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Abstract: The Leibniz–Hopf algebra F is the free associative algebra over Z on one generator Sn in each degree n > 0,

with coproduct given by ∆(Sn) =
∑

i+j=n Si ⊗ Sj . We introduce a new perspective on the Adem relations in the mod

2 Steenrod algebra A2 by studying the map π∗ dual to the Hopf algebra epimorphism π : F ⊗ Z/2 → A2 . We also

express Milnor’s Hopf algebra conjugation formula in A∗
2 in a different form and give a new approach for the conjugation

invariant problem in A∗
2 .
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1. Introduction

The Leibniz–Hopf algebra is the free associative Z -algebra F on one generator Sn in each positive degree with

the graded, connected Hopf algebra structure determined by giving Sn degree n and ∆(Sn) =
∑

i+j=n S
i ⊗

Sj (where S0 denotes 1) [11]. This Hopf algebra is cocommutative and has been studied as the ring of

noncommutative symmetric functions [4, 10, 12]. A topological model for this Hopf algebra is given by

interpreting it as the homology of the loop space of the suspension of the infinite complex projective space,

H∗(ΩΣCP∞) [2]. The graded dual of the Leibniz–Hopf algebra F∗ is the ring of quasisymmetric functions

with the outer coproduct [4, 14], which was the subject of the Ditters conjecture [3, 11, 12, 13] and isomorphic

to the cohomology of ΩΣCP∞ [2], making it relevant to a wide area of combinatorics, algebra, and topology.

Note that in [11, Section 1] the graded dual of F over the integers is denoted by M and is called the overlapping

shuffle algebra.

The mod 2 reduction F ⊗ Z/2 also has a connection with topology, since it has the mod 2 Steenrod

algebra A2 [4, Section 5] as a quotient. A2 is a vector space over Z/2 with a basis made by admissible

monomials [17]. Milnor [15] showed that the mod 2 dual Steenrod algebra A∗
2 is a polynomial algebra on

ξ1, ξ2, ξ3, . . . , where the grading of ξi is 2i − 1. In [15], Milnor also showed that A∗
2 is also a Hopf algebra with

a unique antipode or conjugation, here denoted by χA∗
2
. This conjugation is an important tool in algebraic

topology, since it is relevant for the commutativity of ring spectra [1, Lecture 3]. An element x ∈ A∗
2 is an

invariant under χA∗
2
if and only if χA∗

2
(x) = x . In other words, (χA∗

2
−1)(x) = 0 (where 1 denotes the identity

homomorphism). Thus, Ker(χA∗
2
−1) is a subvector space of A∗

2 , which is formed by the conjugation invariants

in A∗
2.
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In [7], some progress was made to calculate Ker(χA∗
2
−1); however, a complete picture was not achieved.

In [6], as another approach, motivated by the work of Crossley and Whitehouse [7, 8], a vector space basis

was calculated for the conjugation invariants in the mod 2 dual Leibniz–Hopf algebra F∗
2 (where F ⊗ Z/2 is

denoted by F2 ). The problem of finding conjugation invariants is interesting and was also studied in [5].

In this paper we introduce a different view of the Adem relations in terms of π∗ : A∗
2 → F∗ ⊗ Z/2. A

description of π∗ gives rise to a new perspective on the Adem relations in A2 (details are given in Section 3)

and leads us to present χA∗
2
in a different form. Our results also lead to express duals of admissible monomials

in terms of ξ1, ξ2, ξ3, . . . . In the last section, we give a detailed description of the connection between π∗ and

the vector space Ker(χA∗
2
− 1). At the end of the paper we give tables to support the calculations throughout

the paper.

2. Preliminaries

In this section we introduce the main algebraic structures that are used in this work. Let O be an algebraic

object. In the rest of the paper we denote the degree of O by deg(O), spanning set of O by Span(O), dimension

of O by dim(O), and rank of O by rank (O).

