
Turk J Math

(2014) 38: 905 – 919

c⃝ TÜBİTAK
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Abstract: Almost semiinvariant ξ⊥ -submanifolds of an almost paracontact metric manifold are defined and studied.

Some characterizations of almost semiinvariant ξ⊥ -submanifolds and semiinvariant ξ⊥ -submanifolds are presented. A

para-CR-structure is defined and it is proven that an almost semiinvariant ξ⊥ -submanifold of a normal almost paracontact

metric (and hence para-Sasakian) manifold with the proper invariant distribution always possesses a para-CR-structure.

A counter example is also given. Integrability conditions for certain natural distributions arising on almost semiinvariant

ξ⊥ -submanifolds are obtained. Finally, certain parallel operators on submanifolds are investigated.

Key words: Almost paracontact metric manifold, para-Sasakian manifold, ξ⊥ -submanifold, almost semiinvariant ξ⊥ -
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1. Introduction

The theory of almost paracontact structures on Riemannian manifolds was introduced by Sato [11, 12]. Since

then, many authors contributed to the study of almost paracontact metric manifolds and their submanifolds.

Specifically, several authors studied antiinvariant, semiinvariant, and almost semiinvariant submanifolds of

para-Sasakian manifolds [3, 4, 5, 6, 8, 9]. However, it is known that [18] in a submanifold of a para-Sasakian

manifold, if the structure vector field of the ambient manifold is tangent to the submanifold, then the submanifold

cannot admit an antiinvariant distribution orthogonal to the structure vector field (see also [13]). Knowing the

fact that in these submanifolds, the structure vector field of the ambient manifold is taken to be tangent to

submanifolds, in this paper we study ξ⊥ -submanifolds of para-Sasakian manifolds, where the ξ⊥ -submanifolds

are perpendicular to the structure vector field of the ambient manifold.

The paper is organized as follows. Section 2 is devoted to preliminaries. In Section 3, some fundamental

formulas concerning ξ⊥ -submanifolds of almost paracontact metric manifolds and para-Sasakian manifolds

have been presented. In Section 4, we give the definition of the almost semiinvariant ξ⊥ -submanifold of an

almost paracontact metric manifold along with some examples. Section 5 contains some characterizations of

almost semiinvariant ξ⊥ -submanifolds and semiinvariant ξ⊥ -submanifolds. In Section 6, we define a para-CR-

structure and prove that an almost semiinvariant ξ⊥ -submanifold of a normal almost paracontact metric (and
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hence also para-Sasakian) manifold with proper invariant distribution always possesses a para-CR-structure.

A counterexample is also given. In Section 7, integrability conditions for certain natural distributions on

almost semiinvariant ξ⊥ -submanifolds are obtained. In Section 8, we investigate certain parallel operators on

submanifolds.

2. Preliminaries

Let M̃ be an almost paracontact metric manifold [11] equipped with an almost paracontact metric structure

(φ, ξ, η, g); that is, φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form, and g is an associated Riemannian

metric such that

φ2 = I − η ⊗ ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0, (2.1)

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (2.2)

Φ (X,Y ) ≡ g(X,φY ) = Φ (Y,X) , g (X, ξ) = η(X) (2.3)

for all X,Y ∈ TM̃ . An almost paracontact metric structure is known to be a para-Sasakian structure if [10, 12]

(∇̃Xφ)Y = − g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (2.4)

where ∇̃ is the Riemannian connection on M̃ , and we say that M̃ is a para-Sasakian manifold.

Let M be a submanifold of a Riemannian manifold M̃ with a Riemannian metric g . Then Gauss and

Weingarten formulae are given respectively by

∇̃XY = ∇XY + σ(X,Y ), X, Y ∈ TM, (2.5)

∇̃XN = −ANX +∇⊥
XN, N ∈ T⊥M, (2.6)

where ∇̃ , ∇ and ∇⊥ are the Riemannian, induced Riemannian, and induced normal connections in M̃ , M

and the normal bundle T⊥M of M , respectively, and σ is the second fundamental form related to A by

g(σ(X,Y ), N) = g(ANX,Y ). (2.7)

Let M be a submanifold of an almost paracontact metric manifold M̃ . Let X,Y ∈ TM , N ∈ T⊥M .

