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Abstract: In this paper, we introduce and study V -Gorenstein flat modules and show the stability of the category of

V -Gorenstein flat modules. We investigate the existence of V -Gorenstein flat covers and V -Gorenstein flat preenvelopes

for any left R -module. Also we prove that (V -GF , V -GF⊥) is a perfect hereditary cotorsion pair in Bl(R) , where V -GF

stands the class of V -Gorenstein flat left R -modules and Bl(R) is the left Bass class. Some applications are given.
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1. Introduction and some basic facts

We use R -Mod (resp. Rop -Mod) to denote the category of left (resp. right) R -modules. For any R -module

M , pd(M) (resp. id(M), fd(M)) denotes the projective (resp. injective, flat) dimension of M . The character

module HomZ(M,Q/Z) is denoted by M+ .

Since Auslander and Bridger [1] introduced the G-dimension of a finitely generated module, the study

of Gorenstein dimensions of modules has been the subject of numerous publications. The use of equivalence

introduced by Foxby has been shown to be of great utility in this study. Enochs and Jenda [7] studied V -

Gorenstein modules relative to a dualizing module. These modules constitute a generalization of the well-known

Gorenstein modules [4] and at the same time an extension to the noncommutative case of Ω-Gorenstein modules

[5]. They proved that under certain condition on the finiteness of projective dimension for flat modules V -

Gorenstein injectives and projectives form part of perfect cotorsion pairs. However, in that case, V -Gorenstein

flat modules could not be introduced. Our aim in this paper is to introduce the notion of V -Gorenstein flat

modules and study some of their properties.

We now summarize the layout of the paper. In Section 1, we give some notions and draw some basic

consequences for use throughout this paper. In the first part of Section 2, we introduce the notion of V -

Gorenstein flat modules and study some of their properties. In the second part of Section 2, we show the

stability of the category of V -Gorenstein flat modules. In Section 3, we study the existence of V -Gorenstein

flat covers and V -Gorenstein preenvelopes, and prove that (V -GF , V -GF⊥) is a perfect hereditary cotorsion

pair in Bl(R), where V -GF stands for the class of V -Gorenstein flat left R -modules and Bl(R) is the left Bass

class. In Section 4, we characterize some rings in terms of Gorenstein and V -Gorenstein homological modules.
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Cotorsion pairs. Given a class C of R -modules, we let ⊥C be the class of R -modules F such that

Ext1R(F,C) = 0 for all C ∈ C and let C⊥ be the class of R -modules F such that Ext1R(C,F ) = 0 for all

C ∈ C . Following [4], a pair of classes of R -modules (F , C) is called a cotorsion pair if F⊥ = C and ⊥C = F . A

cotorsion pair (F , C) is said to be complete if it has enough projectives and injectives, that is, for any R -module

M , there are exact sequences 0 → C → F → M → 0 and 0 → M → C ′ → F ′ → 0 respectively with C,C ′ ∈ C
and F, F ′ ∈ F . A cotorsion pair is said to be perfect if every R -module has an F -cover and a C -envelope. A

cotorsion pair is said to be hereditary if 0 → F ′ → F → F ′′ → 0 is an exact sequence with F , F ′′ ∈ F , then

F ′ ∈ F .

Resolutions. Let A be an abelian category and F a class of objects of A . For an object M of A , a

left F -resolution of M is a Hom(F ,−) exact complex · · · → F1 → F0 → M → 0 (not necessarily exact) with

each Fi ∈ F . A right F -resolution of M is a Hom(−,F) exact complex 0 → M → F 0 → F 1 → · · · (not

necessarily exact) with each F i ∈ F (see [4]).

Balanced functors. Let C,D , and E be abelian categories and T : C × D → E be an additive

functor contravariant in the first variable and covariant in the second. Let F and G be classes of objects of

C and D respectively. Then T is said to be right balanced by F × G if for each object M of C there is a

T (−,G) exact complex · · · → F1 → F0 → M → 0 with each Fi ∈ F , and if for each object N of D there is

a T (F ,−) exact complex 0 → N → G0 → G1 → · · · with each Gi ∈ G . If, on the other hand, the complex

· · · → F1 → F0 → M → 0 is T (G,−) exact and the complex 0 → N → G0 → G1 → · · · is T (−,F) exact, then

T is said to be left balanced by G × F .

The definitions above are easily modified to give the definition of a left or right balanced functor relative

to F × G with other choices of variances and complexes (see [4]).

Dualizing module. Let R be a left and right Noetherian ring and let V be an (R,R)-bimodule such

that End(RV ) = R and End(VR) = R . Then V is said to be a dualizing module [8] if it satisfies the following

3 conditions:

(i) id(RV ) ⩽ r and id(VR) ⩽ r for some integer r ;

(ii) Ext iR(V, V ) = Ext iRop(V, V ) = 0 for all i ⩾ 1;

(iii) RV and VR are finitely generated.

The preceding is given in [8] for a bimodule SVR , where S and R are left and right Noetherian rings

respectively, but throughout this paper we consider the case S = R .

It is immediately seen that if R is a local Cohen–Macaulay ring admitting a dualizing module Ω or R

is an n -Gorenstein ring (2-sided Noetherian ring with id(RR) ⩽ n , id(RR) ⩽ n), then Ω and R are dualizing

modules in this sense.

In what follows, R will always be a left and right Noetherian ring and V a dualizing module for R .

Enochs et al. [9] introduced the left, right Auslander classes Al(R), Ar(R) and the left, right Bass classes

Bl(R), Br(R). It is easily seen that

V ⊗R − : Al(R) ⇆ Bl(R) : HomR(V,−), −⊗R V : Ar(R) ⇆ Br(R) : HomRop(V,−)

give equivalences between the 2 categories.

