.

Remark 3.1 If $2 m+s=3$, then $m=s=1$. So M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see [1]), we can write $\kappa_{1}>0$ and $\kappa_{2}=1$, which contradicts $\kappa_{1}^{2}+\kappa_{2}^{2}=s=1$. Hence, γ cannot be proper biharmonic.

Case II. $c \neq s, f T \perp E_{2}$.
In this case, $g\left(f T, E_{2}\right)=0$. From Theorem 3.1, we obtain

$$
\begin{gather*}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4} \tag{3.11}\\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

First, we give the following proposition:
Proposition 3.1 Let γ be a Legendre Frenet curve of osculating order 3 in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, and $f T \perp E_{2}$. Then $\left\{T=E_{1}, E_{2}, E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent at any point of γ. Therefore, $m \geq 3$.
Proof Since γ is a Frenet curve of osculating order 3, we can write

$$
\begin{align*}
E_{1} & =\gamma^{\prime}=T \\
\nabla_{T} E_{1} & =\kappa_{1} E_{2} \\
\nabla_{T} E_{2} & =-\kappa_{1} E_{1}+\kappa_{2} E_{3} \tag{3.12}\\
\nabla_{T} E_{3} & =-\kappa_{2} E_{2}
\end{align*}
$$

The system

$$
S_{1}=\left\{T=E_{1}, E_{2}, E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}
$$

has only nonzero vectors. Using (2.1), (2.2), (2.3), and (2.4), we find

$$
\begin{equation*}
\nabla_{T} f T=\sum_{\alpha=1}^{s} \xi_{\alpha}+\kappa_{1} f E_{2} \tag{3.13}
\end{equation*}
$$

So by the use of (3.8), (3.9), (3.12), and (3.13), we have

$$
\begin{array}{ll}
T & \perp \quad E_{2}, T \perp E_{3}, T \perp E_{4}, T \perp f T \\
T & \perp \\
\nabla_{T} f T, T \perp \xi_{\alpha} \text { for all } \alpha \in\{1, \ldots, s\}
\end{array}
$$

Hence, S_{1} is linearly independent if and only if $S_{2}=\left\{E_{2}, E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent. From the assumption we have $E_{2} \perp f T$. From (3.9), $E_{2} \perp \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$. Using (2.3), (3.12), and (3.13), we have $E_{2} \perp E_{3}$ and $E_{2} \perp \nabla_{T} f T$. So S_{2} is linearly independent if and only if $S_{3}=\left\{E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent. Differentiating $g\left(f T, E_{2}\right)=0$ and using (3.12) and (3.13), we find $g\left(f T, E_{3}\right)=0$. Hence, $f T \perp E_{3}$. Using (2.1) and (2.3), we find $g\left(f T, \xi_{\alpha}\right)=0$, that is, $f T \perp \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$. Using (2.2) and (3.13), we obtain $g\left(f T, \nabla_{T} f T\right)=0$. So S_{3} is linearly independent if and only if $S_{4}=\left\{E_{3}, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent. Differentiating $\eta^{\alpha}\left(E_{2}\right)=0$, we have $\eta^{\alpha}\left(E_{3}\right)=0, \alpha \in\{1, \ldots, s\}$. Thus $E_{3} \perp \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$. If we differentiate $g\left(f T, E_{3}\right)=0$, we get $g\left(\nabla_{T} f T, E_{3}\right)=0$, that is, $E_{3} \perp \nabla_{T} f T$. So S_{4} is linearly independent if and only if $S_{5}=\left\{\nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent. Since $\kappa_{1} \neq 0$ and $f E_{2} \perp \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, equation (3.13) gives us $\nabla_{T} f T \notin \operatorname{span}\left\{\xi_{1}, \ldots, \xi_{s}\right\}$. So S_{5} is linearly independent.

Since $\left\{T=E_{1}, E_{2}, E_{3}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent, $\operatorname{dim} M=2 m+s \geq s+5$. Hence, $m \geq 3$.

Now we can state the following Theorem:

Theorem 3.3 Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, $c \neq s$, and $f T \perp E_{2}$. Then γ is proper biharmonic if and only if either
(1) $m \geq 2$ and γ is a circle with $\kappa_{1}=\frac{1}{2} \sqrt{c+3 s}$, where $c>-3 s$ and $\left\{T=E_{1}, E_{2}, f T, \nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent; or
(2) $m \geq 3$ and γ is a helix with $\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}$, where $c>-3 s$ and $\left\{T=E_{1}, E_{2}, E_{3}, f T\right.$, $\left.\nabla_{T} f T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent.