We put

φX ≡ PX + FX, PX ∈ TM, FX ∈ T⊥M, (2.8)

φN ≡ tN + fN, tN ∈ TM, fN ∈ T⊥M, (2.9)

and then

(∇̃Xφ)Y = ((∇XP )Y −AFY X − tσ (X,Y ))

+ ((∇XF )Y + σ (X,PY )− fσ (X,Y )) , (2.10)

(∇̃Xφ)N = ((∇Xt)N −AfNX + PANX))

+ ((∇Xf)N + σ(X, tN) + FANX)), (2.11)
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where

(∇XP )Y ≡ ∇XPY − P∇XY, (∇XF )Y ≡ ∇⊥
XFY − F∇XY,

(∇Xt)N ≡ ∇XtN − t∇⊥
XN, (∇Xf)N ≡ ∇⊥

XfN − f∇⊥
XN.

If ∇XQ = 0, Q ∈ {P, F, t, f} , then Q is said to be parallel.

3. Some properties of ξ⊥ -submanifolds

Definition 3.1 A submanifold of an almost paracontact metric manifold such that ξ is normal to M is said

to be an ξ⊥ -submanifold.

From now on, all submanifolds of almost paracontact metric manifolds are assumed to be ξ⊥ -submanifolds,

unless specifically stated otherwise. In this case, η(X) = 0, for all X ∈ TM .

Proposition 3.2 Let M be an ξ⊥ -submanifold of an almost paracontact metric manifold. Then

P 2 + tF = I, (3.1)

FP + fF = 0, (3.2)

f2 + Ft = I − η ⊗ ξ, (3.3)

Pt+ tf = 0. (3.4)

Consequently,

kerP = ker
(
P 2
)
= ker (tF − I) , (3.5)

kerF = ker (tF ) = ker
(
P 2 − I

)
, (3.6)

ker t = ker (Ft) = ker
(
f2 − I + η ⊗ ξ

)
, (3.7)

ker f = ker
(
f2
)
= ker (Ft− I + η ⊗ ξ) . (3.8)

Proof For X ∈ TM , in φ2X = X , using (2.8) and (2.9), we get(
P 2 + tF

)
X + (FP + fF )X = X,

from which we get (3.1) and (3.2). Similarly, using (2.8) and (2.9), in φ2N = N − η (N) ξ for N ∈ T⊥M , we

get

(Pt+ tf)N +
(
f2 + Ft

)
N = N − η (N) ξ,

which implies (3.3) and (3.4). The remaining part is straightforward. 2

Proposition 3.3 If M is an ξ⊥ -submanifold of a para-Sasakian manifold, then

(∇XP )Y −AFY X − tσ(X,Y ) = 0, (3.9)

(∇XF )Y + σ(X,PY )− fσ(X,Y ) + g(X,Y )ξ = 0, (3.10)

(∇Xt)N −AfNX + PANX + η(N)X = 0, (3.11)
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(∇Xf)N + σ(X, tN) + FANX = 0, (3.12)

P [X,Y ] = ∇XPY −∇Y PX +AFXY −AFY X, (3.13)

F [X,Y ] = ∇⊥
XFY −∇⊥

Y FX + σ(X,PY )− σ(PX, Y ) (3.14)

for all X,Y ∈ TM and N ∈ T⊥M .

Proof Using (2.4), (2.8), and η(Y ) = 0 in (2.10) and equating tangential and normal parts in the resulting

equation, we get (3.9) and (3.10), respectively. Similarly, using (2.4) and (2.9) in (2.11) and equating tangential

and normal parts, we get (3.11) and (3.12), respectively. Lastly, (3.13) and (3.14) follow from (3.9) and (3.10),

respectively. 2

Proposition 3.4 For an ξ⊥ -submanifold M of a para-Sasakian manifold M̃ , it follows that

−AξX = PX, (3.15)

∇⊥
Xξ = FX, (3.16)

η(σ(X,Y )) = g(X,PY ), (3.17)

η(H) = − 1

n
trace (P ) (3.18)

for any X,Y ∈ TM , where H is the mean curvature vector.

Proof From (2.4) it follows that

∇̃Xξ = φX. (3.19)

Using (3.19), (2.8), and η(X) = 0 in (2.5), we get

−AξX +∇⊥
Xξ = φX = PX + FX.

Equating tangential and normal parts in the above equation we get (3.15) and (3.16), respectively. In view of

(2.3)2 , (2.7), and (3.15), it follows that

η(σ(X,Y )) = g(σ(X,Y ), ξ) = g(AξX,Y ) = − g(PX, Y ),

which gives (3.17). If {e1, . . . , en} , n = dimM , is a local orthonormal frame field, then in view of (3.17) one

gets

η(H) =
1

n
η

(
n∑

i=1

σ(ei, ei)

)
= − 1

n

(
m∑
i=1

g(Pei, ei)

)
,

which gives (3.18). 2

In view of (3.18), we have the following:

Corollary 3.5 Let M be an ξ⊥ -submanifold of a para-Sasakian manifold. If trace (P ) ̸= 0 , then M can not

be minimal.

