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Abstract: Let M be a real hypersurface in a complex space form M2(c) , c ̸= 0. In this paper, we prove that Sϕ = ϕS

on M if and only if M is pseudo-Einstein.
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1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex

space form, which is denoted by Mn(c). As is well known, a complete and simply connected complex space

form is complex analytically isometric to a complex projective space PnC , a complex Euclidean space Cn or

a complex hyperbolic space HnC , according to c > 0, c = 0, or c < 0. In this paper, we consider a real

hypersurface M in a complex space form Mn(c), c ̸= 0. Then M has an almost contact metric structure

(ϕ, g, ξ, η) induced from the Kaehler metric and complex structure J on Mn(c). The structure vector field ξ is

said to be principal if Aξ = αξ is satisfied, where A is the shape operator of M and α = η(Aξ). In this case,

it is known that α is locally constant and that M is called a Hopf hypersurface.

Takagi [6] completely classified homogeneous real hypersurfaces in such hypersurfaces as 6 model spaces,

A1 , A2 , B , C , D , and E . Berndt [1] classified all homogeneous Hopf hypersurfaces in HnC as 4 model spaces,

which are said to be A0 , A1 , A2 , and B .

The Ricci operator of M will be denoted by S . One of the most interesting problems in the study of real

hypersurfaces M in Mn(c) is to investigate a geometric characterization of these model spaces. M satisfying

ϕS = Sϕ have been classified for n ≥ 3. Refer to Theorems 6.18–6.19 in the Niebergall–Ryan survey[4].

The holomorphic distribution T0 of a real hypersurface M in Mn(c) is defined by

T0(p) = {X ∈ Tp(M) | g(X, ξ)p = 0},

where Tp(M) is the tangent space of M at p ∈ M .

The Ricci operator S is said to be η -parallel if

g((∇XS)Y,Z) = 0 (1)
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for any vector field X , Y , and Z in T0 .

As for Ricci operator and structure tensor ϕ , one of the present authors proved the following.

Theorem 1 ([5]) Let M be a real hypersurface with η -parallel Ricci operator in a complex space form Mn(c) ,

c ̸= 0 , n ≥ 3 . If M satisfies

g((Sϕ− ϕS)X,Y ) = 0 (2)

for any X and Y in T0 , then M is locally congruent to one of the model spaces of type A or type B .

For the Ricci operator S on a real hypersurface M , we define pseudo-Einstein if there exist constants ρ

and σ such that for any tangent vector X ,

SX = ρX + ση(X)ξ

, where S and η(X) denote the Ricci operator and the dual 1-form of the unit vector field ξ . Additionally,

with respect to the Ricci operator and η -parallel, Song and 2 of the present authors [3] proved the following.

Theorem 2 ([3]) A real hypersurface in a complex space form M2(c) , c ̸= 0 , satisfies (1) and (2) if and only

if it is pseudo-Einstein.

The purpose of this paper is to investigate the structure of space in tangent bundle TM by the Ricci

operator. Concretely, we shall prove the following.

Main theorem A real hypersurface in a complex space form M2(c) , c ̸= 0 , satisfies Sϕ = ϕS if and only if

it is pseudo-Einstein.

The authors would like to express their sincere gratitude to the referee who gave them valuable suggestions

and comments during the preparation of this paper.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M2(c), and let N be a unit normal vector

field of M . By ∇̃ we denote the Levi-Civita connection with respect to the Fubini–Study metric tensor g̃ of

M2(c). Then the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M , where g denotes the Riemannian metric tensor of M induced

from g̃ and A is the shape operator of M in M2(c). For any vector field X on M we put

JX = ϕX + η(X)N, JN = −ξ,

where J is the almost complex structure of M2(c). Then we see that M induces an almost contact metric

structure (ϕ, g, ξ, η); that is,

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ) (3)
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for any vector fields X and Y on M . Since the almost complex structure J is parallel, we can verify from the

Gauss formula that

∇Xξ = ϕAX. (4)

Since the ambient manifold is of constant holomorphic sectional curvature c , we have the Gauss equation

R(X,Y )Z = c
4{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY (5)

for any vector fields X , Y , and Z on M , where R denotes the Riemannian curvature tensor of M . From (3)

the Ricci operator S of M is expressed by

SX =
c

4
{(2n+ 1)X − 3η(X)ξ}+mAX −A2X, (6)

where m = traceA is the mean curvature of M .

3. Proof of the main theorem

Let W be a unit vector field on M with the same direction of the vector field −ϕ∇ξξ , and let µ be the length

of the vector field −ϕ∇ξξ if it does not vanish. It is not possible to define W without specifying that µ(p) ̸= 0.

Then it is easily seen from (4) that

Aξ = αξ + µW, (7)

where α = η(Aξ). We notice that W is orthogonal to ξ .

In this section, we assume that M is not Hopf. Then there are scalar fields γ , ε , and δ and a unit vector

field W and ϕW orthogonal to ξ such that

AW = µξ + γW + εϕW, AϕW = εW + δϕW (8)

and

m = traceA = α+ γ + δ (9)

in M2(c). We first prove the following lemma.

Lemma 3 Let M be a real hypersurface with µ ̸= 0 satisfying Sϕ = ϕS in a complex space form M2(c) ,

c ̸= 0 . Then we have AW = µξ + γW , AϕW = 0 , and µ2 = αγ .

Proof By making the substitutions X = ξ , X = W , X = ϕW in (6) and using (7)–(9), we have the following

equations:

Sξ = (
c

2
+ αγ + αδ − µ2)ξ + µδW − µεϕW,

SW = µδξ + (
5c

4
+ αγ + γδ − µ2 − ε2)W + αεϕW,

SϕW = −µεξ + αεW + (
5c

4
+ αδ + γδ − ε2)ϕW.
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If we apply ϕ to the above third equation, then we have

(Sϕ− ϕS)W = −µεξ + 2αεW + (αδ − αγ + µ2)ϕW. (10)

The condition Sϕ = ϕS together with (6) implies that

(ϕA2 −A2ϕ)X = m(ϕA−Aϕ)X. (11)

If we put X = ξ into (11) and use (7)–(9), we have ε = 0 and δ = 0. Therefore, it follows that AW is expressed

in terms of ξ and W only and AϕW = 0. Putting X = W into (11) and using the results of the above, we

obtain µ2 = αγ . 2

We shall prove the main theorem.

Proof of main theorem. Assume that M is not Hopf, and work in a small set where Aξ ̸= αξ and therefore

W , µ , etc. can be defined. From Lemma 3.1, the Ricci operator S expressed that

Sξ =
c

2
ξ, SW =

5c

4
W, SϕW =

5c

4
ϕW.

That is, M is pseudo-Einstein with

SX =
5c

4
X − 3c

4
g(X, ξ)ξ.

This contradicts a result of Kim and Ryan [2]. Having shown that M must be Hopf, one can choose W to be

any unit vector field orthogonal to ξ and then the condition Sϕ = ϕS yields α(γ − δ) = 0 and the criteria are

satisfied (see [2]). Thus, M is pseudo-Einstein. Conversely, if M is pseudo-Einstein, observe that Sϕ = ϕS

must be satisfied. 2

Remark. In this paper, we proved that Sϕ = ϕS on M if and only if S is η -parallel and g((Sϕ−ϕS)X,Y ) = 0

for all X and Y in T0 .
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