F2 is the free Z/2-algebra on generators S1, S2, . . . , where Si is of degree i . This algebra has a basis

given by all words Sj1Sj2 · · ·Sjl . We denote the dual basis for F∗
2 by {Sj1,j2,...,jl} . We now give a slightly

revised version of the definition of an overlapping shuffle product [4, Section 2]:

The overlapping shuffle product of Sa1,...,ak
and Sb1,...,bm is denoted by µ and defined by

µ(Sa1,...,ak
⊗ Sb1,...,bm) =

∑
h

h(Sa1,...,ak,b1,...,bm),

where h first inserts a certain number ℓ of 0s into a1, . . . , ak , and inserts a number of ℓ
′
of 0s into b1, . . . , bm ,

where

0 ≤ ℓ ≤ m, 0 ≤ ℓ
′
≤ k, k + ℓ = m+ ℓ

′
,

and then it adds the first indices together, then the second, and so on. The sum is over all such h for which

the result contains no 0. In F∗
2 , as an example,

µ(S3,2 ⊗ S4) = S3,2,4 + S3,4,2 + S4,3,2 + S7,2 + S3,6.

µ(S4 ⊗ S4) = S4,4 + S4,4 + S8 = S8

(see [11, Section 2] for an alternative description of this product).

Ehrenborg [9, Proposition 3.4] gave a formula for the conjugation on F∗ . The mod 2 reduction of this

formula is given by

χ(Sj1,j2,...,jl) =
∑

Si1,...,ik

summed over all coarsenings i1, . . . , ik of the reversed word jl, . . . , j2, j1 , i.e. all words i1, . . . , ik that admit

jl, . . . , j2, j1 as a refinement [6].

In order to make Section 5 of this paper more clear, we recall some of the terminology from [6]. A word

Sj1,j2,...,jn is a palindrome if jg = jn−(g−1) for all g ∈ {1, . . . , n} . A palindrome is referred to as an even-length
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palindrome or an odd-length palindrome, here denoted by ELP and OLP, respectively, according to whether its

length is even or odd. Hence, for example, S2,3,2 is an OLP and S4,1,1,4 is an ELP. A non-palindrome Sj1,...,jk

is referred to as a higher non-palindrome, here denoted by HNP, if j1, . . . , jk is bigger than its reverse jk, . . . , j1 ,

with respect to left lexicographic ordering. For instance, S5,4,2,5 is an HNP, since 5, 4, 2, 5 is lexicographically

bigger than 5, 2, 4, 5. Let Sj1,...,j2m+1 be an OLP. The “λ”-image is defined as

λ(Sj1,...,j2m+1) =
∑

Si1,...,ik,jm+2,...,j2m+1

summed over all words Si1,...,ik,jm+2,...,j2m+1 , where j1, . . . , jm+1 is a refinement of i1, . . . , ik . For example,

λ(S1,1,1,1,1) = S1,1,1,1,1 + S2,1,1,1 + S1,2,1,1 + S3,1,1.

3. A different view of the Adem relations

We now turn our attention to A2. Let Sqn denote the Steenrod square of degree n [17]. Then A2 is defined

as a quotient of F2 by the Adem relations:

SqaSqb =

[ a2 ]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj , 0 < a < 2b, (1)

and Sq0 = 1, giving a graded algebra epimorphism π : F2 → A2 (i.e. it preserves degrees), where π(Sn) = Sqn .

Furthermore, π is a graded Hopf algebra epimorphism, because the coproduct on the generators is defined in

the same way for F2 as for A2. Note that A2 is also a connected algebra.

Since π is a Hopf algebra epimorphism, its dual π∗ : A∗
2 → F∗

2 is also a Hopf algebra morphism. In

particular, π∗ is multiplicative. It is also a Hopf algebra inclusion [6]. Note that by the dual we mean the

graded dual of π .

We write SqI = Sqi1 · · ·Sqik , where I = (i1, . . . , ik) is a sequence of positive integers, where deg(I) =

i1 + i2 + · · · + ik , and say that I is admissible if ir−1 ≥ 2ir for 2 ≤ r ≤ k and ir ≥ 1. A2 is a vector space

over Z/2 and its admissible monomials form a basis. We denote the corresponding dual basis element by SqI

and define it by the duality as follows:

SqI(Sq
J ) =

{
1 if I = J,
0 otherwise,

where J is a sequence of positive integers.

Up to degree 4, a vector space basis for A∗
2 is

1, Sq1, Sq2, Sq3, Sq2,1 Sq4, Sq3,1.

