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Abstract: Let α be a countable partition of the unit interval [0, 1] . In this paper, we will introduce the error-sum

function of α -Lüroth series and determine the Hausdorff dimension of its graph when the partition α is eventually

decreasing. Some other properties of the error-sum function are also investigated.

Key words: Hausdorff dimension, the α -Lüroth series, error-sum function

1. Introduction

Recently, Kesseböhmer et al. introduced the concept of α -Lüroth series (see [7]), which is a generalization of

the concept of the classical alternating Lüroth series (see [5, 6]). In [7], the authors studied some topological and

ergodic theoretic properties of the α -Lüroth series and gave a complete description of its Lyapunov spectra in

terms of the thermodynamical formalism. Meanwhile, in a related paper [8], Munday computed the Hausdorff

dimension of some α -Good type sets. Soon after, Chen and Wen made a further contribution on the same topic

in [1] by determining the Hausdorff dimension of sets of points whose digits are bounded below by a positive

function ϕ satisfying ϕ(n) → ∞ as n → ∞ . In the present paper, we would like to give some other discoveries

on the properties of α -Lüroth series by investigating its error-sum function.

Before the presentation of our results, we need to introduce some definitions and notations of the α -

Lüroth series for reference. Let I be the unit interval [0, 1] and α = {An, n ∈ N} a countable partition of

I consisting of left-open, right-closed intervals. We always assume that the elements {An}n≥1 are ordered

from right to left, starting from A1 . Denote by an = L(An) the Lebesgue measure of the element An and

tn =
∑∞

i=n an the Lebesgue measure of the nth tail of α . Moreover, a partition α is said to be eventually

decreasing if an+1 ≤ an for all n ∈ N sufficiently large.

For a given partition α , define the α-Lüroth map Lα : I → I by

Lα(x) :=

{
(tn − x)/an for x ∈ An, n ∈ N,
0 if x = 0.

(1.1)

Each x ∈ I \ {0} can then be developed uniquely by the map Lα into an alternating series in the following
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form:

x = tl1(x) +
∞∑
j=2

(−1)j−1

( ∏
1≤i<j

ali(x)

)
tlj(x), (1.2)

where ln(x) = ln ∈ N if Ln−1
α (x) ∈ Aln . Note that the sum is always supposed to be finite if the sequence

{ln(x)}n≥1 is finite. More specifically, the sequence {ln(x)}n≥1 is terminated in k if and only if Lk−1
α (x) = tn

for some n ≥ 2. Moreover, one can even find the fact lk(x) ≥ 2 in this situation. For simplicity, denote the

finite α -Lüroth series of x by [l1(x), . . . , lk(x)]α and call it an α-rational number. Write I∗ , the set of all the

α -rational numbers. One can easily see that the set I∗ is numerable and of Hausdorff dimension zero. On

the other hand, if the sequence {ln(x)}n≥1 is infinite, then we denote it by [l1(x), l2(x), . . .]α and call it an

α-irrational number. Note that Lα acts as a shift map on the α -Lüroth series since

Lα[l1(x), l2(x), . . .]α = [l2(x), l3(x), . . .]α

for each α -irrational number x . Given a number x in I , for n ≥ 2, set

Qn(x) = Qn(l1(x), . . . , ln(x)) =
1(∏

1≤i<n ali(x)

)
tln(x)

, (1.3)

Pn(x) = Qn(x)

(
tl1(x) +

n∑
j=2

(−1)j−1

( ∏
1≤i<j

ali(x)

)
tlj(x)

)
; (1.4)

for n = 1, set Qn(x) = 1/tl1(x) , Pn(x) = 1. Then it follows that

x =
Pn(x)

Qn(x)
+

(−1)nLn
α(x)

Qn+1(x)tln+1(x)
. (1.5)

Here, Pn(x)/Qn(x) is called the nth convergent of x in its α -Lüroth series. Accordingly, the error-sum function

Eα of the α -Lüroth series is defined by

Eα(x) =

{ ∑∞
n=1

(
x− Pn(x)

Qn(x)

)
, x ∈ I \ {0},

0, x = 0.
(1.6)

Further, denote by

G(Eα) = {(x, y) : y = Eα(x), x ∈ I} (1.7)

the graph of the error-sum function Eα . To become acquainted with the features of the graphs of the error-sum

functions, one can investigate the Figure in Section 3, which consists of 2 typical graphs of the functions EαD

and EαH
.