In view of (3.15), we have the following:

Theorem 3.6 Let M be an ξ⊥ -submanifold of a para-Sasakian manifold. Then M is antiinvariant if and

only if Aξ = 0 .
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4. Almost semiinvariant ξ⊥ -submanifolds

Let M be an ξ⊥ -submanifold of an almost paracontact metric manifold M̃ . Since g (X,PY ) = g (PX, Y ), it

therefore follows that (P 2)x is symmetric on TxM . Hence, its eigenvalues are real and it is diagonalizable. If

X ∈ TxM is an eigenvector corresponding to an eigenvalue µ(x) of (P 2)x , then

µ (x) ∥X∥2 = µ (x) g (X,X) = g
(
P 2X,X

)
= g (PX,PX) = ∥PX∥2 ,

which implies that µ(x) ≥ 0. On the other hand, from (2.2) for all Z ∈ TM̃ , we get ∥φZ∥ ≤ ∥Z∥ and therefore

µ(x) ∥φX∥2 ≤ µ(x) ∥X∥2 = ∥PX∥2 .

Since decomposition of φX given by (2.8) is orthogonal, µ(x) is bounded by 0 and 1. At every point x ∈ M ,

we may set

Dλ
x = ker(P 2 − λ2(x)I)x,

where λ(x) ∈ [0, 1] is such that λ2(x) is an eigenvalue of (P 2)x . Since (P 2)x is symmetric and diagonalizable,

there is some integer q such that λ2
1(x), . . . , λ

2
q(x) are distinct eigenvalues of (P

2)x and TxM can be decomposed

as the direct sum

TxM = Dλ1
x ⊕ · · · ⊕ Dλq

x

of the mutually orthogonal P -invariant eigenspaces. Note that

D1
x = ker (Fx) = {X ∈ TxM : ∥X∥ = ∥PX∥} ,

D0
x = ker (Px) = {X ∈ TxM : ∥X∥ = ∥FX∥} .

Thus, D1
x and D0

x are the maximal φ-invariant and the maximal φ-anti-invariant subspaces of TxM , respec-

tively.

Now we define an almost semiinvariant ξ⊥ -submanifold of an almost paracontact metric manifold, which

is analogous to the definition of an almost semiinvariant ξ⊥ -submanifold of an almost contact metric manifold

[16].

Definition 4.1 An ξ⊥ -submanifold M of an almost paracontact metric manifold M̃ is said to be an almost

semiinvariant ξ⊥ -submanifold of M̃ if there are k functions λ1, . . . , λk defined on M with values in the open

interval (0, 1) such that

(1) λ2
1(x), . . . , λ

2
k(x) are distinct eigenvalues of P 2 at each x ∈ M with

TxM = D1
x ⊕D0

x ⊕Dλ1
x ⊕ · · · ⊕ Dλk

x ,

(2) the dimensions of D1
x, D0

x, Dλ1
x , . . . ,Dλk

x are independent of x ∈ M .

In view of condition (2) in Definition 4.1 we can define P -invariant mutually orthogonal distributions

Dλ =
∪

x∈M

Dλ
x , λ ∈ {0, λ1, . . . , λk, 1},
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YÜKSEL PERKTAŞ et al./Turk J Math

on M such that

TM = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk .

Moreover, in view of [7] these distributions are differentiable.

If k = 0 in Definition 4.1, then it follows that P is an f (3,−1)-structure [14] on M and hence

dim(D1
x) = rank(Px) is independent of x ∈ M [15]; therefore, dim(D0

x) also does not depend on x ∈ M .

Thus, in the special case of k = 0, (1) implies (2) and M is called a semiinvariant ξ⊥ -submanifold. If k = 0

and D1
x = {0} (resp. D0

x = {0}), then M becomes an antiinvariant (resp. invariant) ξ⊥ -submanifold. If

D1
x = {0} = D0

x and k = 1 with and λ2
1(x) is constant, then M may be said to be a θ -slant submanifold with

the slant angle cos θ = λ1 .