In this section we give some descriptions of π∗ on SqI s. A description of π∗ gives rise to a different view

of the Adem relations. More precisely, this comes from looking at π∗ rather than π . The Adem relations are

the kernel of π , and π is defined directly from the Adem relations. Hence, π∗ contains all information about

the Adem relations. If we could give a formula for π∗ , the Adem relations could be retrieved from it. It can

be hard to give that formula in higher degrees, but in lower degrees we can see it. See Table 1 to observe what

π∗ does to each basis element in those degrees. We now give the following example:
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Table 1. π∗ -images of dual admissible basis elements up to degree 5.

Degree 1 π∗(Sq1) = S1

Degree 2 π∗(Sq2) = S2

Degree 3 π∗(Sq3) = S3 + S1,2

π∗(Sq2,1) = S2,1

Degree 4 π∗(Sq4) = S4

π∗(Sq3,1) = S3,1 + S2,2 + S1,2,1

Degree 5 π∗(Sq5) = S5 + S2,3 + S2,1,2 + S1,4

π∗(Sq4,1) = S4,1 + S2,3 + S2,1,2

Example 3.1 Let us calculate π⋆(Sq3). Since π⋆(Sq3) is equal to Sq3 ◦ π and deg(Sq3) = 3, it belongs to

Span
{
S3, S2S1, S1S2, S1S1S1

}
. The map π first gives:

π(S3) = Sq3, π(S2S1) = Sq2Sq1, π(S1S2) = Sq1Sq2, π(S1S1S1) = Sq1Sq1.

Since π is a quotient map, we get:

π(S3) = Sq3, π(S2S1) = Sq2Sq1, π(S1S2) = Sq3, π(S1S1S1) = 0.

Hence, π⋆(Sq3) has S3 and S1,2 as a summand, i.e. π⋆(Sq3) = S3 + S1,2.

Let C be an arbitrary length admissible sequence of degree m . It is natural to ask: what are the

summands of π⋆(SqC)? By definition of π⋆(SqC), we write:

π⋆(SqC) =
∑

Si1,i2,...,ik ,

summed over all sequences i1, i2, . . . , ik of degree m for which Sqi1,i2,...,ik has SqC as a summand when

expressed as a sum of elements in the admissible basis elements. More precisely, we write

π⋆(SqC) = SC +
∑

Sj1,j2,...,jr , (2)

summed over all (non-admissible) sequences j1, j2, . . . , jr for which Sqj1,j2,...,jr has SqC as a summand when

expressed as a sum of elements in the admissible basis elements.

Problem 3.2 Can we find an explicit formula for π⋆(SqC)?

We give particular answers to Problem 3.2 in the following:

Proposition 3.3 Let a > 0 and b > 0 be integers with a+ b = n . Then

π⋆(Sqn) has Sa,b as a summand ⇐⇒
(
b− 1

a

)
≡ 1 (mod 2).

Proof Let deg(Sa,b) = n . π⋆(Sqn) has Sa,b as a summand ⇔ Sqa,b has Sqn as a summand when written

as sum of elements in the admissible basis. This is only possible for j = 0 and n = a+ b in the Adem relations

in Eq. (1). 2
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Proposition 3.4 π⋆(Sq2n) = S2n for all n ≥ 0.

Proof π⋆(Sq2n) has Si1,...,ik as a summand ⇔ Sqi1 · · ·Sqik has Sq2
n

as a summand when expressed as the

sum of elements in the admissible basis. The rest of the proof follows from the fact that Sq2
n

is indecomposable

(see Lemma 4.2 of [17, Chapter 1]). 2

Proposition 3.5 π⋆(Sq2n−1,2n−2,...,2k) = S2n−1,2n−2,...,2k for all n > k ≥ 0.

Proof The proof is inspired by proof of Proposition 1.2.3 in [16]. We first see deg(Sq2n−1,2n−2,...,2k) = 2n−2k .

Let J = j1, j2, . . . , jv be any nonadmissible sequence of degree 2n − 2k . π⋆(Sq2n−1,2n−2,...,2k) has Sj1,i2,...,jv

as a summand ⇔ Sqj1,j2,...,jv has Sq2
n−1,2n−2,...,2k as a summand when expressed as sum of elements in the

admissible basis. If J is nonadmissible, then v > n− k and there exists r , 1 ≤ r ≤ v− 1 such that jr < 2jr+1 .