If $c \leq-3 s$, then γ is biharmonic if and only if it is a geodesic.
Case III. $c \neq s, f T \| E_{2}$.
In this case, $f T= \pm E_{2}, g\left(f T, E_{2}\right)= \pm 1, g\left(f T, E_{3}\right)=g\left(\pm E_{2}, E_{3}\right)=0$, and $g\left(f T, E_{4}\right)=g\left(\pm E_{2}, E_{4}\right)=0$. From Theorem 3.1, γ is biharmonic if and only if

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=c \\
\kappa_{2}=\text { constant } \\
\kappa_{2} \kappa_{3}=0
\end{gathered}
$$

We can assume that $f T=E_{2}$. From equation (2.1), we get

$$
\begin{equation*}
f E_{2}=f^{2} T=-T+\sum_{\alpha=1}^{s} \eta^{\alpha}(T) \xi_{\alpha}=-T \tag{3.14}
\end{equation*}
$$

From (3.13) and (3.14), we find

$$
\begin{equation*}
\nabla_{T} f T=\sum_{\alpha=1}^{s} \xi_{\alpha}-\kappa_{1} T \tag{3.15}
\end{equation*}
$$

Using (3.7) and (3.15), we can write

$$
\kappa_{2} E_{3}=\sum_{\alpha=1}^{s} \xi_{\alpha}
$$

which gives us

$$
\begin{aligned}
\kappa_{2} & =\left\|\sum_{\alpha=1}^{s} \xi_{\alpha}\right\|=\sqrt{s} \\
E_{3} & =\frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha} \\
\eta^{\alpha}\left(E_{3}\right) & =\frac{1}{\sqrt{s}}, \alpha \in\{1, \ldots, s\} .
\end{aligned}
$$

Thus by the use of Theorem 3.1, we have the following Theorem:

Theorem 3.4 Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$, $c \neq s$, and $f T \| E_{2}$. Then

$$
\left\{T, f T, \frac{1}{\sqrt{s}} \sum_{\alpha=1}^{s} \xi_{\alpha}\right\}
$$

is the Frenet frame field of γ and γ is proper biharmonic if and only if it is a helix with $\kappa_{1}=\sqrt{c-s}$ and $\kappa_{2}=\sqrt{s}$, where $c>s$. If $c \leq s$, then γ is biharmonic if and only if it is a geodesic.

Case IV. $c \neq s$ and $g\left(f T, E_{2}\right)$ is not constant 0,1 , or -1 .
Now, let $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form, $\alpha \in\{1, \ldots, s\}$, and $\gamma: I \rightarrow M$ a Legendre curve of osculating order r, where $4 \leq r \leq 2 m+s$ and $m \geq 2$. If γ is biharmonic, then $f T \in \operatorname{span}\left\{E_{2}, E_{3}, E_{4}\right\}$. Let $\theta(t)$ denote the angle function between $f T$ and E_{2}, that is, $g\left(f T, E_{2}\right)=\cos \theta(t)$. Differentiating $g\left(f T, E_{2}\right)$ along γ and using (2.1), (2.3), (3.7), and (3.13), we find

$$
\begin{align*}
-\theta^{\prime}(t) \sin \theta(t) & =\nabla_{T} g\left(f T, E_{2}\right)=g\left(\nabla_{T} f T, E_{2}\right)+g\left(f T, \nabla_{T} E_{2}\right) \\
& =g\left(\sum_{\alpha=1}^{s} \xi_{\alpha}+\kappa_{1} f E_{2}, E_{2}\right)+g\left(f T,-\kappa_{1} T+\kappa_{2} E_{3}\right) \tag{3.16}\\
& =\kappa_{2} g\left(f T, E_{3}\right)
\end{align*}
$$

If we write $f T=g\left(f T, E_{2}\right) E_{2}+g\left(f T, E_{3}\right) E_{3}+g\left(f T, E_{4}\right) E_{4}$, Theorem 3.1 gives us

$$
\begin{gathered}
\kappa_{1}=\text { constant }>0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{4} \cos ^{2} \theta \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} \cos \theta g\left(f T, E_{3}\right)=0 \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} \cos \theta g\left(f T, E_{4}\right)=0
\end{gathered}
$$

