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Abstract: We consider transformations preserving asymptotic directions of surfaces in Minkowski 3-space and show

that a transformation preserves the asymptotic directions of a surface if only if it is the projective one. Therefore, we

obtain a characterization of the projective transformation.
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1. Introduction

The projective transformation has been studied by many researchers in the Euclidean space. They characterize

some properties of this transformation as follows. A transformation is the projective one if and only if it

transforms a straight line to the other straight line [5]. In 3-dimensional Euclidean space, the projective

transformation transforms an infinitesimally rigid surface to the other infinitesimally rigid surface, that is, it

preserves the infinitesimal rigidity [8, 6, p.355 ]. The projective transformation also preserves the asymptotic

lines of surfaces [3, p.202 ]. The transformations preserving asymptotic directions of hypersurfaces in the

Euclidean space were considered by Alagöz and Soyuçok in [2]. Moreover, they gave a characterization of the

projective transformation in [1].

In this study, we investigate the properties of transformation preserving asymptotic directions of surfaces

in Minkowski 3-space. We also show that a transformation preserves the asymptotic directions of a Minkowski

surface if and only if it is the projective one.

2. Preliminaries

Let E3
1 be a Minkowski 3-space with the scalar product

A.B = a1b1 + a2b2 − a3b3 (1)

for vectors A = a1e1+a2e2+a3e3 = (a1, a2, a3) and B = (b1, b2, b3). The Minkowski vector product of A and

B is given as

A×B =

∣∣∣∣∣∣
e1 e2 −e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (2)
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[4, 9]. Therefore, the Minkowski triple scalar product is given by

(A×B).C = (ABC) = det

 a1 a2 a3
b1 b2 b3
c1 c2 c3

=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (3)

where C = (c1, c2, c3).

Let us consider a surface S in the Minkowski 3-space, which is given by the parametric representation

r(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) (4)

where x1, x2 , and x3 are cartesian coordinates. The Minkowski first fundamental form is defined by

I = dr.dr = E(du1)2 + 2Fdu1du2 +G(du2)2 (5)

with the coefficients

E = r,1.r,1, F = r,1.r,2, G = r,2.r,2, (r,i =
∂r

∂ui
; i = 1, 2) (6)

where

det I = EG− F 2 ̸= 0 (7)

When det I > 0, S is called a spacelike surface; when det I < 0, S is called a timelike surface [4, 7, 9].

The Minkowski unit normal vector is

N =
r,1 × r,2

k
, k =

√
|r,1 × r,2| =

√
det I (8)

The Minkowski second fundamental form is given by

II = −dr.dN = N.d2r = L11(du
1)2 + 2L12du

1du2 + L22(du
2)2 (9)

or

II = Lijdu
iduj , (i, j = 1, 2) (10)

where

kLij = k(N.rij) = (r,1, r,2, rij), (r,ij =
∂2r

∂ui∂uj
, i, j = 1, 2) (11)

[9].

3. The equation of the asymptotic directions of a surface

The asymptotic directions of a surface S in the Minkowski 3-space are defined by the equation

II = 0

[9]. Regarding (10), the above equation can be written as

Lijdu
iduj = 0, (i, j = 1, 2) (12)
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A spacelike surface S can be described by the Monge representation

r(x1, x2) = (x1, x2, x3(x1, x2)) (13)

A timelike surface S can be described by the Monge representation

r(x1, x3) = (x1, x2(x1, x3), x3) (14)

or

r(x2, x3) = (x1(x2, x3), x2, x3) (15)

[9]. Accordingly from (11) and (8):

For a spacelike surface, using (13) we have

kLij =

∣∣∣∣∣∣
1 0 x3

,1

0 1 x3
,2

0 0 x3
,ij

∣∣∣∣∣∣ = x3
,ij (i, j = 1, 2) (16)

where

k =
√

|r,1 × r,2| =
√∣∣1− (x3

,1)
2 − (x3

,2)
2
∣∣

For a timelike surface, using (14) we have

kLij =

∣∣∣∣∣∣
0 x2

,3 1
1 x2

,1 0
0 x2

,ij 0

∣∣∣∣∣∣ = x2
,ij (i, j = 1, 3) (17)

where

k =
√

|r,1 × r,2| =
√∣∣1− (x2

,1)
2 − (x2

,3)
2
∣∣

or using (15) we have

kLij =

∣∣∣∣∣∣
x1
,2 1 0

x1
,3 0 1

x1
,ij 0 0

∣∣∣∣∣∣ = x1
,ij (i, j = 2, 3)

where

k =
√

|r,1 × r,2| =
√∣∣(x1

,3)
2 − 1− (x1

,2)
2
∣∣

Therefore, from (12), the equation of the asymptotics of a Minkowski surface can be written as follows:

For a spacelike surface,

x3
,ijdx

idxj = 0, (i, j = 1, 2) (18)

For a timelike surface,

x2
,ijdx

idxj = 0, (i, j = 1, 3) (19)

or

x1
,ijdx

idxj = 0, (i, j = 2, 3) (20)
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4. Conditions for a transformation preserving the asymptotic directions

In this section, we determine transformations that preserve the asymptotic directions in the Minkowski 3-space.

Let

T : ya = ya
(
x1, x2, x3

)
, (a = 1, 2, 3) (21)

be a coordinate transformation in E3
1 . We assume that T is differentiable of order 3 and

∆ = det
[
T,1 T,2 T,3

]
=

∣∣ T,1 T,2 T,3

∣∣ ̸= 0 (22)

where

T,b =

 y1,b
y2,b
y3,b

 ,

(
b = 1, 2, 3; ya,b =

∂ya

∂xb

)
. (23)

If the transformation T is applied to a Minkowski surface S defined by one of the equations (13), (14), or (15),

we have respectively

ya = ya
(
x1, x2, x3

(
x1, x2

))
, a = (1, 2, 3) (24)

ya = ya
(
x1, x2(x1, x3), x3

)
, a = (1, 2, 3) (25)

ya = ya
(
x1(x2, x3), x2, x3

)
, a = (1, 2, 3) (26)

Therefore, T transforms a spacelike surface S to a surface S∗ , which is given by the equation

r∗
(
x1, x2

)
=

(
y1(x1, x2, x3(x1, x2)), y2(x1, x2, x3(x1, x2)), y3(x1, x2, x3(x1, x2))

)
(27)

and it transforms a timelike surface S to a surface S∗ , which is given by the equation

r∗
(
x1, x3

)
=

(
y1(x1, x2(x1, x3), x3), y2(x1, x2(x1, x3), x3), y3(x1, x2(x1, x3), x3)

)
(28)

or

r∗
(
x2, x3

)
=

(
y1(x1(x2, x3), x2, x3), y2(x1(x2, x3), x2, x3), y3(x1(x2, x3), x2, x3)

)
(29)

From (12), the asymptotic directions of the surface S∗ given by (27) or (28) or (29) can be written, respectively,
as

L∗
ijdx

idxj = 0, (i, j = 1, 2) (27′)

or

L∗
ijdx

idxj = 0, (i, j = 1, 3) (28′)

or

L∗
ijdx

idxj = 0, (i, j = 2, 3) (29′)

where

k∗L∗
ij = (r∗,1, r

∗
,2, r

∗
ij), (i, j = 1, 2), k =

√∣∣r∗,1 × r∗,2
∣∣ (27′′)

or

k∗L∗
ij = (r∗,3, r

∗
,1, r

∗
ij), (i, j = 1, 3), k =

√∣∣r∗,3 × r∗,1
∣∣ (28′′)
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or

k∗L∗
ij = (r∗,2, r

∗
,3, r

∗
ij), (i, j = 2, 3), k =

√∣∣r∗,2 × r∗,3
∣∣ (29′′)

respectively.