By the Adem relations, we get

SqJ =

[ jr2 ]∑
0

λySq
J

′

Sqjr+jr+1−ySqySqJ
′′

,

where λy ∈ Z/2, J
′
= j1, . . . , jr−1 , J

′′
= jr+2, . . . , jv , 0 ≤ y ≤

[
jr
2

]
. However, for SqJ having Sq2

n−1,2n−2,...,2k

as a summand, Sqjr+jr+1−y must be equal to Sq2
n−r

. The rest of the proof can be seen by adapting the proof

of Proposition 3.4. 2

One can wonder if Proposition 3.5 still holds for the π⋆ -image of any admissible sequence. This first fails

in degree 4, since π⋆(Sq3,1) = S3,1 + S2,2 .

4. π⋆ via ξ1, ξ2, . . .

We first recall the definition of ξn [17]:

< ξn, Sq
T >=

{
1 if T = Tn,
0 otherwise,

where Tn = (2n−1, 2n−2, . . . , 2, 1) for n ≥ 1.

As A∗
2 is a polynomial algebra, Im(π⋆) is generated by π⋆(ξi), but we do not have a good description

for π⋆(ξi11 ξi22 . . . ξinn ).

Problem 4.1 It would be nice to have an algorithm to establish if a fixed element in F∗
2 , i.e. a linear

combination of the independent monomials {Sj1,j2,...,jl}, belongs to Im(π∗), and, if this is the case, to identify

the counter-image.

Although a proof is not given, a particular answer is given by Crossley [4, Section 5] in the following:

π⋆(ξn) = S2n−1,2n−2,...,2,1. (3)

π⋆(ξ2
r

n ) = S2r+n−1,2r+n−2,...,2r+1,2r . (4)

928



TURGAY/Turk J Math

By Eq. (3), we can easily see the following:

π⋆(Sq2n,2n−1,...,2,1) = S2n,2n−1,...,2,1 for all n ≥ 0. (5)

Note that Eq. (5) can also be seen by Proposition 3.5.

We now consider some calculations of π∗ in Propositions 4.2 and 4.3. It is worth mentioning that we

will do our calculations in F∗
2 . By Section 3, we know π∗ is a Hopf algebra morphism. In particular, π∗ is an

algebra morphism on the target overlapping shuffle product [11, Section 6].

Proposition 4.2 π⋆(ξ2
n

1 ) = S2n for all n ≥ 0 .

Proof Proof is by induction on r . ξ1 and S1 are the only degree one basis elements in A∗
2 and F∗

2 , respec-

tively. On the other hand, π⋆ is a degree-preserving morphism, so π⋆(ξ1) = S1. By the inductive hypothesis,

π⋆(ξ2
n−1

1 ) = S2n−1 . Since π⋆ is an algebra morphism, we write π⋆(ξ2
n

1 ) as a product of 2 copies of π⋆(ξ2
n−1

1 ),

i.e. π⋆(ξ2
n

1 ) = π⋆(ξ2
n−1

1 )π⋆(ξ2
n−1

1 ). Note that by product we mean the overlapping shuffle product. Hence,

π⋆(ξ2
n−1

1 )π⋆(ξ2
n−1

1 ) = S2n−1S2n−1 = S2n . 2

Proposition 4.3 π⋆(ξ2
n

2 ) = S2n+1,2n for all n ≥ 0.

Proof Proof is by induction on n . When n = 0, Eq. (3) satisfies the first step of the induction. By the

inductive hypothesis, π⋆(ξ2
n−1

2 ) = S2n,2n−1 . Similar to the proof of Proposition 4.2, we arrive at:

π⋆(ξ2
n

2 ) = S2n,2n−1S2n,2n−1 .

By the overlapping shuffle product, we have:

S2n,2n−1S2n,2n−1 = S2n+1,2n + 2S2n,2n,2n + 2S2n,2n+2n−1,2n−1 + 2S2n+1,2n−1,2n−1

+ 2S2n,2n−1,2n,2n−1 + 4S2n,2n,2n−1,2n−1 .

This completes the proof, since we work on mod 2. 2

Corollary 4.4 ξ2
n

1 = Sq2n for all n ≥ 0.

Theorem 4.5 χA∗
2
(ξn) = Sq2n−1 for all n ≥ 1.

Before proving Theorem 4.5, we first define the linear transformation r : F∗
2 → A∗

2 by:

r : F∗
2 → A∗

2, r(SI) =

{
SqI if I is admissible,

0 otherwise.
(6)

Lemma 4.6 r ◦ π∗ is the identity function on A∗
2 .