Example 4.2 We consider the Euclidean space R9 and denote its points by x = (xi) . Let (ej) , j = 1, . . . , 9 ,

be the natural basis defined by ej = ∂/∂xj . We define a vector field ξ by ξ = ∂/∂x9 , a 1-form η by η = dx9 ,

and a (1, 1) tensor field φ by

φe1 = e2, φ e2 = e1, φe3 = e8, φ e8 = e3,

φ e4 = cos ν(x)e5 − sin ν(x)e6,

φ e5 = cos ν(x)e4 + sin ν(x)e7,

φ e6 = − sin ν(x)e4 + cos ν(x)e7,

φ e7 = sin ν(x)e5 + cos ν(x)e6, φ e9 = 0,

where ν : R9 → (0, π/2) is a smooth function. Then it is easy to verify that R9 is an almost paracontact

metric manifold with almost paracontact structure (φ, ξ, η) and the canonical associated metric g given by

g(ei, ej) = δij . The submanifold

M =
{(

x1, . . . , x9
)
∈ R9 | x6, x7, x8, x9 = 0

}
of R9 is an almost semiinvariant ξ⊥ -submanifold with

D1 = Span{e1, e2}, D0 = Span{e3}, Dλ = Span{e4, e5},

where for x ∈ M one has λ(x) = cos ν(x) .

Example 4.3 Let M̃ = {(x1, . . . , x5, y1, . . . , y5, t) ∈ R11 : xi, yj , t ∈ R, i, j = 1, ..., 5} be an 11-dimensional

manifold with the usual Euclidean metric g , where (x1, . . . , x5, y1, . . . , y5, t) are standard coordinates of R11 .

Define a tensor field φ of type (1, 1) , a vector field ξ , and a 1-form η on M̃ by

φ

(
∂

∂xi

)
=

∂

∂xi
, φ

(
∂

∂yj

)
= − ∂

∂yj
, φ

(
∂

∂t

)
= 0,

ξ =
∂

∂t
, η = dt,
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where i, j = 1, 2, 3, 4, 5 . It is easy to see that M̃ is an almost paracontact metric manifold with the almost

paracontact metric structure (φ, ξ, η, g) . Now let us consider the submanifold M of the almost paracontact

metric manifold M̃ given by

ι(u1, . . . , u6) =
(
u1 + u3, ku1 + u4, ku2 + k sinu5, u2 − k cosu6,

− k cosu5 + k sinu6, u5, u6, u3, 0, u4, 0
)
,

where ui , i ∈ {1, . . . , 6} , is a real parameter with ui ̸= 0, π
2 and k ∈ R−{−1, 0, 1} is a constant. It is easy to

see that

e1 =
∂

∂x1
+ k

∂

∂x2
, e2 = k

∂

∂x3
+

∂

∂x4
,

e3 =
∂

∂x1
+

∂

∂y3
, e4 =

∂

∂x2
+

∂

∂y5
,

e5 = k cosu5 ∂

∂x3
+ k sinu5 ∂

∂x4
+

∂

∂y1
, e6 = k sinu6 ∂

∂x3
+ k cosu6 ∂

∂x4
+

∂

∂y2

form a local orthogonal basis for TM . The submanifold M of M̃ is an almost semiinvariant ξ⊥ -submanifold

with

TM = D1 ⊕D0 ⊕Dλ, D1 = Span{e1, e2}, D0 = Span{e3, e4}, Dλ = Span{e5, e6},

where λ =
(
k2 − 1

)
/
(
k2 + 1

)
and θ = cos−1 λ is the slant angle of the distribution Dλ .

5. Some characterizations

Like the operator P 2 , the operators tF, F t , and f2 are also symmetric and their eigenvalues are bounded by

0 and 1. Let λ2(x), 0 ≤ λ(x) ≤ 1, be an eigenvalue of f2|{ξ}⊥ at x ∈ M and D̄λ
x denote the corresponding

eigenspace; that is,

D̄λ
x ≡ ker(f2|{ξ}⊥ − λ2(x)I)x.

For λ ̸= 1, we have FDλ
x = D̄λ

x and tD̄λ
x = Dλ

x . Equivalently, at x ∈ M , Xx (resp. Nx ) is an eigenvector of

P 2 (resp. f2|{ξ}⊥ ) corresponding to an eigenvalue λ2(x) if and only if FXx (resp. tNx ) is an eigenvector of

f2|{ξ}⊥ (resp. P 2 ) corresponding to the same eigenvalue λ2(x). Consequently, dim(Dλ
x) = dim(D̄λ

x). Thus, for

an ξ⊥ -submanifold M of an almost paracontact metric manifold M̃ , the following 2 statements are equivalent:

(1) TxM = D1
x ⊕D0

x ⊕Dλ1
x ⊕ · · · ⊕ Dλk

x ,

(2) T⊥
x M = D̄1

x ⊕ D̄0
x ⊕ D̄λ1

x ⊕ · · · ⊕ D̄λk
x ⊕ {ξ}x.