The concept of the error-sum function and its graph were first introduced by Ridley and Petruska in [9]

in terms of the regular continued fraction expansion. Including some elementary properties of the error-sum

function, they studied the graph of that function by giving an upper bound of its Hausdorff dimension. Later,

in [10], Shen and Wu considered the same questions in the Lüroth series and determined the exact Hausdorff

dimension of the graph of the corresponding error-sum function. Recently, Dai and Tang in [2] also studied
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the error-sum functions described by the tent map base series. For some further and latest descriptions of the

characters of the error-sum function, one can refer to [3] by Elsner and Stein and the references therein.

Inspired by the above works, in the present paper we would like to give the following main result on the

consideration of the size of the graph of the error-sum function of α -Lüroth series.

Theorem 1.1 For any eventually decreasing partition α of the unit interval, we have

dimH G(Eα) = 1.

Here, dimH denotes the Hausdorff dimension.

In the following section, we will present some elementary properties of the error-sum function Eα . Section
3 is then devoted to the proof of Theorem 1.1. The reader is assumed to be familiar with the definitions and basic

properties of Hausdorff dimension and Hausdorff measure. For this subject, Falconer’s book [4] is recommended.

2. Some properties of Eα
In this section, we give some elementary properties of the α -Lüroth series on account of the interest in the study

of its characters and as preparation for the proof of Theorem 1.1. Without loss of generality, we would like to

mention here that the partition α is always assumed to be decreasing in the sequel for better comprehension

and expression. Thus,

max
n≥1

{an} = a1 ∈ (0, 1). (2.1)

This property will be used throughout this paper if there are no other special statements.

Proposition 2.1 The function Eα is bounded. More precisely, we have the estimation

− a1
1− a21

≤ Eα(x) ≤
a21

1− a21

for any x ∈ I .

Proof Let x = [l1(x), l2(x), . . .]α . Upon combining (1.5) with (1.6), the following is yielded:

Eα(x) =
∞∑

n=1

(−1)nLn
α(x)

Qn+1(x)tln+1(x)
=

∞∑
n=1

(−1)nal1(x) . . . aln(x)L
n
α(x).

Thus, we have

Eα(x) ≥ −
∞∑

n=1

al1(x) . . . al2n−1(x)L
2n−1
α (x) ≥ −

∞∑
n=1

a2n−1
1 = − a1

1− a21

and

Eα(x) ≤
∞∑

n=1

al1(x) . . . al2n(x)L
2n
α (x) ≤

∞∑
n=1

a2n1 =
a21

1− a21
.

Apparently, the estimation is also true for x = 0 or x = [l1(x), . . . , lk(x)]α for some k ≥ 1. The proof is

finished now. 2
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Proposition 2.2 For any x ∈ I , we have

Eα(x) =
n∑

i=1

(
x− Pi(x)

Qi(x)

)
+ (−1)nal1(x) . . . aln(x)Eα(L

n
α(x)).

Proof If i > n , then we have, by the definition of the convergent Pn(x)/Qn(x),

Pi(x)

Qi(x)
− Pn(x)

Qn(x)
= (−1)nal1(x) . . . aln(x)

Pi−n(L
n
α(x))

Qi−n(Ln
α(x))

.

It follows that

Eα(x) =
n∑

i=1

(
x− Pi(x)

Qi(x)

)
+

∞∑
i=n+1

(
x− Pn(x)

Qn(x)
+

Pn(x)

Qn(x)
− Pi(x)

Qi(x)

)

=
n∑

i=1

(
x− Pi(x)

Qi(x)

)
+ (−1)nal1(x) . . . aln(x)

∞∑
j=1

(
Ln
α(x)−

Pj(L
n
α(x))

Qj(Ln
α(x))

)

=
n∑

i=1

(
x− Pi(x)

Qi(x)

)
+ (−1)nal1(x) . . . aln(x)Eα(L

n
α(x)).

This ends the proof. 2

Proposition 2.3 If the partition α is eventually decreasing, then∫ 1

0

Eα(x)dx =
1
2 −

∑∞
i=1 tiai

1 +
∑∞

i=1 a
2
i

.

Proof By Proposition 2.2, we have∫ 1

0

Eα(x)dx =
∞∑
i=1

∫ ti

ti+1

Eα(x)dx =
∞∑
i=1

∫ ti

ti+1

(x− ti − aiEα(Lα(x)))dx

=
1

2

∞∑
i=1

(
t2i − t2i+1

)
−

∞∑
i=1

ti(ti − ti+1) +
∞∑
i=1

∫ ti

ti+1

a2i Eα(Lα(x))d(Lα(x))

=
1

2
−

∞∑
i=1

tiai −

( ∞∑
i=1

a2i

)∫ 1

0

Eα(u)du.