Denote

W = {W ∼= V ⊗R P |P is a projective left R-module},
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X = {X ∼= V ⊗R F |F is a flat left R-module},

U = {U ∼= HomRop(V,E) |E is an injective right R-module}.

Then clearly W ⊆ X ⊆ Bl(R) and U ⊆ Ar(R). Every right R -module has a U -preenvelope and every left

R -module has an X -precover. Then the right U -dimension of a right R -module and the left X -dimension of

a left R -module are defined as usual.

Gorenstein modules. A right R -module M is said to be V -Gorenstein injective [7] if there exists an

exact sequence:

U : · · · −→ U1 −→ U0 −→ U0 −→ U1 −→ · · ·

of modules in U such that M = Ker(U0 → U1) and such that HomRop(U,U) and HomRop(U, U) are exact for

every U ∈ U . The class of V -Gorenstein injective right R -modules is denoted by V -GI . Dually, the notion

of V -Gorenstein projective left R -modules is defined. The class of V -Gorenstein projective left R -modules is

denoted by V -GP . A left R -module G is said to be Gorenstein flat [12] if there exists an exact sequence:

F : · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

of flat left R -modules such that G = Ker(F 0 → F 1) and I ⊗R F is exact for any injective right R -module

I . The exact sequence F is called a complete flat resolution. The class of Gorenstein flat left R -modules is

denoted by GF .

Lemma 1.1 Let 0 → M ′ → M → M ′′ → 0 be exact in Rop -Mod (resp. R-Mod). If any 2 of M ′ , M , M ′′

are in Ar(R) (resp. Bl(R)), then so is the third.

Proof By analogy with the proof of [8, Proposition 3.13]. 2

Lemma 1.2 Every left R -module has an X -preenvelope.

Proof By [14, Proposition 5.3]. 2

Lemma 1.3 Let M ∈ R -Mod and 0 → M → X0 → X1 → · · · be a right X -resolution of M . Then the

complex 0 → U ⊗R M → U ⊗R X0 → U ⊗R X1 → · · · is exact for any U ∈ U .

Proof Let 0 → M → X0 → X1 → · · · be a right X -resolution of M and let U ∈ U . Then U+ ∈ X .

Consider the following commutative diagram:

· · · // HomR(X
1, U+)

∼=
��

// HomR(X
0, U+)

∼=
��

// HomR(M,U+)

∼=
��

// 0

· · · // (U ⊗R X1)+ // (U ⊗R X0)+ // (U ⊗R M)+ // 0

with the upper row exact. So 0 → U ⊗R M → U ⊗R X0 → U ⊗R X1 → · · · is exact. 2

Proposition 1.4 −⊗R − is left balanced on Ar(R)× Bl(R) by Proj×W and F lat×X .

Proposition 1.5 −⊗R − is right balanced on Ar(R)× Bl(R) by U × X .
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Proof Let M ∈ Ar(R) and 0 → M → U0 → U1 → · · · be a right U -resolution of M . Then

0 → M ⊗R V → U0⊗R V → U1⊗R V → · · · is exact by Lemma 1.1 since M and each U i are in Ar(R), and so

0 → M⊗RX → U0⊗RX → U1⊗RX → · · · is exact for all X ∈ X . The result now follows from Lemma 1.3. 2

Proposition 1.6 Hom(−,−) is left balanced on R-Mod×R-Mod by X × X .

Proposition 1.7 Hom(−,−) is right balanced on Ar(R) × Ar(R) by Proj × U and on Bl(R) × Bl(R) by

W × Inj.

Proof Let M ∈ Ar(R) and · · · → P1 → P0 → M → 0 be a projective resolution of M . Then · · · →
P1⊗RV → P0⊗RV → M⊗RV → 0 is exact. It is easy to check that 0 → HomRop(M,U) → HomRop(P0, U) →
HomRop(P1, U) → · · · is exact for all U ∈ U . On the other hand, let N ∈ Ar(R) and 0 → N → U0 → U1 → · · ·
be a right U -resolution of N . Then 0 → HomRop(P,N) → HomRop(P,U0) → HomRop(P,U1) → · · · is exact

for any projective right R -module P . The second part follows dually. 2

2. V -Gorenstein flat modules and stability

In this section, we introduce the notion of V -Gorenstein flat modules, characterize them in terms of the so-

called left Auslander and left Bass classes, and generalize some results obtained in [5] and [16]. We also show

the stability of the category of V -Gorenstein flat modules.

Definition 2.1 A left R -module M is called V -Gorenstein flat if there is an exact sequence:

· · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

of modules in X such that M = Ker(X0 → X1) and such that HomR(W,−) and U ⊗R − leave the sequence

exact whenever U ∈ U and W ∈ W .

The class of V -Gorenstein flat left R -modules is denoted by V -GF .

Remark 2.2 Clearly, every module in X is V -Gorenstein flat. Moreover, if R is Gorenstein, then in this case

the V -Gorenstein flat R -module is simply the usual Gorenstein flat R -module.