In view of the above discussion we immediately have the following:

Proposition 5.1 M is an almost semiinvariant ξ⊥ -submanifold of an almost paracontact metric manifold M̃

if and only if there are k functions λ1, . . . , λk , defined on M with values in the open interval (0, 1) such that

911
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(1) λ2
1(x), . . . , λ

2
k(x) are distinct eigenvalues of f2|{ξ}⊥ with

T⊥
x M = D̄1

x ⊕ D̄0
x ⊕ D̄λ1

x ⊕ · · · ⊕ D̄λk
x ⊕ {ξ}x, x ∈ M,

(2) the dimensions of D̄1
x , D̄0

x , D̄λ1
x , . . . , D̄λk

x are independent of x ∈ M .

Let 1− λ2(x), 0 ≤ λ(x) ≤ 1, be an eigenvalue of tF (resp. (Ft)|{ξ}⊥ ) at x ∈ M and Cλ
x (resp. C̄λ

x ) be

denoted by

Cλ
x = Ker(tF + (λ2(x)− 1)I)x (resp. C̄λ

x = Ker(Ft|{ξ}⊥ + (λ2(x)− 1)I)x.

Then X (resp. N ) is an eigenvector of P 2 (resp. f2|{ξ}⊥ ) corresponding to an eigenvalue λ2(x) if and only if

X (resp. N ) is an eigenvector of tF (resp. Ft|{ξ}⊥ ) corresponding to the eigenvalue 1−λ2(x). Consequently,

Dλ
x = Cλ

x and D̄λ
x = C̄λ

x and hence we have the following:

Proposition 5.2 M is an almost semiinvariant ξ⊥ -submanifold of an almost paracontact metric manifold M̃

if and only if there are k functions λ1, . . . , λk , defined on M with values in (0, 1) such that

(1) (1− λ2
1(x)), . . . , (1− λ2

k(x)) are distinct eigenvalues of tF (resp. Ft|{ξ}⊥ ) with

TxM = C1
x ⊕ C0

x ⊕ Cλ1
x ⊕ · · · ⊕ Cλk

x ,(
resp. T⊥

x M = C̄1
x ⊕ C̄0

x ⊕ C̄λ1
x ⊕ · · · ⊕ C̄λk

x ⊕ {ξ}x
)
, x ∈ M,

(2) the dimensions of C1
x, C0

x, Cλ1
x , . . . , Cλk

x (resp. C̄1
x, C̄0

x, C̄λ1
x , . . . , C̄λk

x ) are independent of x ∈ M .

Now we give the following characterization of semiinvariant ξ⊥ -submanifolds.

Proposition 5.3 M is a semiinvariant ξ⊥ -submanifold of an almost paracontact metric manifold if and only

if one of the following equivalent conditions holds.

(1) TxM = D1
x ⊕D0

x, x ∈ M, (2) T⊥
x M = D̄1

x ⊕ D̄0
x ⊕ {ξ}x , x ∈ M,

(3) FP = 0, (4) fF = 0,

(7) tFP = 0, (8) tfF = 0,

(11) f2F = 0, (12) tFP = 0,

(15) Ftf = 0, (16) FPt = 0,

(19) P 2t = 0, (20) Ptf = 0,

(5) tf = 0, (6) Pt = 0,

(9) Ptf = 0, (10) P 3 − P = 0,

(13) FP 2 = 0, (14) FtF − F = 0,

(17) fFt = 0, (18) f3 − f = 0,

(21) tf2 = 0, (22) tF t− t = 0.

Proof The equivalence of statements (1) and (2) is obvious. The equivalence of statements (3)–(22) can also be

easily verified. Now we show the equivalence of statements (1) and (3). Since ker(FP )x = D1
x⊕D0

x , statement (1)

implies statement (3). Conversely, if statement (3) is true, then φ(PX) = P 2X for X ∈ TxM . Consequently,

for Dx ≡ P (TxM), we get φ(Dx) ⊂ Dx . In view of φX = PX for X ∈ Dx , we get Xx = φ2Xx = φP (Xx);

that is, Dx ⊂ φ(Dx). Thus, φ(Dx) = P (Dx) = Dx , which shows that Dx = D1
x . Let D⊥

x denote the orthogonal

complement to D1
x in TxM . Now, for X ∈ D⊥

x and Y ∈ TxM , we have g(φX, Y ) = g(X,φY ) = g(X,PY ) = 0,

which implies that D⊥
x = D0

x . Hence statement (3) implies statement (1).
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Finally, if M is a semiinvariant ξ⊥ -submanifold, then statement (1) is obvious by the definition. Con-

versely, if statement (1) is true then it implies statement (3), which is equivalent to statement (10). From

statement (10) it follows that dim(D1
x) = rank(P ) is independent of x ∈ M [15] (thus, P becomes an f (3,−1)-

structure on M ). Therefore, dim(D0
x) = ker(Px) also does not depend on x ∈ M . This completes the proof.