If we multiply the third equation of the above system with $2 \kappa_{2}$, using (3.16), we obtain

$$
2 \kappa_{2} \kappa_{2}^{\prime}+\frac{3(c-s)}{4}\left(-2 \theta^{\prime} \cos \theta \sin \theta\right)=0
$$

which is equivalent to

$$
\begin{equation*}
\kappa_{2}^{2}=-\frac{3(c-s)}{4} \cos ^{2} \theta+\omega_{0} \tag{3.17}
\end{equation*}
$$

where ω_{0} is a constant. If we write (3.17) in the second equation, we have

$$
\kappa_{1}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{2} \cos ^{2} \theta+\omega_{0}
$$

Thus, θ is a constant. From (3.16) and (3.17), we find $g\left(f T, E_{3}\right)=0$ and $\kappa_{2}=$ constant >0. Since $\|f T\|=1$ and $f T=\cos \theta E_{2}+g\left(f T, E_{4}\right) E_{4}$, we get $g\left(f T, E_{4}\right)=\sin \theta$. From the assumption $g\left(f T, E_{2}\right)$ is not constant 0,1 , or -1 , it is clear that $\theta \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$. Now we can state the following Theorem:

Theorem 3.5 Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, f, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, where $r \geq 4, m \geq 2, c \neq s, g\left(f T, E_{2}\right)$ is not constant 0,1 , or -1 . Then γ is proper biharmonic if and only if

$$
\begin{aligned}
\kappa_{i} & =\text { constant }>0, i \in\{1,2,3\} \\
\kappa_{1}^{2}+\kappa_{2}^{2} & =\frac{1}{4}\left[c+3 s+3(c-s) \cos ^{2} \theta\right] \\
\kappa_{2} \kappa_{3} & =\frac{3(s-c) \sin 2 \theta}{8}
\end{aligned}
$$

where $c>-3 s, f T=\cos \theta E_{2}+\sin \theta E_{4}, \theta \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$ is a constant such that $c+3 s+3(c-s) \cos ^{2} \theta>0$, and $3(s-c) \sin 2 \theta>0$. If $c \leq-3 s$, then γ is biharmonic if and only if it is a geodesic.

Acknowledgments

The authors are thankful to the referee for his/her valuable comments towards the improvement of the paper.

References

[1] Baikoussis, C., Blair, D.E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata 49, 135-142 (1994).
[2] Balmus, A. Montaldo, S., Oniciuc, C.: Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168, 201-220 (2008).

ÖZGÜR and GÜVENÇ/Turk J Math

[3] Balmuş, A. Montaldo, S., Oniciuc, C.: Biharmonic hypersurfaces in 4-dimensional space forms. Math. Nachr. 283, 1696-1705 (2010).
[4] Blair, D.E.: Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$. J. Differential Geometry 4, 155-167 (1970).
[5] Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. (Boston. Birkhauser 2002).
[6] Cabrerizo, J.L., Fernandez, L.M., Fernandez, M.: The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62, 373-383 (1993).
[7] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of S^{3}. Internat. J. Math. 12, 867-876 (2001).
[8] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130, 109-123 (2002).
[9] Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
[10] Eells, J. Jr, Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
[11] Fetcu, D.: Biharmonic curves in the generalized Heisenberg group. Beitrage zur Algebra und Geometrie 46, 513-521 (2005).
[12] Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45, 393-404 (2008).
[13] Fetcu, D., Oniciuc, C.: Biharmonic hypersurfaces in Sasakian space forms. Differential Geom. Appl. 27, 713-722 (2009).
[14] Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240, 85-107 (2009).
[15] Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb{C P}^{n}$. Math. Z. 266, 505-531 (2010).
[16] Jiang, G.Y.: 2-Harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7, 389-402 (1986).
[17] Kim, J.S., Dwivedi, M.K., Tripathi, M.M.: Ricci curvature of integral submanifolds of an \mathcal{S}-space form. Bull. Korean Math. Soc. 44 , 395-406 (2007).
[18] Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47, 1-22 (2006).
[19] Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
[20] Ou, Y.L.: p-Harmonic morphisms, biharmonic morphisms,and nonharmonic biharmonic maps. J. Geom. Phys. 56, 358-374 (2006).
[21] Ou, Y.L.: Biharmonic hypersurfaces in Riemannian manifolds. Pacific J. Math. 248, 217-232 (2010)
[22] Ou, Y.L.: Some constructions of biharmonic maps and Chen's conjecture on biharmonic hypersurfaces. J. Geom. Phys. 62, 751-762 (2012).
[23] Vanzura, J.: Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa. 26, 97-115 (1972).
[24] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. (Singapore. World Scientific Publishing Co. 1984).

[^0]: *Correspondence: cozgur@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: 53C25, 53C40, 53A04.

