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Abstract: In this paper, we show that Kähler (para-Kähler) manifolds admit a Norden–Hessian metric h = ∇2f if the

function f is holomorphic (para-holomorphic), and we further consider the existence condition of para-Kähler structures

for Norden–Hessian metrics.
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1. Introduction

The Hessian Riemannian structures are intensively studied by famous scientists in the world. Hessian Rieman-

nian structures, as well as being connected with important pure mathematical fields such as affine differential

geometry, homogeneous spaces, and others, find applications in economic theory, in system modeling, and in sta-

tistical theory. Recent surveys on Hessian metrics were published by Duistermaat [3] and Shima and Yagi [16].

Shima and Yagi studied the geometry of the Euclidean space Rn endowed with Hessian metrics hij =
∂2f

∂xi∂xj ,

where f : Rn → R is a C∞ -class function. In [18], Udrişte and Bercu used pseudo-Riemannian Hessian met-

rics. Given an n -dimensional pseudo-Riemannian manifold (Mn, g) and a smooth function f : Mn → R whose

Hessian with respect to g is nondegenerate and with constant signature, they introduced on Mn the associ-

ated pseudo-Riemannian Hessian metric h = ∇2f and studied the properties of the new pseudo-Riemannian

manifold (Mn, h) in terms of local calculus, where ∇ is the Levi-Civita connection of g (see also [1]).

Almost Norden and almost para-Norden structures are among the most important geometrical structures

that can be considered on a manifold. Let M2n be a 2n-dimensional differentiable manifold endowed with

an almost (para-)complex structure φ and a pseudo-Riemannian metric g of signature (n, n) such that

g(φX, Y ) = g(X,φY ) for arbitrary vector fields X and Y on M2n . Then the metric g is called a Norden metric.

Norden metrics are referred to as anti-Hermitian metrics or B -metrics. They find widespread application in

mathematics as well as in theoretical physics.

The purpose of the present paper is to investigate Norden metrics of Hessian type h = ∇2f . All manifolds,

tensor fields, and other geometric objects considered throughout this paper are assumed to be differentiable of

class C∞ (i.e. smooth). We denote by ℑp
q(M2n) the set of all tensor fields of type (p, q) on M2n .
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2. Preliminaries

2.1. Pseudo-Riemannian Hessian metrics

Let (M2n, g) be a Riemannian manifold with a metric tensor g . The gradient gradf of a function f ∈ ℑ0
0(M2n)

is the vector field metrically equivalent to the differential df ∈ ℑ0
1(M2n). In terms of a coordinate system,

gradf = (gij∂if)∂j .

Thus,

g(gradf,X) = gij(∂if)X
kgjk = Xf = (df)(X). (2.1)

The Hessian of a function f ∈ ℑ0
0(M2n) is its second covariant differential h = ∇(∇f) = ∇2f with respect to

the Levi-Civita connection of g , i.e. h ∈ ℑ0
2(M2n). Since ∇Y f = Y f = (df)(Y ),

h(Y,X) = (∇(∇f)) (Y,X) = (∇(df))(Y,X)

= X((df)(Y ))− (df)(∇XY ) = XY f − (∇XY ) f.

We easily see that h is a symmetric tensor field. Also, by virtue of (2.1), we have

g(∇X(gradf), Y ) = h(Y,X).

For the natural coordinates in Euclidean space, the components of h are just the second partials ∂2f
∂xi∂xj

(see [15, 16]).

Let us consider a differentiable function f : M2n → R such that its Hessian ∇2f is nondegenerate having

constant signature (see [1, 18]). Hence, h = ∇2f defines a new metric on M2n and is called a pseudo-Riemannian

Hessian metric.

2.2. Norden metrics

Let (M2n, φ) be an almost complex manifold with almost complex structure φ . Such a structure is said to

be integrable if the matrix φ = (φi
j) is reduced to the constant form in a certain holonomic natural frame in

a neighborhood Ux of every point x ∈ M2n . For an almost complex structure tensor φ to be integrable, it

is necessary and sufficient that it be possible to introduce a torsion-free affine connection ∇ with respect to

which the structure tensor φ is covariantly constant, i.e. ∇φ = 0. It is also known that the integrability of φ

is equivalent to the vanishing of the Nijenhuis tensor Nφ ∈ ℑ1
2(M2n). If φ is integrable, then φ is a complex

structure and, moreover, M2n is a C-holomorphic manifold Xn(C) whose transition functions are holomorphic

mappings.