Proof For an admissible sequence C , we first calculate π∗(SqC). By Eq. (2), we write

π⋆(SqC) = SC +
∑

Sj1,j2,...,jr , (7)
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summed over all (nonadmissible) sequences j1, j2, . . . , jr for which Sqj1,j2,...,jr has SqC as a summand when

expressed as a sum of elements in the admissible basis elements. Applying r to both sides of Eq. (7), we get:

r(π∗(SqC)) = r

(
SC +

∑
Sj1,j2,...,jr

)
= SqC .

For all basis elements SqC , we have r(π∗(SqC)) = SqC . This completes the proof. 2

Example 4.7 (r ◦ π∗)(Sq5) = r(S5 + S2,3 + S2,1,2 + S1,4) = Sq5.

Proof [Proof of Theorem 4.5] Since π∗ is a Hopf algebra morphism, the following diagram commutes.

A∗
2

χA∗
2

��

� � π∗
// F∗

2

χ

��
A∗

2
� � π∗

// F∗
2

(8)

By Lemma 4.6 and the commutativity of the diagram (8), we have the following commutative diagram.

A∗
2

χA∗
2

��

� � π∗
// F∗

2

χ

��
A∗

2
� � π∗

// F∗
2

r
~~}}
}}
}}
}}

A∗
2

Hence,

χA∗
2
= r ◦ χ ◦ π∗.

By definition of χ and admissible monomial sequence, it follows that:

χA∗
2
(ξn) = Sq2n−1.

2

Theorem 4.5 gives a different form of χA∗
2

but does not say if χA∗
2

is multiplicative. However, this

theorem leads to the following results.

Corollary 4.8

Sq2n−1 =
∑

α∈Part(n)

l(α)∏
i=1

ξ2
σ(i)

α(i) for all n ≥ 1,

where Part(n) denotes the set of all ordered partitions of n , and for a given ordered partition α = (α(1)|α(2)| · · · |α(l)) ∈
Part(n), σ(i) = σ(1) + · · ·+ σ(i− 1) .
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Proof It can be seen by Theorem 4.5 along with Lemma 1.1 of [7]. 2

Corollary 4.9 χA∗
2
(Sq2n−1) = ξn, for n ≥ 1 .

Proof Since A∗
2 is a commutative Hopf algebra, χ2

A∗
2
= 1. Using this, the proof can be seen by Theorem 4.5. 2

Theorem 4.10 π∗(Sq2n−1) = χ(S2n−1,2n−2,...,2,1), for n ≥ 1 .

Proof By commutativity of diagram (8), Corollary 4.9, and Eq. (3), we arrive at

χ(π∗(Sq2n−1)) = S2n−1,...,2,1. (9)

Applying χ to both sides of Eq. (9) completes the proof. 2

5. A strategy for computing conjugation invariants in A∗
2

In [7], although a complete description is not given for Ker(χA∗
2
− 1), Crossley and Whitehouse established

bounds on its dimension in each degree. In this section we introduce a method for determining Ker(χA∗
2
− 1)

and give examples. Our method proposes an understanding for a basis of Ker(χA∗
2
− 1).

Theorem 5.1 The space of conjugation invariants, Ker(χ − 1) , has a basis consisting of: (i) (χ − 1)-images

of all ELPs; (ii) (χ− 1)-images of all HNPs; and (iii) the λ-images of all odd degree OLPs.

Proof See [6, Theorem 2.7]. 2

In each fixed degree, conjugation invariants in A∗
2 have a link with π∗ and conjugation invariants in F∗

2

as follows:

Theorem 5.2
π∗(Ker(χA∗

2
− 1)) = Ker(χ− 1) ∩ π∗(A∗

2).

Proof Injectivity of π∗ and commutativity of diagram (8) complete the proof. 2

Theorem 5.3 Let S2a,2b be an HNP or an ELP. Then

π⋆(ξ2
a

1 ξ2
b

1 ) = (χ− 1)(S2a,2b).

Proof Let S2a,2b be an HNP; then, by definition, (χ − 1)(S2a,2b) = S2a,2b + S2b,2a + S2b+2a . On the other

hand, since π∗ is an algebra morphism, by Proposition 4.2, π⋆(ξ2
a

1 ξ2
b

1 ) = (χ− 1)(S2a,2b). The same argument

also works for the ELP case. 2

Corollary 5.4 Let S2a,2b be an HNP or an ELP. Then in 2a + 2b degrees

(χ− 1)(S2a,2b) ∈ Ker(χ− 1) ∩ π∗(A∗
2).