Theorem 2.3 The following are equivalent for M ∈ R -Mod:

(1) M is V -Gorenstein flat;

(2) M ∈ Bl(R) and TorRi (U,M) = 0 for all i ⩾ 1 and any U ∈ U ;

(3) M ∈ Bl(R) and TorRi (U,M) = 0 for 1 ⩽ i ⩽ r and any U ∈ U ;

(4) M ∈ Bl(R) and TorRi (L,M) = 0 for all i ⩾ 1 and any L of finite right U -dimension;

(5) M ∈ Bl(R) and TorR1 (L,M) = 0 for any L of finite right U -dimension;

(6) M ∈ Bl(R) and HomR(V,M) is Gorenstein flat;

(7) There exists an exact sequence 0 → M → X0 → · · · → Xr−1 → C → 0 with each Xi ∈ X and

C ∈ Bl(R) ;

(8) M+ is V -Gorenstein injective.
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Proof (1) ⇒ (2). By analogy with the proof of [7, Proposition 3.2], we see that M ∈ Bl(R). Let Ui
∼=

HomRop(V,Ei) ∈ U for i = 1, 2. Then [4, Theorem 3.2.13] implies that

ExtnRop(U1, U2) ∼= HomRop(TorRn (HomRop(V,E1), V ), E2)

∼= HomRop(HomRop(ExtnRop(V, V ), E1), E2) = 0, ∀ n ⩾ 1,

and so TorRn (U,X)+ ∼= ExtnRop(U,X+) = 0 for all U ∈ U , X ∈ X and all n ⩾ 1 since X+ ∈ U . Thus

TorRi (U,M) = 0 for any U ∈ U and all i ⩾ 1.

(2) ⇒ (4) follows from dimension shifting.

(4) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are obvious.

(3) ⇒ (2). Let U ∼= HomRop(V,E) ∈ U . Since id(VR) ⩽ r , fd(UR) ⩽ r by [4, Theorem 3.2.16]. Then

TorRi (U,M) = 0 for all i ⩾ r + 1, and so TorRi (U,M) = 0 for all i ⩾ 1.

(5) ⇒ (4) and (2) ⇒ (1). By analogy with the proof of [5, Proposition 4.5].

(1) ⇔ (6). By analogy with the proof of [16, Proposition 2.9].

(1) ⇒ (7). Since M is V -Gorenstein flat, there exists an exact sequence 0 → M → X0 → · · · →
Xr−1 → C → 0 with each Xi ∈ X . However, M ∈ Bl(R) and each Xi ∈ Bl(R); it follows from Lemma 1.1

that C ∈ Bl(R).

(7) ⇒ (2). Let 0 → M → X0 → · · · → Xr−1 → C → 0 be exact with each Xi ∈ X and

C ∈ Bl(R). Then M ∈ Bl(R) by Lemma 1.1. Let U ∈ U . Then fd(UR) ⩽ r since id(VR) ⩽ r , and

hence TorRi (U,M) ∼= TorRr+i(U,C) = 0 for all i ⩾ 1.

(1) ⇒ (8). Since M is V -Gorenstein flat, there is a U ⊗R − exact exact sequence:

X : · · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

of modules in X such that M = Ker(X0 → X1). Therefore, M+ ∈ Ar(R) and

X+ : · · · −→ (X1)+ −→ (X0)+ −→ (X0)
+ −→ (X1)

+ −→ · · ·

is an exact sequence of modules in U such that M+ = Coker((X1)+ → (X0)+). To prove that M+ ∈ V -GI(R),

it suffices to show that HomRop(U,X+) is exact for any U ∈ U by [7, Theorem 2.4]. Note that HomRop(U,X+) ∼=
(U ⊗R X)+ is exact for any U ∈ U , which implies that M+ ∈ V -GI .

(8) ⇒ (2). Since M+ is V -Gorenstein injective, we have M ∈ Bl(R) and TorRi (U,M)+ ∼= ExtiRop(U,M+) =

0 for any U ∈ U and all i ⩾ 1, as desired. 2

By Proposition 1.5, we can define right derived functors of −⊗− by using right U -resolutions and right

X -resolutions in the first and second variables respectively. These new derived functors are denoted by TornR .

We also note that there exists a natural morphism

M ⊗R N −→ Tor0R(M,N).

We let Tor0(N,M) and Tor
0
(N,M) be the kernel and the cokernel of the above morphism.

Theorem 2.4 The following are equivalent for M ∈ R -Mod:
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(1) M is V -Gorenstein flat;

(2) M ∈ Bl(R) and TorRi (Q,M) = Tor iR(Q,M) = 0 for all i ⩾ 1 and Tor0(Q,M) = Tor
0
(Q,M) = 0

for all Q ∈ U ∪ P roj;

(3) M ∈ Bl(R) and TorRi (Q,M) = Tor iR(Q,M) = 0 for all i ⩾ 1 and Tor0(Q,M) = Tor
0
(Q,M) = 0

for all Q ∈ Ar(R) of finite right U -dimension or projective dimension.

Proof (1) ⇒ (2). Since M is V -Gorenstein flat, there is a U ⊗R − exact exact sequence:

· · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

of modules in X such that M = Ker(X0 → X1 ). If Q is projective, then the homology groups vanish. Let

U ∈ U . Since R is right Noetherian, HomR(V,M) has an exact right flat resolution, and hence M has an

exact right X -resolution 0 → M → X0 → X1 → · · · that may be used to calculate Tor iR(U,M). Thus

Tor iR(U,M) = 0 for all i ⩾ 1. Note that TorRi (U,X)+ ∼= Ext iRop(U,X+) = 0 for any X ∈ X . Then

TorRi (U,M) = 0 for all i ⩾ 1. Finally U ⊗R M ∼= Ker(U ⊗R X0 → U ⊗R X1) ∼= Tor0R(U,M).

(2) ⇔ (3) follows from dimension shifting.