Since the transformation T transforms the asymptotic directions of a surface S to the asymptotic

directions of the corresponding surface S∗, it must transform the equation (18) to the equation (27
′
), the

equation (19) to the equation (28
′
), and the equation (20) to the equation (29

′
). Accordingly, our conditions

are respectively

L∗
ij = tx3

,ij , (i, j = 1, 2) (30)

L∗
ij = tx2

,ij , (i, j = 1, 3) (31)

or

L∗
ij = tx1

,ij , (i, j = 2, 3) (32)

Now let us carry out the calculations for the corresponding surface S∗ defined by (27). Thus the conditions for

the transformations are given by (30). Since, for this case,

r∗,i = (y1,i + y1,3x
3
,i, y

2
,i + y2,3x

3
,i, y

3
,i + y3,3x

3
,i)

r∗,i = T,i +T,3x
3
,i, (i, j = 1, 2)

and

r∗,ij = T,ij +T,i3x
3
,j +T,3jx

3
,i +T,33x

3
,ix

3
,j +T,3x

3
,ij , (i, j = 1, 2)

From (27′′) we have

k∗L∗
ij =

∣∣ T,1 T,2 T,ij

∣∣+ ∣∣ T,3 T,2 T,ij

∣∣x3
,1 +

∣∣ T,1 T,3 T,ij

∣∣x3
,2

+
∣∣ T,1 T,2 T,3j

∣∣x3
,i +

∣∣ T,1 T,2 T,i3

∣∣x3
,j

+
∣∣ T,3 T,2 T,3j

∣∣x3
,ix

3
,1 +

∣∣ T,1 T,3 T,3j

∣∣x3
,ix

3
,2 (33)

+
∣∣ T,3 T,2 T,i3

∣∣x3
,jx

3
,1 +

∣∣ T,1 T,3 T,i3

∣∣x3
,jx

3
,2

+
∣∣ T,1 T,2 T,33

∣∣x3
,ix

3
,j +

∣∣ T,3 T,2 T,33

∣∣x3
,ix

3
,jx

3
,1

+
∣∣ T,1 T,3 T,33

∣∣x3
,ix

3
,jx

3
,2 +∆.x3

,ij , (i, j = 1, 2)

The equations (30) must be satisfied by any surface. Thus, from (33) we obtain the necessary conditions

for the transformation preserving the asymptotic directions of a Minkowski surface.

For i = j = 1, we have∣∣ T,1 T,2 T,11

∣∣ = 0,
∣∣ T,1 T,3 T,11

∣∣ = 0 (34)∣∣ T,3 T,2 T,33

∣∣ = 0,
∣∣ T,1 T,3 T,33

∣∣ = 0 (35)∣∣ T,1 T,3 T,13

∣∣ = 0,
∣∣ T,3 T,2 T,11

∣∣+ 2
∣∣ T,1 T,2 T,13

∣∣ = 0 (36)∣∣ T,1 T,2 T,33

∣∣+ 2
∣∣ T,3 T,2 T,13

∣∣ = 0 (37)
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For i = j = 2, we have ∣∣ T,1 T,2 T,22

∣∣ = 0,
∣∣ T,3 T,2 T,22

∣∣ = 0 (38)

∣∣ T,3 T,2 T,23

∣∣ = 0,
∣∣ T,1 T,3 T,22

∣∣+ 2
∣∣ T,1 T,2 T,23

∣∣ = 0 (39)

∣∣ T,1 T,2 T,33

∣∣+ 2
∣∣ T,1 T,3 T,23

∣∣ = 0 (40)

and also the equations (35).

Finally, for i = 1, j = 2 or i = 2, j = 1, apart from the above equations we have∣∣ T,1 T,2 T,12

∣∣ = 0,
∣∣ T,3 T,2 T,12

∣∣+ ∣∣ T,1 T,2 T,32

∣∣ = 0 (41)

∣∣ T,1 T,3 T,12

∣∣+ ∣∣ T,1 T,2 T,13

∣∣ = 0 (42)

∣∣ T,1 T,3 T,32

∣∣+ ∣∣ T,3 T,2 T,13

∣∣+ ∣∣ T,1 T,2 T,33

∣∣ = 0 (43)

From (34), (35), and (38), we have

T,aa = 2AaT,a, (a = 1, 2, 3) (44)

where A1, A2, and A3 are arbitrary functions.

From the remaining equations, using (44) we obtain

T,ab = AaT,b +AbT,a, (a, b = 1, 2, 3) (45)

Equations (34) to (43) are all satisfied by (45).

Carrying out similar calculations for the corresponding surface S∗ defined by (28) or (29) where the conditions

for the transformation are respectively given by (31) or (32), we obtain the same equation (45).

Thus we have the following lemma.