A pseudo-Riemannian metric G of signature (n, n) on M2n is a Norden metric [9] if

G(φX,φY ) = −G(X,Y )

or equivalently

G(φX, Y ) = G(X,φY )

for any X, Y ∈ ℑ1
0(M2n). Metrics of this type have also been studied under the names of pure, anti-Hermitian,

and B -metrics (see [4, 7, 11, 17, 19, 21]). If (M2n, φ) is an almost complex manifold with Norden metric G ,

we say that (M2n, φ,G) is an almost Norden manifold. If φ is integrable, we say that (M2n, φ,G) is a Norden

manifold.
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2.3. Holomorphic (almost holomorphic) tensor fields

Let
∗
t be a complex tensor field on Xn(C). The real model of such a tensor field is a tensor field t on M2n of

the same order such that the action of the structure tensor φ on t does not depend on which vector or covector

argument of t that φ acts. Such tensor fields are said to be pure with respect to φ . They were studied by

many authors (see, e.g., [7, 12, 13, 17, 19, 20, 21]). In particular, being applied to a (0,q)-tensor field ω , the

purity means that for any X1, ..., Xq ∈ ℑ1
0(M2n), the following conditions should hold:

ω(φX1, X2, ..., Xq) = ω(X1, φX2, ..., Xq) = ... = ω(X1, X2, ..., φXq).

We consider the operator

Φφ : ℑ0
q(M2n) → ℑ0

q+1(M2n)

applied to a pure tensor field ω by (see [21])

(Φφω)(X,Y1, Y2, ..., Yq) = (φX)(ω(Y1, Y2, ..., Yq))−X(ω(φY1, Y2, ..., Yq)) (2.2)

+ω((LY1φ)X,Y2, ..., Yq) + ...+ ω(Y1, Y2, ..., (LYqφ)X),

where LY denotes the Lie differentiation with respect to Y .

When φ is a complex structure on M2n and the tensor field Φφω vanishes, the complex tensor field
∗
ω

on Xn(C) is said to be holomorphic (see [7, 17, 21]). Thus, a holomorphic tensor field
∗
ω on Xn(C) is realized

on M2n in the form of a pure tensor field ω , such that

(Φφω)(X,Y1, Y2, ..., Yq) = 0

for any X,Y1, ..., Yq ∈ ℑ1
0(M2n). Such a tensor field ω on M2n is also called a holomorphic tensor field. When

φ is an almost complex structure on M2n , a tensor field ω satisfying Φφω = 0 is said to be almost holomorphic.

2.4. Holomorphic Norden (Kähler-Norden) metrics

On a Norden manifold, a Norden metric G is called holomorphic if

(ΦφG)(X,Y, Z) = 0 (2.3)

for any X,Y, Z ∈ ℑ1
0(M2n).

By setting X = ∂k, Y = ∂i, Z = ∂j in equation (2.3), we see that the components (ΦφG)kij of ΦφG

with respect to a local coordinate system x1, ..., xn can be expressed as follows:

(ΦφG)kij = φm
k ∂mGij − φm

i ∂kGmj +Gmj(∂iφ
m
k − ∂kφ

m
i ) +Gim∂jφ

m
k .

If (M2n, φ,G) is a Norden manifold with a holomorphic Norden metric G , we say that (M2n, φ,G) is a

holomorphic Norden manifold.

In some aspects, holomorphic Norden manifolds are similar to Kähler manifolds. The following theorem

is analogous to the next known result: an almost Hermitian manifold is Kähler if and only if the almost complex

structure is parallel with respect to the Levi-Civita connection.
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Theorem 2.1 [5] For an almost complex manifold with Norden metric G , the condition ΦφG = 0 is equivalent

to ∇φ = 0 , where ∇ is the Levi–Civita connection of G .

A Kähler–Norden manifold can be defined as a triple (M2n, φ,G) that consists of a manifold M2n

endowed with an almost complex structure φ and a pseudo-Riemannian metric G such that ∇φ = 0, where

∇ is the Levi-Civita connection of G and the metric G is assumed to be a Norden one. Therefore, there

exist a one-to-one correspondence between Kähler–Norden manifolds and Norden manifolds with holomorphic

metrics. Recall that the Riemannian curvature tensor of such a manifold is pure and holomorphic, and the

scalar curvature is locally holomorphic function (see [5, 11]).

We know that the integrability of an almost complex structure φ is equivalent to the existence of a torsion-

free affine connection with respect to which the equation ∇φ = 0 holds. Since the Levi-Civita connection ∇
of G is a torsion-free affine connection, we have: if ΦφG = 0, then φ is integrable. Thus, almost Norden

manifolds with conditions ΦφG = 0 and Nφ ̸= 0, i.e. almost holomorphic Norden manifolds (analogues of the

almost Kähler manifolds with closed Kähler form), do not exist.

Remark 2.2 By similar devices, we can introduce para-Kähler–Norden (or para-holomorphic Norden) mani-

folds (see [14]).

3. Holomorphic (para-holomorphic) functions

Let (M2n, φ, g) be a Kähler (para-Kähler or para-Kähler–Norden) manifold.