(3) ⇒ (1). Let · · · → X1 → X0 → M → 0 be an exact left X -resolution of M and let 0 → M → X0 →
X1 → · · · be a right X -resolution of M . Then 0 → M → X0 → X1 → · · · is exact since Tor iR(R,M) = 0 for

all i ⩾ 1 and M ∼= R⊗R M ∼= Tor0R(R,M) = Ker(R⊗R X0 → U ⊗R X1). Hence

· · · −→ X1 −→ X0 −→ X0 −→ X1 −→ · · ·

is an exact sequence of modules in X and the sequence is U ⊗R − exact since the homology groups vanish,

which implies that M is V -Gorenstein flat. 2

[4, Exercise 10, p.318] proved that an R -module M is Gorenstein flat if and only if M ∈ G0(R) and

Ω⊗R M is Ω-Gorenstein flat. Here we have the following result.

Proposition 2.5 M is a Gorenstein flat left R -module if and only if M ∈ Al(R) and V ⊗R M is a V -

Gorenstein flat left R-module.

Proof “ ⇒ ” Since M is Gorenstein flat, there exists a complete flat resolution:

F : · · · −→ F1 −→ F0 −→ F 0 −→ F 1 → · · ·

such that M ∼= Ker(F 0 → F 1). Since id(VR) ⩽ r , we have TorRi (V,M) = 0 for all i ⩾ 1. Consider the exact

sequence 0 → M → F 0 → F 1 . Note that M1 = Im(F 0 → F 1) and M2 = Im(F 1 → F 2) are in GF and so

TorR1 (V,M
1) = 0 = TorR1 (V,M

2). Hence 0 → V ⊗R M → V ⊗R F 0 → V ⊗R F 1 is exact, which implies that

0 −→ HomR(V, V ⊗R M) −→ HomR(V, V ⊗R F 0) −→ HomR(V, V ⊗R F 1)

is exact. Thus M ∼= HomR(V, V ⊗R M) since each F i ∈ Al(R). Analogously, it can be seen that Ci ∼=
HomR(V, V ⊗R Ci) for every cosyzygy Ci of 0 → M → F 0 → F 1 → · · · for all i = 1, 2 · · · . Since

0 → V ⊗R Ci → V ⊗R F i → V ⊗R Ci+1 → 0 is exact, we have

HomR(V, V ⊗R F i) −→ HomR(V, V ⊗R Ci+1) −→ Ext1R(V, V ⊗R Ci) −→ 0
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is exact, and so Ext1R(V, V ⊗R Ci) = 0; it follows that Ext iR(V, V ⊗R M) ∼= Ext1R(V, V ⊗R Ci−1) = 0 for all

i ⩾ 1. Thus M ∈ Al(R) and

V ⊗R F : · · · −→ V ⊗R F1 −→ V ⊗R F0 −→ V ⊗R F 0 −→ V ⊗R F 1 −→ · · ·

is exact such that V ⊗RM ∼= Ker(V ⊗RF 0 → V ⊗RF 1). Let U ∼= HomRop(V,E) ∈ U . Then U⊗R (V ⊗RF) ∼=
E ⊗R F is exact, and hence V ⊗R M ∈ V -GF .

“ ⇐ ” M ∼= HomR(V, V ⊗R M) ∈ GF by Theorem 2.3. 2

Proposition 2.6 Let M be a right R -module. If M is V -Gorenstein injective, then M+ is V -Gorenstein

flat.

Proof Since M is V -Gorenstein injective, we see that M+ ∈ Bl(R) and M ⊗R V ∈ Br(R) is Gorenstein

injective by [8, Theorem 4.5], and hence there is an exact sequence 0 → K → Er−1 → · · · → E0 → M⊗RV → 0

with each Ei injective and K ∈ Br(R). However, 0 → HomRop(V,K) → HomRop(V,Er−1) → · · · →
HomRop(V,E0) → M → 0 is exact, and so

0 → M+ → HomRop(V,E0)
+ → · · · → HomRop(V,Er−1)

+ → HomRop(V,K)+ → 0

is exact and HomRop(V,K)+ ∈ Bl(R). Therefore, Theorem 2.3 implies that M+ ∈ V -GF . 2

Proposition 2.7 Let M ∈ Bl(R) . Then the following hold:

(i) If · · · → X1 → X0 → M → 0 is an exact left X -resolution and Ci = Coker(Xi+1 → Xi) , then Ci is

V -Gorenstein flat for i ⩾ r ;

(ii) If 0 → M → X0 → X1 → · · · is a right X -resolution and Ci = Ker(Xi → Xi+1) , then Ci is

V -Gorenstein flat for i ⩾ r − 1 .

Proof (i) By assumption and Lemma 1.1, we get every Ci ∈ Bl(R). Let U ∈ U . Then fd(UR) ⩽ r since

id(VR) ⩽ r , and so TorRi (U,M) = 0 for all i ⩾ r + 1. Thus TorR1 (U,Ci) = 0 for i ⩾ r . Consider the exact
sequence

0 −→ C2r −→ X2r−1 −→ · · · −→ Xr −→ Cr −→ 0.

Then TorRn (U,C2r) ∼= TorRn+r(U,Cr) = 0 for all n ⩾ 1 and U ∈ U , and hence Cr+i ∈ V -GF for i ⩾ r by

Theorem 2.3. Let E be an injective right R -module. Then

Ext1R(C2r−1, V ⊗R E+) ∼= Ext1R(C2r−1,HomRop(V,E)+) ∼= TorR1 (HomRop(V,E), C2r−1)
+ = 0,

and so TorR1 (E,HomR(V,C2r−1))
+ ∼= Ext1R(HomR(V,C2r−1), E

+) = 0 by Lemma 3.2, which implies that

HomR(V,C2r−1) ∈ GF by [12, Proposition 3.8]. Therefore, C2r−1 ∈ V -GF . Now repeat the process to get that

Ci ∈ V -GF for i ⩾ r by Theorem 2.3.