To illustrate Theorem 5.2 we give the following examples.
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Example 5.5 In degree 2, F∗
2 has a basis: {S2, S1,1}. By Theorem 5.1, (χ − 1)-images of HNPs and ELPs

form a basis for Ker(χ− 1). In our case, that is (χ− 1)(S1,1) = S2, and then we have:

Ker(χ− 1) = {0, S2}.

On the other hand, in the same degree A∗
2 has a basis {ξ21} , and by Proposition 4.2, π∗(ξ21) = S2 . Hence, we

have: π∗(A∗
2) = {0, S2}. Finally, by Theorem 5.2, we arrive at:

π∗(Ker(χA∗
2
− 1)) = {0, S2}.

Recalling that π∗ is a monomorphism, we conclude that Ker(χA∗
2
− 1) has a basis {ξ21} in degree 2.

Example 5.6 In degree 3, F∗
2 has a basis: {S3, S2,1, S1,2, S1,1,1}. By Theorem 5.1, the basis elements of

Ker(χ− 1) are: (χ− 1)(S2,1) = S2,1 + S1,2 + S3 , λ(S1,1,1) = S1,1,1 + S2,1, and λ(S3) = S3 . Hence, we have:

Ker(χ− 1) ={0, S3, S3 + S2,1 + S1,2, S2,1 + S1,2, S2,1 + S1,1,1, S1,2 + S1,1,1,

S3 + S2,1 + S1,1,1, S3 + S1,2 + S1,1,1}
.

A∗
2 has a basis {ξ31 , ξ2} , and π∗(ξ31) = π∗(ξ21)π

∗(ξ1) = S3 + S2,1 + S1,2 , π
∗(ξ2) = S2,1. Hence, we have:

π∗(A∗
2) = {0, S3 + S2,1 + S1,2, S2,1, S3 + S1,2}.

Finally, we arrive at:

π∗(Ker(χA∗
2
− 1)) = {0, S3 + S2,1 + S1,2},

from which we conclude that Ker(χA∗
2
− 1) has a basis {ξ31} in degree 3.

Example 5.7 In this example we introduce an efficient method for calculations in higher degrees. In degree 4,

we first give an order to the monomial basis of F∗
2 with respect to lexicographic order. We denote this ordered

basis by Y , which is given in the following:

Y = {S4, S3,1, S2,2, S2,1,1, S1,3, S1,2,1, S1,1,2, S1,1,1,1}.

For instance, this basis tells us that S2,1,1 is lexicographically bigger than S1,3 . We now recall linear algebra

from pages 199–200 of [18]: if V is the column space of a matrix A , and W is the column space of a matrix B ,

then V +W is the column space of the matrix D = [A B] and dim(V +W ) = rank (D) and dim(V ∩W ) =

nullity of D , which leads to the following formula:

dim(V +W ) + dim(V ∩W ) = dim(V ) + dim(W ). (10)

To use the method above, by Tables 2 and 3, we write the basis matrix of π∗(A∗
2), which is denoted by [M ]Y ,

and of Ker(χ− 1), which is denoted by [N ]Y , relative to the basis Y as follows:

[M ]Y =



1 0
0 1
0 1
0 0
0 0
0 1
0 0
0 0


, [N ]Y =



1 1 1 1
1 0 0 1
0 0 1 1
0 0 1 1
1 0 1 1
0 0 0 1
0 0 1 1
0 0 0 0


.
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Table 2. Basis elements of π∗(A∗
2) in degrees 4 and 5.

Degree 4 m1 = π∗(ξ41) = S4

m2 = π∗(ξ2ξ1) = S3,1 + S2,2 + S1,2,1

Degree 5 m
′

1 = π∗(ξ51) = S5 + S4,1 + S1,4

m
′

2 = π∗(ξ2ξ
2
1) = S4,1 + S2,3 + S2,1,2

Note that A∗
2 has a basis {ξ41 , ξ2ξ1} in degree 4. Hence, π∗(A∗

2) has {π∗(ξ41), π
∗(ξ2ξ1)} as a basis in the

same degree, since π∗ is a monomorphism.