Theorem 3.1 A necessary and sufficient condition for an exact 1-form df , f ∈ ℑ0
0(M2n) to be holomorphic

(para-holomorphic), i.e. Φφ(df) = 0 , is that an associated 1-form df ◦ φ be closed, i.e. d(df ◦ φ) = 0 .

Proof Using

(dω)(X,Y ) =
1

2
{X(ω(Y ))− Y (ω(X))− ω([X,Y ])} , X, Y ∈ ℑ1

0(M2n), ω ∈ ℑ0
1(M2n)

for (ω ◦ φ)(X) = ω(φ(X)), we have

(dω)(Y, φX) =
1

2
{Y (ω(φX))− (φX)(ω(Y ))− ω([Y, φX])}

=
1

2
{Y (ω(φX))− (φX)(ω(Y )) + ω([φX, Y ])} (3.4)

=
1

2
{Y (ω(φX))− (φX)(ω(Y )) + ω([φX, Y ]

−φ[X,Y ]) + ω(φ[X,Y ])} .

From (2.2), we have

(Φφω)(X,Y ) = (φX)(ω(Y ))−X(ω(φY )) + ω((LY φ)(X))

= (φX)(ω(Y ))−X(ω(φY ))− ω([φX, Y ]− φ[X,Y ]). (3.5)

Substituting (3.5) into (3.4), we obtain

(dω)(Y, φX) =
1

2
{−(Φφω)(X,Y ) + Y (ω(φX))−X(ω(φY )) + ω(φ[X,Y ])}
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= −1

2
{(Φφω)(X,Y ) + Y ((ω ◦ φ)(X))−X((ω ◦ φ)(Y ))− (ω ◦ φ)([Y,X])}

= −1

2
(Φφω)(X,Y ) + (d(ω ◦ φ))(Y,X).

From this we see that the equation Φφω = 0 is equivalent to

(d(ω ◦ φ))(Y,X) = (dω)(Y, φX). (3.6)

For ω = df , equation (3.6) turns into the following simple form:

(d(df ◦ φ))(Y,X) = (d2f)(Y, φX) = 0,

i.e.
d(df ◦ φ) = 0. (3.7)

Thus, Theorem 3.1 is proven. 2

If there exists a function
∗
f on a Kähler (para-Kähler or para-Kähler–Norden) manifold such that

df◦φ = d
∗
f for a function f , then we shall call f a holomorphic (para-holomorphic) function and

∗
f its associated

function. If such a function f is defined locally, then we call it a locally holomorphic (para-holomorphic)

function.

Remark 3.2 If (M2n, φ) is a complex (or para-complex) manifold, then in terms of real coordinates (xi, xī) ,

i = 1, ..., n ; ī = n+ 1, ..., 2n , the equation df ◦ φ = d
∗
f reduces to ∂īf = ∂i

∗
f (∂īf = ∂i

∗
f),

∂if = −∂ī
∗
f (∂if = ∂ī

∗
f),

which are the Cauchy–Riemann (or para-Cauchy–Riemann) equations for the complex (or para-complex) func-

tion F =
∗
f +if (see [6, p. 122], [2]).

Remark 3.3 We notice that equation (3.7) is equivalent to df ◦φ = d
∗
f only locally. Hence, the condition for

f to be locally holomorphic (para-holomorphic) also is given by

(Φφdf)ij = φm
i ∂m∂jf − ∂i(φ

m
j ∂mf) + (∂jφ

m
i )∂mf = 0.

4. Norden–Hessian metrics

If we assume that f is holomorphic (para-holomorphic), then, from (2.2), we have

(Φφ(df))(X,Y ) = (φX)((df)(Y ))−X((df)(φY )) + (df)((LY φ)(X))

= φ(X)((df)(Y ))−X((df)(φY )) + (df)([Y, φX]− φ([Y,X]))

= φ(X)((df)(Y ))−X((df)(φY ))
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+(df)(∇Y φX −∇φXY − φ(∇Y X −∇XY )−∇XφY +∇XφY )

= (∇φXdf)(Y )− (∇Xdf)(φY )− (df)(∇φ)(Y,X) + (df)(∇φ)(X,Y ) = 0. (4.8)

We now consider a holomorphic (para-holomorphic) function f on a Kähler (para-Kähler or para-Kähler–

Norden) manifold (M2n, φ, g). Let f be a smooth function such that the Hessian ∇2f is nondegenerate [18].

On a Kähler (para-Kähler or para-Kähler–Norden) manifold (M2n, φ, g), (∇φ = 0), equation (4.8) is equivalent

to the following equation:

(∇2f)(Y, φX) = (∇2f)(φY,X),

i.e. a manifold (M2n, φ, h = ∇2f) is an almost Norden manifold, where h is a metric of signature (n, n). Thus,

h naturally defines a Norden metric on Kähler (para-Kähler or para-Kähler–Norden) manifold (M2n, φ, g). We

call it a Norden–Hessian metric. Thus, we have the next theorem.