(ii) If 0 → M → X0 → X1 → · · · is a right X -resolution of M , then 0 → HomR(V,M) →
HomR(V,X

0) → HomR(V,X
1) → · · · is a right flat resolution of HomR(V,M). Hence [4, Theorem 8.4.36]

implies that the sequence Xr−1 → Xr → Xr+1 → Xr+2 → · · · is exact. Now by analogy with the proof of (i),

we get the desired result. 2

Define by V -GF2 the subcategory of R -Mod for which there exists an exact sequence:
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G : · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

of modules in V -GF such that M = Ker(G0 → G1), and such that HomR(H,G) and H ′ ⊗R G are exact for

any H ∈ V -GP and H ′ ∈ V -GI . It is routine to check that V -GF ⊆ V -GF2 . Next we establish the stability

of the category of V -Gorenstein flat left R -modules.

Theorem 2.8 V -GF = V -GF2 .

Proof It suffices to prove that V -GF2 ⊆ V -GF . Let M ∈ V -GF2 . Note that each module in W is V -

Gorenstein projective; it follows from the proof of [7, Proposition 3.2] that M ∈ Bl(R). On the other hand,

there is an exact sequence:

G : · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

of modules in V -GF such that M = Ker(G0 → G1) and H ⊗R G is exact for any H ∈ V -GI . Note that Gi

and Gi are in Bl(R) for all i . Then we get the following exact sequence:

HomR(V,G) : · · · → HomR(V,G1) → HomR(V,G0) → HomR(V,G
0) → HomR(V,G

1) → · · ·

of modules in GF such that HomR(V,M) = Ker(HomR(V,G
0) → HomR(V,G

1)). Let L be a Gorenstein

injective right R -module. Then L ∈ Br(R) and HomRop(V, L) ∈ V -GI by [8, Proposition 3.8 and Theorem

4.5]. Thus L⊗R HomR(V,G) ∼= HomRop(V, L)⊗R V ⊗R HomR(V,G) ∼= HomRop(V, L)⊗R G is exact; it follows

that HomR(V,M) ∈ GF by [2, Theorem 1.2]. Consequently, M ∈ V -GF , as claimed. 2

3. V -Gorenstein flat (pre)covers and preenvelopes

In this section, we study the existence of V -Gorenstein flat covers and preenvelopes of modules. It is shown

that (V -GF , V -GF⊥) is a perfect hereditary cotorsion pair in Bl(R).

Lemma 3.1 Let M ∈ Al(R) and 0 → G → Fr−1 → · · · → F0 → M → 0 be exact with every Fi flat. Then G

is Gorenstein flat.

Proof By assumption, we have 0 → V ⊗R G → V ⊗R Fr−1 → · · · → V ⊗R F0 → V ⊗R M → 0 is exact with

each V ⊗R Fi ∈ X and V ⊗R M ∈ Bl(R). Hence, Theorem 2.3 implies that V ⊗R G ∈ V -GF . Consequently,

G ∈ GF by Proposition 2.5. 2

Lemma 3.2 Let M,N ∈ Al(R) . Then Ext iR(M,N) = 0 if and only if Ext iR(V ⊗R M,V ⊗R N) = 0 for all

i ⩾ 1 .

Proof This follows from [14, Theorem 6.4]. 2

It was shown in [12, Theorem 3.23] that if M is an R -module with finite Gorenstein flat dimension n ,

then M admits a surjective GF -precover φ : T → M with fd(RKerφ) = n− 1.

Theorem 3.3 Every left R -module M in Bl(R) has a V -Gorenstein flat precover φ : F → M such that left

X -dim Kerφ ⩽ r − 1 .
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Proof Let M ∈ Bl(R). Then HomR(V,M) ∈ Al(R), and so HomR(V,M) has Gorenstein flat dimension

less than or equal to r by Lemma 3.1. Therefore, [12, Theorem 3.23] yields an exact sequence 0 → K → G →
HomR(V,M) → 0, where G → HomR(V,M) is a GF -precover and fd(RK) ⩽ r − 1. However, M ∈ Bl(R); it

follows that 0 → V ⊗RK → V ⊗RG
φ→ M → 0 is exact with V ⊗RG ∈ V -GF and left X -dim (V ⊗RK) ⩽ r−1.

Next we show that φ : V ⊗R G → M is a V -Gorenstein flat precover of M . Let Q ∈ V -GF . Then

HomR(V,Q) ∈ GF . Consider the following commutative diagram:

HomR(HomR(V,Q), G)

∼=
��

// HomR(HomR(V,Q),HomR(V,M)) //

∼=
��

0

HomR(Q,V ⊗R G) // HomR(Q,M)

with the upper row exact. Thus V ⊗R G → M is the desired V -Gorenstein flat precover. 2

Let L denote the class of left R -modules L such that L ∼= V ⊗R K for some K ∈ R -Mod cotorsion.

If T is a Gorenstein flat R module, then Ext iR(T,K) = 0 for all i ⩾ 1 and all cotorsion R -modules K with

finite flat dimension by [12, Proposition 3.22].

Lemma 3.4 If X : · · · → X1 → X0 → X0 → X1 → · · · is an exact sequence of modules in X such that

U ⊗R X is exact for all U ∈ U , then HomR(X, L) is exact for all L ∈ L with left X -dim L < ∞ .