Let us be more precise. The first column of [M ]Y represents the coordinate vector of basis element m1

in Table 2, relative to the basis Y . On the other hand, the first column of [N ]Y represents the coordinate

vector of basis element n1 in Table 3, relative to the basis Y , while the second column of [N ]Y represents the

coordinate vector of basis element n2 in Table 3, relative to the basis Y and so on.

It is now easy to see that the rank of D = [ [M ]Y [N ]Y ] is 5. Hence, by Eq. (10), we have

5 + dim([M ]Y ∩ [N ]Y ) = 6 which gives dim([M ]Y ∩ [N ]Y ) = 1. By Tables 2 and 3, π∗(A∗
2) and Ker(χ − 1)

have π∗(ξ41) as a common basis element. Therefore, by dimension reason, {π∗(ξ41)} has to be a basis for

Ker(χ− 1) ∩ π∗(A∗
2), and, hence, Ker(χA∗

2
− 1) has a basis {ξ41} in degree 4.

Example 5.8 In degree 5 we will use the same argument used in Example 5.7 and will not explain the full

details of the calculations. We again first give an order to the monomial basis of F∗
2 with respect to lexicographic

order. We denote this ordered basis by Y
′
, which is given in the following:

Y
′
= {S5, S4,1, S3,2, S3,1,1, S2,3, S2,2,1, S2,1,2, S2,1,1,1, S1,4, S1,3,1, S1,2,2, S1,2,1,1, S1,1,3,

S1,1,2,1, S1,1,1,2, S1,1,1,1,1}.

Table 3. Basis elements of Ker(χ− 1) in degrees 4 and 5.

n1 = (χ− 1)(S3,1) = S4 + S3,1 + S1,3

n2 = (χ− 1)(S2,2) = S4

Degree 4 n3 = (χ− 1)(S2,1,1) = S4 + S2,2 + S2,1,1 + S1,3 + S1,1,2

n4 = (χ− 1)(S1,1,1,1) = S4 + S3,1 + S2,2 + S2,1,1 + S1,3 + S1,2,1 + S1,1,2

n
′

1 = (χ− 1)(S4,1) = S5 + S4,1 + S1,4

n
′

2 = (χ− 1)(S3,2) = S5 + S3,2 + S2,3

n
′

3 = (χ− 1)(S3,1,1) = S5 + S3,1,1 + S2,3 + S1,4 + S1,1,3

Degree 5 n
′

4 = (χ− 1)(S2,2,1) = S5 + S3,2 + S2,2,1 + S1,4 + S1,2,2

n
′

4 = (χ− 1)(S2,2,1)= S5 + S3,2 + S2,2,1 + S1,4 + S1,2,2

n
′

5 = (χ− 1)(S2,1,1,1)= S5 + S3,2 + S2,3 + S2,1,2 + S2,1,1,1 + S1,4 + S1,2,2+
S1,1,3 + S1,1,1,2

n
′

6 = (χ− 1)(S1,2,1,1)= S5 + S4,1 + S2,3 + S2,2,1 + S1,4 + S1,3,1 + S1,2,1,1+
S1,1,3 + S1,1,2,1

n
′

7 = λ(S5) = S5

n
′

8 = λ(S1,3,1) = S4,1 + S1,3,1

n
′

9 = λ(S2,1,2) = S3,2 + S2,1,2

n
′

10 = λ(S1,1,1,1,1) = S3,1,1 + S2,1,1,1 + S1,2,1,1 + S1,1,1,1,1
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By Tables 2 and 3, writing the basis matrix of π∗(A∗
2), which is denoted by [M

′
]Y ′ , and of Ker(χ− 1),

which is denoted by [N
′
]Y ′ , relative to the basis Y

′
, we see that the rank of D =

[
[M

′
]Y ′ [N

′
]Y ′

]
is 11, where

rank
(
[M

′
]Y ′

)
= 2 and rank

(
[N

′
]Y ′

)
= 10. Therefore, 11 + dim(M

′ ∩N
′
) = 12. Following this, by Tables 2

and 3 we see π∗(ξ51) belong to Ker(χ − 1) and π∗(A∗
2). By the same argument in Example 5.7, we conclude

that Ker(χA∗
2
− 1) has {ξ51} as a basis in degree 5.
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