Lemma 1 A transformation T preserving the asymptotic directions of a Minkowski surface must satisfy the

equations

T,ab = AaT,b +AbT,a, (a, b = 1, 2, 3) (46)

where A1, A2 , and A3 are arbitrary functions of variables x1, x2 , and x3 .

5. A characterization of the projective transformation

Firstly, let us consider the projective transformation

T : ym =
Cm

0 + Cm
1 x1 + Cm

2 x2 + Cm
3 x3

C0 + C1x1 + C2x2 + C3x3
=

Cm
p xp

Cpxp
, (47)

where (m = 1, 2, 3), which can be expressed as

T =
Cpx

p

Cpxp
,

(
Cp =

(
C1

p , C
2
p , C

3
p

))
(48)
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where Cm
p and Cp are constants. For this transformation

T,a =
(CpCa − CaCp)x

p

(Cpxp)
2 , T,b =

(CpCb − CbCp)x
p

(Cpxp)
2 (49)

and

T,ab =
−Cb(CpCa − CaCp)x

p − Ca (CpCb − CbCp)x
p

(Cpxp)
3 . (50)

Therefore, we have

T,ab =
−Cb

Cpxp
T,a +

−Ca

Cpxp
T,b. (51)

Accordingly, the projective transformation satisfies (46). Hence, according to Lemma 1, the projective trans-

formation preserves the asymptotic directions of a Minkowski surface.

In the following, we show that a transformation satisfying the conditions of Lemma 1 is the projective

one. Now let us consider the compatibility equations of the equations (46). If we use (46) in T,abc = T,acb then

we obtain
(Ab,c−Ac,b)T,a + (Aa,c−AaAc)T,b + (AaAb−Aa,b)T,c = 0 (52)

where Aa,b =
∂Aa

∂xb , (a, b = 1, 2, 3).

From (52) we have,

Aa,b = AaAb

and so

Aa,a = A2
a (53)

Thus we find

Aa = − Ca

Caxa +Ba
(54)

where Ca =const. ̸= 0 and

B1 = B1
(
x2, x3

)
, B2 = B2

(
x1, x3

)
, B3 = B3

(
x1, x2

)
(55)

Using (54) and (55), from (53) we first have

Ba
,b = Cb

Cax
a +Ba

Cbxb +Bb
, (a ̸= b)

and then
Ba

,bc = 0

and finally

B1 = C0 + C2x
2 + C3x

3, B2 = C0 + C1x
1 + C3x

3, B3 = C0 + C1x
1 + C2x

2

(C0 =const .). Therefore, (54) becomes

Aa = −Ca

g
(56)
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where

g = Cpx
p = C0 + C1x

1 + C2x
2 + C3x

3 (57)

By this value of Aa, from (46), which is written for a = b, we find

T,a =
fa
g2

(58)

where

f1 = f1
(
x2, x3

)
, f2 = f2

(
x1, x3

)
, f3 = f3

(
x1, x2

)
(59)

Using (58) and (59), from (46) we have

fa,b =
Cbfa − Cafb

g
(60)

and so
fa,b = −fb,a (61)

Differentiating both sides of (60) we first obtain

fa,bc = 0 (62)

Then we have

fa = Ea +Eabx
b, (a, b = 1, 2, 3) (63)

where
Eab = −Eba (64)

C0Eab = CbEa − CaEb, (C1E23 = C2E13 − C3E12) (65)

Here Ea and Eab are constant vectors. Thus (58) transforms to

T,a =
Ea +Eabx

b

g2
(66)

By integration of the last equation we obtain

T = −Ea +Eabx
b

Cag
+ ha, (Ca ̸= 0) (67)

where

h1 = h1

(
x2, x3

)
, h2 = h2

(
x1, x3

)
, h3 = h3

(
x1, x2

)
(68)

Using conditions (64) and (65), from (66) and (67) we find that the vectors h1, h2 , and h3 are constant vectors.

Therefore, we have

T =
e0 + e1x

1 + e2x
2 + e3x

3

C0 + C1x1 + C2x2 + C3x3
(69)

where ep vectors are constants. Thus, this transformation is the projective transformation. Therefore, we have

the following theorem that gives a characterization of the projective transformation.

Theorem 2 In Minkowski 3-space, a transformation preserves the asymptotic directions of a surface if and

only if it is a projective transformation.

903
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