2

6. Para-CR-structure

First we recall the notion of a CR-manifold. Let M be a differentiable manifold and TCM be the complexified

tangent bundle to M . A CR-structure [2] on M is a complex subbundle H of TCM such that H ∩H = {0}
and H is involutive. A manifold endowed with a CR-structure is called a CR-manifold. It is known that a

differentiable manifold M admits a CR-structure [1] if and only if there is a differentiable distribution D and

a (1, 1) tensor field P on M such that for all X,Y ∈ D

P 2X = −X,

[P, P ] (X,Y ) ≡ [PX,PY ]− [X,Y ]− P [PX, Y ]− P [X,PY ] = 0,

[PX,PY ]− [X,Y ] ∈ D.

Analogous to the definition of CR-structure, we now define a para-CR-structure.

Definition 6.1 A differentiable manifold M is said to admit a para-CR-structure if there is a differentiable

distribution D and a (1, 1) tensor field P on M such that for all X,Y ∈ D

P 2X = X, (6.1)

[P, P ] (X,Y ) ≡ [PX,PY ] + [X,Y ]− P [PX, Y ]− P [X,PY ] = 0, (6.2)

[PX,PY ] + [X,Y ] ∈ D. (6.3)

A manifold equipped with a para-CR-structure is called a para-CR-manifold.

An almost paracontact structure (φ, ξ, η) is normal if the Nijenhuis tensor [φ,φ] of φ satisfies [17]

[φ,φ]− 2dη ⊗ ξ = 0. (6.4)

Now we prove the following:

Theorem 6.2 If M is an almost semiinvariant ξ⊥ -submanifold of a normal almost paracontact metric mani-

fold M̃ with nontrivial invariant distribution, then M possesses a para-CR-structure.

Proof Since M̃ is normal, for X,Y ∈ D1 we get P 2X = X and, in view of [φ,φ] = 2dη ⊗ ξ , we have

0 = [P, P ](X,Y )− F ([X,PY ] + [PX, Y ]),

from which it follows that
F ([PX, Y ] + [X,PY ]) = 0;
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that is, [PX, Y ] + [X,PY ] ∈ D1 . Thus

[PX,PY ] + [X,Y ] = P ([PX, Y ] + [X,PY ]) ∈ D1,

and hence (D1, P ) is a para-CR-structure on M . 2

Theorem 6.3 An almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold with nontrivial invariant

distribution is a para-CR-manifold.

Proof Since every para-Sasakian manifold is normal [17], by Theorem 6.2, the proof is immediate. 2

From Theorem 6.2, it is obvious that normality of M̃ is a sufficient condition for an almost semiinvariant

ξ⊥ -submanifold with nontrivial invariant distribution to carry a para-CR-structure. However, this is not

necessary, and now we construct an example of a semiinvariant ξ⊥ -submanifold M of an almost paracontact

metric manifold M̃ such that M is a para-CR-manifold and M̃ is not normal.

Example 6.4 Consider the Euclidean space R5 and denote its points by x = (x1, . . . , x5) . Let (ej) , j =

1, . . . , 5 , be the natural basis defined by ej ≡ ∂/∂xj , and g the canonical metric defined by g(ei, ej) = δij , i, j =

1, . . . , 5 . For each x ∈ R5 , the set (Ej) defined by

E1 = e1, E2 = cos(x1)e2 + sin(x1)e3, E3 = − sin(x1)e2 + cos(x1)e3, E4 = e4, E5 = e5

forms an orthonormal basis. As the point x varies in R5 the above set of equations defines 5 vector fields also

denoted by (Ej) . Now we define a vector field ξ by ξ ≡ ∂/∂x5 , a 1-form η by η ≡ dx5 , and a (1, 1) tensor

field φ by

φ(E1) = E2, φ(E2) = E1, φ(E3) = E4, φ(E4) = E3, φ(E5) = 0.

Then (φ, ξ, η, g) define an almost paracontact metric structure on R5 . Since

[φ,φ](E1, E4)− 2dη(E1, E4)ξ = E1 ̸= 0,

the almost paracontact structure is not normal. The submanifold

M = {x ∈ R5 : x4, x5 = 0}

is a semiinvariant ξ⊥ -submanifold of R5 with D1 = Span{E1, E2} and D0 = Span{E3} such that (D1, φ) is

a para-CR-structure on M . Moreover, D1 is not integrable because [E1, E2] = E3 .