Proof Let L ∼= V ⊗R K for some K ∈ R -Mod cotorsion. If left X -dim L = 0, then K is flat and cotorsion,

and so K+ is injective, K++ is flat, and K++/K is flat, which implies that 0 → K → K++ → K++/K → 0

is split. Therefore, L is a direct summand of V ⊗R K++ . Note that

HomR(X, V ⊗R K++) ∼= HomR(X,HomRop(V,K+)+) ∼= (HomRop(V,K+)⊗R X)+

is exact. Thus HomR(X, L) is exact. Now let left X -dim L = n with n ⩾ 1. Then fd(RK) = n . Consider

the exact sequence 0 → K ′ → F → K → 0, where F → K is a flat cover of K . Then K ′ is cotorsion with

fd(RK
′) = n− 1 and F is cotorsion, which implies that

0 −→ HomR(X, V ⊗R K ′) −→ HomR(X, V ⊗R F ) −→ HomR(X, V ⊗R K) −→ 0

is exact since Ext1R(V ⊗R Q,V ⊗R K ′) = 0 for all V ⊗R Q ∈ X by Lemma 3.2. Hence HomR(X, L) is exact by

the induction hypothesis. 2

The following claim is an immediate consequence of Theorem 2.3.

Lemma 3.5 The class V -GF is closed under direct limits.

Lemma 3.6 The class V -GF is closed under pure submodules and pure quotient modules.

Proof Let 0 → L → M → N → 0 be pure exact in R -Mod with M ∈ V -GF . Then 0 → N+ → M+ →
L+ → 0 is split with M+ ∈ V -GI by Theorem 2.3. Again by Theorem 2.3, we get L,N ∈ V -GF , as desired. 2

It is well known that (GF ,GF⊥) is a perfect hereditary cotorsion pair by [6, Theorem 2.12]. We do not

know if it is true that (V -GF , V -GF⊥) is a perfect hereditary cotorsion pair in R -Mod. However, we have the

following result.
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Theorem 3.7 (V -GF , V -GF⊥) is a perfect hereditary cotorsion pair in Bl(R) .

Proof Let 0 → M ′ → M → M ′′ → 0 be exact with M ′′ ∈ V -GF . Then M ′ ∈ Bl(R) if and only if M ∈ Bl(R),

and so 0 → HomR(V,M
′) → HomR(V,M) → HomR(V,M

′′) → 0 is exact. Note that HomR(V,M
′′) ∈ GF .

Then HomR(V,M
′) ∈ GF if and only if HomR(V,M) ∈ GF by [12, Theorem 3.6], and hence M ′ ∈ V -GF if

and only if M ∈ V -GF by Theorem 2.3. It follows that (V -GF , V -GF⊥) is hereditary.

Let F ∈ V -GF . Then there is a cardinal κ such that F can be written as the direct union of a

continuous chain of submodules (Fα)α<λ with λ an ordinal number such that F0 ∈ V -GF , Fα+1/Fα ∈ V -GF
when α+1 < λ with |F0|, |Fα+1/Fα| ⩽ κ by Lemma 3.6. Therefore if B is the direct sum of all representatives

in V -GF such that their cardinals are less than or equal to κ , then M ∈ V -GF⊥ if and only if Ext1R(B,M) = 0.

Let N ∈ Bl(R). Then HomR(V,N) ∈ Al(R) and there exists an exact sequence 0 → HomR(V,N) →

A → G → 0 such that A ∈ GF⊥ and G ∈ GF by [6, Theorem 2.11], and so 0 → N → V ⊗R A → V ⊗R G → 0

is exact with V ⊗R G ∈ V -GF . Let W ∈ V -GF . Then Ext1R(HomR(V,W ), A) = 0 by Theorem 2.3. Thus

Ext1R(W,V ⊗R A) = 0 by Lemma 3.2, and hence V ⊗R A ∈ V -GF⊥ . Let M ∈ ⊥(V -GF⊥) ∩ Bl(R) and

0 → K → X → M → 0 be exact with X ∈ X . Then K ∈ Bl(R) and there exists an exact sequence

0 → K → D → F → 0 with D ∈ V -GF⊥ and F ∈ V -GF by the preceding proof. Consider the pushout of

K → X and K → D :

0

��

0

��
0 // K //

��

X

��

// M // 0

0 // D

��

// C

��

// M // 0

F

��

F

��
0 0.

Since X , F ∈ V -GF , we have C ∈ V -GF . Since D ∈ V -GF⊥ , the central row splits, and so M ∈ V -

GF ∩Bl(R). This gives us that V -GF = ⊥(V -GF⊥) in Bl(R), and hence (V -GF , V -GF⊥) is a cotorsion pair

in Bl(R) with enough projectives and injectives. Finally, the cotorsion pair in Bl(R) is perfect by [4, Theorem

7.2.6] and Lemma 3.5. 2

From the preceding theorem, we get that every module in Bl(R) has a V -Gorenstein flat cover. However,

for any left R -module, we get the following general result.

Theorem 3.8 Every left R -module has a V -Gorenstein flat cover.

Proof This follows from Theorem 2.3, Lemma 3.6, and [13, Theorem 3.1]. 2

It is well known that if M is a left R -module of finite Gorenstein flat dimension, then there is an exact

sequence 0 → M → H → A → 0 with A ∈ GF and fd(RH) = Gfd(RM).

Proposition 3.9 Let M ∈ Bl(R) . Then there exists an exact sequence of left R -modules 0 → M → H →
A → 0 , where A ∈ V -GF and left X -dim H ⩽ r .
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Proof Note that HomR(V,M) ∈ Al(R). Therefore, HomR(V,M) has Gorenstein flat dimension less than or

equal to r by Lemma 3.1. Hence there is an exact sequence 0 → HomR(V,M) → H ′ → A′ → 0 with A′ ∈ GF
and fd(RH

′) ⩽ r . However, M ∈ Bl(R); it follows that 0 → M → V ⊗R H ′ → V ⊗R A′ → 0 is the desired

exact sequence. 2

Theorem 3.10 Every left R -module has a V -Gorenstein flat preenvelope.