Theorem 4.1 Let (M2n, φ, g) be a Kähler (para-Kähler or para-Kähler–Norden) manifold and f be a smooth

function such that the Hessian ∇2f is nondegenerate. Then, M2n admits a Norden–Hessian structure (φ, h =

∇2f, g) if f ∈ ℑ0
0(M2n) is holomorphic (para-holomorphic), where ∇ is the Levi-Civita connection of g.

5. Para-Kähler metrics on Norden–Hessian manifolds

Let (M2n, J, g) be a locally decomposable Riemannian manifold with integrable para-complex structure

J =

(
E 0
0 −E

)
,

E being an (n × n)-unit matrix. In such manifolds, g is pure with respect to J , and moreover ∇J = 0, i.e.

a triple (M2n, J, g) is a para-Kähler–Norden manifold. Additionally, g is para-holomorphic and the curvature

tensor field R of g is pure with respect to the structure J [14]. Para-Kähler (hybrid) metrics for the case of

para-complex algebras were introduced and studied in [10].

Let (M2n, J, h = ∇2f) be a Hessian–Norden structure, which exists on a para-complex decomposable

Riemannian manifold. Then

(∇2f)(JX, Y ) = (∇2f)(X, JY ),

from which we have

(∇3f)(JX, Y, Z) = (∇3f)(X, JY, Z). (5.9)

Using the Ricci equation, from (5.9) we obtain

(∇3f)(X, JY, Z) = ∇Z(∇JY (∇Xf))

= ∇JY (∇Z(∇Xf))− (df)(R(Z, JY )X)

= (∇3f)(X,Z, JY )− (df)(R(Z, JY )X) (5.10)

and

(∇3f)(JX, Y, Z) = ∇Z(∇Y (∇JXf))

= ∇Y (∇Z(∇JXf))− (df)(R(Z, Y )JX)
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= (∇3f)(JX,Z, Y )− (df)(R(Z, Y )JX). (5.11)

Since h is symmetric and the curvature tensor R of g is pure with respect to J , from (5.10) and (5.11) we

have

(∇3f)(Z, JX, Y ) = (∇3f)(Z,X, JY ), (5.12)

i.e. a tensor field ∇3f is pure in all arguments, where ∇3f is a higher-order Hessian structure on M2n (see

[8]).

On the other hand,

(ΦJh)(X,Z1, Z2) = J(X)(h(Z1, Z2))−X(h(JZ1, Z2))− h(∇JXZ1, Z2)

+h((∇J)(X,Z1), Z2) + h(Z1, (∇J)(X,Z2))− h(Z1,∇JXZ2)

+h(J(∇XZ1), Z2) + h(JZ1,∇XZ2)

= (∇JXh)(Z1, Z2)− (∇Xh)(JZ1, Z2) + h((∇J)(X,Z1), Z2)

+h(Z1, (∇J)(X,Z2)). (5.13)

Substituting h(Z1, Z2) = ∇Z1∇Z2f and ∇J = 0 in (5.13), by virtue of (5.12) we have

(ΦJh)(X,Z1, Z2) = (ΦJh)(X,Z2, Z1) = (∇JX(∇2f))(Z2, Z1)− (∇X(∇2f))(Z2, JZ1)

= (∇3f)(Z2, Z1, JX)− (∇3f)(Z2, JZ1, X) = 0,

i.e. h is para-holomorphic. Then, using Theorem 2.1, we see that h∇J = 0, where h∇ is the Levi-Civita

connection of h . Thus, we have the following theorem.

Theorem 5.1 Let (M2n, J, g) be a para-complex decomposable Riemannian manifold and f be a smooth func-

tion such that the Hessian ∇2f is nondegenerate. If f is para-holomorphic, then (M2n, J, h = ∇2f, g) is a

para-Kähler-Norden–Hessian manifold, where ∇ is the Levi-Civita connection of g .

Remark 5.2 The above proof is an alternative proof of the well-known result of holomorphic manifolds [20, p.

184]: the purity of the covariant derivative ∇h = ∇3f in a torsion-free connection ∇ preserving the structure

J (∇J = 0) is necessary and sufficient for the para-holomorphity of a pure tensor field h = ∇2f . Moreover,

if a function f on (M2n, J, g) is para-holomorphic, then h = ∇2f is pure. Since the Levi-Civita connection ∇
of the para-holomorphic manifold (M2n, J, g) is para-holomorphic with respect to J , it follows that the metric

h = ∇2f is obviously para-holomorphic.

Remark 5.3 For Kähler manifold (M2n, J, g) , the curvature tensor R of the Hermitian metric g is not pure in

all arguments. Therefore, Kähler manifolds may not always locally admit any Kähler–Norden–Hessian metric.
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