Since the estimations
n∑

i=1

tiai ≤
∞∑
i=1

ai = 1 and
n∑

i=1

a2i ≤
∞∑
i=1

ai = 1

hold for all n ≥ 1, the series of positive terms
∑∞

i=1 tiai and
∑∞

i=1 a
2
i are both convergent. The result thus

follows by solving the above equation. 2

Let us take 2 special cases as examples. Denote by αD the doubly decreasing partition and αH the

harmonic partition, which are given by

an =
1

2n
and an =

1

n(n+ 1)
,
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respectively. It is well known that the alternating Lüroth series can be developed by the harmonic partition

αH . Then ∫ 1

0

EαD (x)dx = −1

8
,

∫ 1

0

EαH (x)dx =
π2 − 9

12− 2π2
.

We omit the verifications here since they are elementary.

The following lemma describes the continuity of the function Eα , which plays an important role in

Section 3.

Proposition 2.4 Let x0 ∈ I∗ . Then we have the following 2 distinguishable conclusions:

(1) If x0 = [l1(x0), . . . , l2k+1(x0)]α for some k , then Eα is left continuous at x0 , but not right continuous

at x0 . More precisely, we have

lim
xL→x−

0

Eα(xL) = Eα(x0), lim
xR→x+

0

Eα(xR) = Eα(x0)− al1(x0) . . . al2k(x0)al2k+1(x0)−1.

(2) If x0 = [l1(x0), . . . , l2k(x0)]α for some k , then Eα is not left continuous at x0 , but right continuous

at x0 . More precisely, we have

lim
xL→x−

0

Eα(xL) = Eα(x0) + al1(x0) . . . al2k−1(x0)al2k(x0)−1, lim
xR→x+

0

Eα(xR) = Eα(x0).

Proof We only give the proof of conclusion (1) since conclusion (2) can be treated in an analogous way. For

brevity’s sake, write x0 = [l1, . . . , l2k+1]α .

For the left continuity, write xL = [l1, . . . , l2k+1,K, . . .]α . It is then easy to check that

xL → x−
0 ⇐⇒ K → ∞ ⇐⇒ aK → 0. (2.2)

Thus, by Proposition 2.2,

Eα(xL)− Eα(x0)

=

2k+1∑
i=1

(
xL − Pi(xL)

Qi(xL)

)
+

(
xL − P2k+2(xL)

Q2k+2(xL)

)

+ al1 . . . al2k+1
aKEα

(
L2k+2
α (xL)

)
−

2k+1∑
i=1

(
x0 −

Pi(x0)

Qi(x0)

)

= (2k + 1)(xL − x0) + al1 . . . al2k+1
aK

(
L2k+2
α (xL) + Eα

(
L2k+2
α (xL)

) )
.

Note that the function Eα is bounded by Proposition 2.1, as well as Lα . This, together with (2.2), yields that

limxL→x−
0
Eα(xL) = Eα(x0).

For the right continuity, write xR = [l1, . . . , l2k, l2k+1 − 1, 1,K, . . .] . Similarly, it holds that

xR → x+
0 ⇐⇒ K → ∞ ⇐⇒ aK → 0 ⇐⇒ [K, . . .]α → 0. (2.3)
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Then, by Proposition 2.2 again, we have

Eα(xR)− Eα(x0)

=
2k∑
i=1

(
xR − Pi(xR)

Qi(xR)

)
+

(
xR − P2k+1(xR)

Q2k+1(xR)

)
+

(
xR − P2k+2(xR)

Q2k+2(xR)

)

+

(
xR − P2k+3(xR)

Q2k+3(xR)

)
− al1 . . . al2k+1−1a1aKEα

(
L2k+3
α (xR)

)
−

2k∑
i=1

(
x0 −

Pi(x0)

Qi(x0)

)
−
(
x0 −

P2k+1(x0)

Q2k+1(x0)

)
= (2k + 1)(xR − x0)− al1 . . . al2kal2k+1−1 + al1 . . . al2k+1−1a1[K, . . .]α

− al1 . . . al2k+1−1a1aK

(
L2k+3
α (xR) + Eα

(
L2k+3
α (xR)

) )
.

Once again, relation (2.3) and the boundedness of Lα and Eα lead to the result:

lim
xR→x+

0

Eα(xR) = Eα(x0)− al1 . . . al2kal2k+1−1.

The proof is completed now. 2

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To obtain a suitable cover of the graph of the error-

sum function Eα , we need the following crucial Lemma 3.1. Before the presentation, first we introduce some

notations for ready use.

Denote by Σ =
∪∞

n=1 Σn , where

Σn = {(l1, . . . , ln) ∈ Nn : li ≥ 1, 1 ≤ i ≤ n}

is the set of all blocks of length n . For any σn = (l1, . . . , ln) ∈ Σn , call

Iσn = In(l1, . . . , ln) = {x ∈ I : l1(x) = l1, . . . , ln(x) = ln}

a basic interval of order n . We also sometimes put

In(x) = In(l1(x), . . . , ln(x)).