7. Integrability of distributions

Theorem 7.1 If M is an almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold, then D0 is

integrable if and only if

AFXY = 0, X, Y ∈ D0, (7.1)

or equivalently

0 = g(σ(X,PY )− σ(PX, Y ), FZ), X, Y ∈ D1, Z ∈ TM.
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Proof First we note that

g (X, tN) = g (FX,N) , X ∈ TM, N ∈ T⊥M. (7.2)

For X,Y ∈ D0 , Z ∈ TM , in view of (2.7), (7.2), (3.9), and (3.5), we have

g(AFXY, Z) = g(σ(Y,Z), FX) = g(tσ(Y,Z), X)

= g(∇ZPY − P∇ZY −AFY Z,X)

= −g(∇ZY, PX)− g(AFY Z,X) = − g(AFY X,Z),

which implies

AFXY +AFY X = 0, X, Y ∈ D0. (7.3)

On the other hand, in view of kerP = D0 and (3.13), the distribution D0 is integrable if and only if

AFXY −AFY X = 0, X, Y ∈ D0,

which in view of (7.3) completes the proof. 2

In the following theorem necessary and sufficient conditions for D1 to be integrable have been obtained.

Theorem 7.2 If M is an almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold, then D1 is

integrable if and only if

σ(X,PY )− σ(PX, Y ) = 0, X, Y ∈ D1, (7.4)

or equivalently,

g(σ(X,PY )− σ(PX, Y ), FZ) = 0, X, Y ∈ D1, Z ∈ TM. (7.5)

Proof In view of kerF = D1 and (3.14), D1 is integrable if and only if (7.4) holds. Next, for X ∈ D1, Y ∈
TM, N ∈ D̄1 in view of (3.10), (3.4), and (3.7), we obtain

g(φσ(X,Y ), N) = g(fσ(X,Y ), N)

= g(∇⊥
Y FX − F∇Y X + σ(Y, PX) + g(X,Y )ξ,N)

= g(σ(PX, Y ) + g(X,Y )ξ,N),

which gives

g(φσ(X,Y ), N) = g(σ(PX, Y ), N) + g (X,Y ) η (N) (7.6)

for X ∈ D1, Y ∈ TM, N ∈ D̄1 . From (7.6) we get

(σ(X,PY )− σ(PX, Y )) ⊥ D̄1, X, Y ∈ D1. (7.7)

In view of F (TM) = D̄0 ⊕ D̄λ1 ⊕ · · · ⊕ D̄λk and (7.7), it follows that (7.4) and (7.5) are equivalent. 2

Theorem 7.3 In an almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold, the distribution D1 ⊕
D0 is integrable if and only if the following statements are true.
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(a) ∇XPY −∇Y PX ∈ D1, X, Y ∈ D1 ,

(b) AFXY ∈ D1, X, Y ∈ D0 ,

(c) ∇XPY +AFXY ∈ D1, Y ∈ D1, X ∈ D0 .

Proof Using equivalence of Z ∈ D1 ⊕D0 and PZ ∈ D1 in (3.13) and taking into account equation (7.3), the

proof is complete. 2

Theorem 7.4 In an almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold, the distribution D1 ⊕
D0 is integrable if and only if the following statements are true.

(a) σ(X,PY )− σ(PX, Y ) ∈ D̄0, X, Y ∈ D1 .

(b) ∇⊥
XFY −∇⊥

Y FX ∈ D̄0, X, Y ∈ D0 .

(c) ∇⊥
XFY − σ(PX, Y ) ∈ D̄0, X ∈ D1, Y ∈ D0 .

Proof Using equivalence of Z ∈ D1 ⊕D0 and FZ ∈ D̄0 in (3.14), the proof is complete. 2

Theorem 7.5 For direct sum D of a subfamily of {Dλ1 , . . . ,Dλk} on an almost semiinvariant ξ⊥ -submanifold

of a para-Sasakian manifold, the following statements are equivalent.

(1) D is integrable,

(2) (a) ∇XPY −∇Y PX +AFXY −AFY X ∈ D, X, Y ∈ D ,

(2) (b) ∇⊥
XFY −∇⊥

Y FX + σ(X,PY )− σ(PX, Y ) ∈ D̄, X, Y ∈ D ,

where D̄ is the direct sum of the corresponding subfamily {D̄λ1 , . . . , D̄λk} .