Proof By Theorem 2.3(7), one easily checks that the class V -GF is closed under direct products. Therefore

every left R -module has a V -Gorenstein flat preenvelope by Theorem 2.3, Lemma 3.6, and [13, Theorem 3.1]. 2

Proposition 3.11 −⊗− is right balanced by V -GI × V -GF on Rop-Mod×R-Mod.

Proof Let M ∈ R -Mod. Then there exists a right V -Gorenstein flat resolution 0 → M → F 0 → F 1 → · · ·
by Theorem 3.10. Let G ∈ V -GI . Then 0 → G ⊗R M → G ⊗R F 0 → G ⊗R F 1 → · · · is exact if and only if

· · · → HomR(F
1, G+) → HomR(F

0, G+) → HomR(M,G+) → 0 is exact. However, the last sequence is exact

by Proposition 2.6.

Let N ∈ Rop -Mod. There exists a right V -Gorenstein injective resolution 0 → N → E0 → E1 → · · ·
by [17, Proposition 3.13]. Let G ∈ V -GF . By analogy with the preceding proof, we have 0 → G ⊗R N →
G⊗R E0 → G⊗R E1 → · · · is exact. 2

Proposition 3.12 Hom(−,−) is left balanced by V -GF × V -GF on R-Mod×R-Mod.

4. Applications

In this section, we characterize some rings in terms of Gorenstein and V -Gorenstein homological modules.

Proposition 4.1 The following are equivalent for a ring R :

(1) R is a right self-injective ring;

(2) Every left R -module is Gorenstein flat;

(3) Every finitely generated left R -module is Gorenstein flat;

(4) Every left R -module is V -Gorenstein flat;

(5) Every finitely generated left R -module is V -Gorenstein flat.

Proof (2) ⇒ (3) and (4) ⇒ (5) are trivial.

(1) ⇒ (2). Let M be a left R -module. Then M has a right flat resolution F : 0 → M → F 0 → F 1 → · · ·
since R is right Noetherian, which is exact since (RR)

+ is flat. Let I be an injective right R -module. Then I

is flat, and so TorRi (I,M) = 0 for all i ⩾ 1. Thus M ∈ GF .

(3) ⇒ (1). Let E be any injective left R -module. Then E is flat by the proof of [3, Theorem 6], and so

R is right self-injective by [15, Proposition 3.7] since R is right Noetherian.

(2) ⇒ (4). Let M be a left R -module. Then HomR(V,M) ∈ GF , and so V⊗RHomR(V,M) ∈
Bl(R). Let 0 → M → E0 → E1 → · · · be an injective resolution of M . Consider the exact sequence

0 → HomR(V,M) → HomR(V,E
0) → C → 0. Since HomR(V,M), HomR(V,E

0) ∈ Al(R), C ∈ Al(R). Now

we have the following commutative diagram with exact rows:
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0 // V ⊗R HomR(V,M)

σM

��

// V ⊗R HomR(V,E
0)

∼=
��

// V ⊗R C // 0

0 // M // E0.

Therefore, σM is monic. Consider the exact sequence 0 → V ⊗R HomR(V,M) → M → L → 0. Then

0 −→ HomR(V, V ⊗R HomR(V,M)) −→ HomR(V,M) −→ HomR(V,L) −→ 0

is exact since Ext1R(V, V ⊗R HomR(V,M)) = 0, and so HomR(V,L) = 0 since HomR(V, V ⊗R HomR(V,M)) ∼=
HomR(V,M), which implies that L = 0. Thus M ∼= V ⊗R HomR(V,M) ∈ Bl(R) and M is V -Gorenstein flat

by Proposition 2.5.

(4) ⇒ (2). The proof is dual to that of (2) ⇒ (4).

(5) ⇒ (4). Let M be any left R -module. Then M = lim−→Mi , where Mi is a finitely generated submodule

of M . Hence M is V -Gorenstein flat by (5) and Lemma 3.5. 2

A ring R is said to be left (resp. right) n -perfect [8] if every flat left (resp. right) R -module has projective

dimension less than or equal to n .

Proposition 4.2 Let R be left n-perfect. The following are equivalent:

(1) R is left perfect;

(2) Every V -Gorenstein flat left R-module is V -Gorenstein projective;

(3) The class of V -Gorenstein projective left R -modules is closed under direct limits.

Proof (1) ⇒ (2). Let M ∈ V -GF and W ∼= V ⊗R P ∈ W . Then M ∈ Bl(R) and W++ ∼= V ⊗R P++ ; it

follows the fact that ExtiR(M,W++) ∼= TorRi (W
+,M)+ = 0 for all i ⩾ 1. Consequently ExtiR(M,W ) = 0 for

all i ⩾ 1 and M ∈ V -GP by [7, Theorem 3.4].

(2) ⇒ (3). This follows from that V -GP ⊆ V -GF and V -GF is closed under direct limits.

(3) ⇒ (1). Let F be a flat left R -module. Then F = lim−→Fi , where each Fi is finitely generated projec-

tive. By (3), V ⊗R F ∼= lim−→(V ⊗R Fi) ∈ V -GP , and hence F is Gorenstein projective. However, pd(RF ) ⩽ n

and so F is projective by [12, Proposition 2.27]. 2

Proposition 4.3 The following are equivalent for a ring R :

(1) {fd(M) ⩽ r |M ∈ Al(R)} ;

(2) {fd(M) < ∞|M ∈ Al(R)} ;
(3) Every Gorenstein flat left R -module is flat;

(3)′ Every V -Gorenstein flat left R -module belongs to X .