In other words, In(x) is the set of numbers whose first n digits coincide with those of x . Moreover, write

Sσn = tl1 − al1tl2 + · · ·+ (−1)n−1al1 . . . aln−1tln , (3.1)

Tσn = tl1 − al1tl2 + · · ·+ (−1)n−1al1 . . . aln−1tln+1. (3.2)

It can then be checked that

I∗ = {Sσn , Tσn : σn ∈ Σn, n ≥ 1}
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and

Iσn =

{
(Sσn , Tσn ], when n is even,

(Tσn , Sσn ], when n is odd.
(3.3)

It follows that

L(Iσn) = |Sσn − Tσn | = al1 . . . aln (3.4)

for any σn = (l1, . . . , ln), n ≥ 1.

Lemma 3.1 For any σn ∈ Σn with n ≥ 1 , we have

sup
x,y∈Iσn

|Eα(x)− Eα(y)| = nL(Iσn).

Proof In the case of n = 2k + 1, write σn = (l1, . . . , ln). By the discussion in Proposition 2.4, we have

Eα(Tσn)− al1 . . . aln−1a(ln+1)−1 ≤ Eα(x) ≤ Eα(Sσn)

for any x ∈ Iσn . Thus,

sup
x,y∈Iσn

|Eα(x)− Eα(y)| = Eα(Sσn)− Eα(Tσn) + al1 . . . aln . (3.5)

In addition, by (3.4), we have that

Eα(Sσn)− Eα(Tσn) =
n−1∑
i=1

(
Sσn − Pi(Sσn)

Qi(Sσn)

)
+

(
Sσn − Pn(Sσn)

Qn(Sσn)

)

−
n−1∑
i=1

(
Tσn − Pi(Tσn)

Qi(Tσn)

)
−
(
Tσn − Pn(Tσn)

Qn(Tσn)

)

= n(Sσn − Tσn)−
(
Pn(Sσn)

Qn(Sσn)
− Pn(Tσn)

Qn(Tσn)

)
= (n− 1)al1 . . . aln

= (n− 1)L(Iσn).

Substitute this result into (3.5), which finishes the proof of this case.

The case of n = 2k can be verified in an analogous way, and we omit the details. 2

Corollary 3.2 Eα is continuous on I \ (I∗ ∪ {0}) .

Proof Let x0 = [l1(x0), . . . , ln(x0), . . .]α ∈ I \ (I∗ ∪ {0}). By Lemma 3.1, for any x ∈ In(l1(x0), . . . , ln(x0)),

we then have that

|Eα(x)− Eα(x0)| ≤ nL(In(l1(x0), . . . , ln(x0))) ≤ nan1 → 0

as n → ∞ . It implies our result. 2
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Proof [Proof of Theorem 1.1] On the one hand, we can easily see that {Iσn ×Eα(Iσn)}σn∈Σn is a cover of the

graph G(Eα) for any n ≥ 1, i.e.

G(Eα) ⊂
∪

σn∈Σn

Iσn × Eα(Iσn).

Moreover, by Lemma 3.1, Iσn ×Eα(Iσn) can be covered by n squares with the same side length L(Iσn). Thus,

for any t > 1, we have

Ht(G(Eα)) ≤ lim inf
n→∞

∑
σn∈Σn

n(
√
2)t(L(Iσn))

t

≤ lim inf
n→∞

n(
√
2)t(a1)

(t−1)n
∑

σn∈Σn

L(Iσn)

≤ (
√
2)t lim inf

n→∞
n(a1)

(t−1)n

= 0.

The second inequality is followed by the fact L(Iσn) ≤ (a1)
n . It follows that dimH G(Eα) ≤ t for any t > 1.

Hence, dimH G(Eα) ≤ 1.

On the other hand, since I is the orthogonal projection of G(Eα) onto the real line and the projection is

a Lipschitz mapping, we have, by Corollary 2.4(a) in [4],

dimH G(Eα) ≥ dimH

(
Proj(G(Eα)

)
= dimH I = 1.

Therefore, combining the above 2 conclusions, we conclude the proof. 2

Denote by G(EαD
) and G(EαH

) the graphs of the error-sum functions EαD
and EαH

, which are plotted

in the Figure, respectively.
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Figure. The graphs of EαD (left) and EαH (right).

Then we have the following result, which can be regarded as 2 special cases of Theorem 1.1.

Corollary 3.3 For any partition α that is eventually decreasing, we have

dimH G(EαD
) = dimH G(EαH

) = 1.
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