Proof The proof follows from (3.13), (3.14), and the equivalence of Z ∈ Dλi to PZ ∈ Dλi along with

FZ ∈ D̄λi . 2

Theorem 7.6 For an almost semiinvariant ξ⊥ -submanifold of a para-Sasakian manifold, the following state-

ments are equivalent:

(1) D1 ⊕D is integrable,

(2) ∇⊥
XFY −∇⊥

Y FX + σ(X,PY )− σ(PX, Y ) ∈ D̄, X, Y ∈ D1 ⊕D ,

where D is the direct sum of a subfamily of {Dλ1 , . . . ,Dλk} and D̄ is the direct sum of the corresponding

subfamily of {D̄λ1 , . . . , D̄λk} .

Proof In view of (3.14) and the equivalence of Z ∈ D1 ⊕Dλi and FZ ∈ D̄λi , the proof becomes obvious. 2
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Theorem 7.7 For direct sum D of a subfamily of {Dλ1 , . . . ,Dλk} on an almost semiinvariant ξ⊥ -submanifold

of a para-Sasakian manifold, the following statements are equivalent:

(1) D0 ⊕D is integrable,

(2) (a) (∇XPY +AFXY −AFY X) ∈ D, X ∈ D0, Y ∈ D ,

(2) (b) (∇XPY −∇Y PX +AFXY −AFY X) ∈ D, X, Y ∈ D .

(2) (c) AFXY ∈ D, X, Y ∈ D0 .

Proof Using the equivalence of Z ∈ D0 ⊕Dλi and PZ ∈ Dλi and (7.3) in (3.13), we get (1) ⇔ (2). 2

8. Certain parallel operators

In this section we investigate certain parallel operators on ξ⊥ -submanifolds of almost paracontact metric

manifolds and para-Sasakian manifolds.

Analogous to Definition 8.1 of [16], first we give the following definition:

Definition 8.1 An ξ⊥ -submanifold M of an almost paracontact metric manifold is said to satisfy

(1) the condition (A) if M is an almost semiinvariant ξ⊥ -submanifold such that each λi is constant and

each of the distributions D1,D0,Dλ1 , . . . ,Dλk is parallel, and

(2) the condition (B) if M is an almost semiinvariant ξ⊥ -submanifold such that each λi is constant and

each of the subbundles D̄1, D̄0, D̄λ1 , . . . , D̄λk and {ξ} are parallel with respect to ∇⊥ .

We note that if M satisfies condition (A), then it is locally product of leaves of D1,D0,Dλ1 , . . . ,Dλk .

Analogous to Theorem 7.3 of [19], we may state the following:

Theorem 8.2 For an ξ⊥ -submanifold M of an almost paracontact metric manifold, we have the following flow

diagram.

∇P = 0 ⇒ ∇(P 2) = 0 ⇔ (A) ⇐ ∇t = 0
⇕

∇f = 0 ⇒ ∇(f2) = 0 ⇔ (B) ⇐ ∇F = 0.

Theorem 8.3 An ξ⊥ -submanifold M of a para-Sasakian manifold is an invariant ξ⊥ -submanifold if and only

if ξ is parallel with respect to the normal connection.

Proof The proof follows from (3.16). 2

Theorem 8.4 Let M be an ξ⊥ -submanifold of a para-Sasakian manifold. If f2 is parallel, then M is an

invariant ξ⊥ -submanifold.

Proof If ∇(f2) = 0, in view of Theorem 8.2, it follows that M satisfies condition (B). Consequently, ξ is

parallel with respect to the normal connection, which in view of Theorem 8.3 provides the proof. 2

Similarly, we can prove the following:
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Theorem 8.5 For an ξ⊥ -submanifold M of a para-Sasakian manifold, if F is parallel (or equivalently t is

parallel), then M is an invariant ξ⊥ -submanifold.

In a smooth manifold M , an almost product Riemannian structure consists of a (1, 1) tensor P and an

associated Riemannian metric g such that P 2 = I and g(PX,PY ) = g(X,Y ) for all vector fields X and Y

on M . Moreover, if P is covariantly constant with respect to the Levi-Civita connection, then (M,P ) is said

to be a locally Riemannian product manifold [20].

Theorem 8.6 If M is an invariant ξ⊥ -submanifold of a para-Sasakian manifold, then it is a locally Rieman-

nian product manifold. Moreover, f is parallel.

Proof Since F is zero for an invariant ξ⊥ -submanifold, from (3.9) it follows that ∇P = 0. Thus, P provides

a locally Riemannian product structure on M . The remaining part follows from (3.12). 2
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