If R is left n-perfect, then the above are also equivalent to:

(4) Every Gorenstein projective left R -module is projective;

(4)′ Every V -Gorenstein projective left R -module belongs to W ;

(5) Every Gorenstein injective right R -module is injective;

(5)′ Every V -Gorenstein injective right R -module belongs to U .
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Proof (1) ⇒ (2) is trivial.

(2) ⇒ (3). Let M ∈ GF . Then M ∈ Al(R) and fd(M) < ∞ by (2). Thus M is flat.

(3) ⇒ (3) ′ . Let M ∈ V -GF . Then HomR(V,M) ∈ GF , and so HomR(V,M) is flat. However,

M ∼= V ⊗R HomR(V,M), as desired.

(3) ′ ⇒ (1). Let M ∈ Al(R). Then V ⊗R M ∈ Bl(R). Consider the exact sequence 0 → K → Xr−1 →
· · · → X0 → V ⊗RM → 0 with each Xi ∈ X . Then Theorem 2.3 implies that K ∈ V -GF , and so K ∈ X . The

exact sequence 0 → HomR(V,K) → HomR(V,Xr−1) → · · · → HomR(V,X0) → M → 0 gives that fd(RM) ⩽ r .

Next suppose that R is left n-perfect.

(2) ⇒ (4). Let M be a Gorenstein projective left R -module. Then M ∈ Al(R) and fd(RM) < ∞ by

(2), and so pd(RM) < ∞ . Consequently M is projective.

(4) ⇒ (4) ′ . Let M ∈ V -GP . Then HomR(V,M) is Gorenstein projective by [7, Theorem 3.4], and

hence HomR(V,M) is projective by (4). However, M ∼= V ⊗R HomR(V,M), as desired.

(4) ′ ⇒ (1). Let M ∈ Al(R). Consider the exact sequence 0 → K → Pr−1 → · · · → P0 → M → 0 with

each Pi projective. Then [8, Theorem 3.20] shows that K is Gorenstein projective. However, V ⊗R K ∈ Bl(R)

and K ∼= HomR(V, V ⊗R K) is Gorenstein projective and so V ⊗R K ∈ V -GP by [7, Theorem 3.4], which

implies that K is projective, as desired.

(3) ⇒ (5). Let M be a Gorenstein injective right R -module. Then M+ is Gorenstein flat, and so M+

is flat. Consequently M is injective.

(5) ⇒ (5) ′ . Let M ∈ V -GI . Then M ⊗R V is Gorenstein injective by [7, Theorem 2.4]. However,

M ∼= HomRop(V,M ⊗R V ), as desired.

(5) ′ ⇒ (1). Let M ∈ Al(R). Consider the exact sequence 0 → K → Fr−1 → · · · → F0 → M → 0

with each Fi flat. Then 0 → M+ → F+
0 → · · · → F+

r−1 → K+ → 0 is exact and every F+
i is injective; it

follows from [8, Theorem 3.17] that K+ is Gorenstein injective. However, K+ ∼= HomRop(V,K+)⊗R V and so

HomRop(V,K+) ∈ V -GI and HomRop(V,K+) ∼= HomRop(V,E) for some injective right R -module E by (5) ′ ,

and hence K+ ∼= HomRop(V,K+)⊗R V ∼= HomRop(V,E)⊗R V ∼= E . This implies that K is flat, as desired. 2

Proposition 4.4 The following are equivalent for a ring R :

(1) R is a QF ring;

(2) Every left R -module is Gorenstein projective;

(2)′ Every left R-module is V -Gorenstein projective;

(3) Every right R -module is Gorenstein injective;

(3)′ Every right R -module is V -Gorenstein injective;

(4) Every left R -module is Gorenstein flat;

(4)′ Every left R-module is V -Gorenstein flat.

Proof (1) ⇒ (2). Let M be a left R -module. Consider the projective resolution and injective resolution of

M : · · · → P1 → P0 → M → 0 and 0 → M → E0 → E1 → · · · . Then

· · · −→ P1 −→ P0 −→ E0 −→ E1 −→ · · ·

is a complete projective resolution of M . Thus M is Gorenstein projective.
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(2) ⇒ (2) ′ . Let M be a left R -module. Then HomR(V,M) is Gorenstein projective, and hence

V ⊗R HomR(V,M) ∈ Bl(R). By analogy with the proof of Proposition 4.1, we get M ∼= V ⊗R HomR(V,M)

and M ∈ V -GP by [17, Proposition 2.7].

(2) ′ ⇒ (2). Let M be a left R -module. Then V ⊗R M ∈ V -GP by (2) ′ . By analogy with the proof of

Proposition 4.1, M ∼= HomR(V, V ⊗R M) is Gorenstein projective.

(2) ⇒ (1). Let I be an injective left R -module. Then I is Gorenstein projective, and so there is an

exact sequence 0 → I → P → L → 0 with P projective. This implies that I is projective, as desired.

(1) ⇒ (3) ⇔ (3) ′ and (1) ⇒ (4) ⇔ (4) ′ . By analogy with the proof of (1) ⇒ (2) ⇔ (2) ′ .

(3) ⇒ (1). By analogy with the proof of (2) ⇒ (1).

(4) ⇒ (1). Let P be a projective right R -module. Then P+ ∈ GF , and so there is an exact sequence

0 → P+ → F → L → 0 with F flat. This shows that P+ is flat and P is injective, as desired. 2
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