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Abstract: It is a well-known result of the covering groups that a subgroup G of the fundamental group at the

identity of a semilocally simply connected topological group determines a covering morphism of topological groups

with characteristic group G . In this paper we generalize this result to a large class of algebraic objects called topological

groups with operations, including topological groups. We also prove that the crossed modules and internal categories

within topological groups with operations are equivalent. This equivalence enables us to introduce the cover of crossed

modules within topological groups with operations. Finally, we draw relations between the coverings of an internal

groupoid within topological groups with operations and those of the corresponding crossed module.

Key words: Covering groups, universal cover, crossed module, group with operations, topological groups with opera-

tions

1. Introduction

The theory of covering spaces is one of the most interesting theories in algebraic topology. It is well known that

if X is a topological group, say additive, p : X̃ → X is a simply connected covering map and 0̃ ∈ X̃ is such

that p(0̃) = 0, then X̃ becomes a topological group with identity 0̃ such that p is a morphism of topological

groups (see, for example, [9]).

The problem of universal covers of nonconnected topological groups was first studied in [25]. Taylor

proved that a topological group X determines an obstruction class kX in H3(π0(X), π1(X, 0)), and that the

vanishing of kX is a necessary and sufficient condition for the lifting of the group structure to a universal cover.

In [17], an analogous algebraic result was given in terms of crossed modules and group-groupoids, i.e. group

objects in the category of groupoids (see also [7] for a revised version, which generalizes these results and shows

the relation with the theory of obstructions to extension for groups, and [19] for the recently developed notion

of monodromy for topological group-groupoids).

In [8, Theorem 1], Brown and Spencer proved that the category of internal categories within the groups,

i.e. group-groupoids, is equivalent to the category of crossed modules of groups. In [20], considering this

equivalence of the categories, normality and quotient concepts are related in 2 categories. In [23, Section 3],

Porter then proved that a similar result to [8, Theorem 1] holds for certain algebraic categories C , introduced by

Orzech [21], whose definition was adapted by him and called the category of groups with operations. Applying

Porter’s result, the study of internal category theory in C was continued in the works of Datuashvili, i.e. [11]
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and [13]. Moreover, she developed a cohomology theory of internal categories, equivalently, crossed modules, in

categories of groups with operations [10, 12]. In a similar way, the results of [8] and [23] enabled us to prove

that some properties of covering groups can be generalized to topological groups with operations.

If X is a connected topological space that has a universal cover, x0 ∈ X , and G is a subgroup of the

fundamental group π1(X,x0) of X at the point x0 , then by [24, Theorem 10.42] we know that there is a

covering map p : (X̃G, x̃0) → (X,x0) of pointed spaces, with characteristic group G . In particular, if G is

singleton, then p becomes the universal covering map. Furthermore, if X is a topological group, then X̃G

becomes a topological group such that p is a morphism of topological groups. Recently in [2], this method was

applied to topological R -modules and a more general result was obtained (see also [3] and [18] for groupoid

setting).

The object of this paper is to prove that this result can be generalized to a wide class of algebraic cate-

gories, which include categories of topological groups, topological rings, topological R -modules, and alternative

topological algebras. This is conveniently handled by working in a category TC . The method we use is based

on that used by Rotman in [24, Theorem 10.42].

We also prove that the crossed modules and internal categories in TC are equivalent. Finally, we introduce

the cover of crossed modules in TC and draw relations between the covers of an internal groupoid in TC and

those of the corresponding crossed module.

2. Preliminaries on groupoids and covering groups

As defined in [4, 16], a groupoid G has a set G of morphisms, which we call just elements of G , a set G0 of

objects together with maps d0, d1 : G → G0 and ϵ : G0 → G such that d0ϵ = d1ϵ = 1G0 . The maps d0 , d1

are called initial and final point maps respectively and the map ϵ is called object inclusion. If a, b ∈ G and

d1(a) = d0(b), then the composite a ◦ b exists such that d0(a ◦ b) = d0(a) and d1(a ◦ b) = d1(b). Thus, there

exists a partial composition defined by Gd1 ×d0 G → G, (a, b) 7→ a ◦ b , where Gd1 ×d0 G is the pullback of d1

and d0 . Furthermore, this partial composition is associative, for x ∈ G0 the element ϵ(x) acts as the identity,

and each element a has an inverse a−1 such that d0(a
−1) = d1(a), d1(a

−1) = d0(a), a ◦ a−1 = ϵd0(a) and

a−1 ◦ a = ϵd1(a). The map G → G , a 7→ a−1 is called the inversion.

In a groupoid G for x, y ∈ G0 we write G(x, y) for the set of all morphisms with initial point x and final

point y . According to [4] for x ∈ G0 , the star of x is defined as {a ∈ G | d0(a) = x} and denoted as StGx .

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H → G and f0 : H0 → G0

such that d0f = f0d0 , d1f = f0d1 , fϵ = ϵf0 , and f(a ◦ b) = f(a) ◦ f(b) for all (a, b) ∈ Hd1 ×d0 H . For such a

morphism we simply write f : H → G .

We assume the usual theory of covering maps. All spaces X are assumed to be locally path-connected

and semilocally 1-connected, so that each path component of X admits a simply connected cover. Recall that

a covering map p : X̃ → X of connected spaces is called universal if it covers every covering of X in the sense

that if q : Ỹ → X is another covering of X then there exists a map r : X̃ → Ỹ such that p = qr (hence, r

becomes a covering). A covering map p : X̃ → X is called simply connected if X̃ is simply connected. Note

that a simply connected covering is a universal covering.

A subset U of a space X , which has a universal cover, is called liftable if it is open and path-connected

and it lifts to each covering of X ; that is, if p : X̃ → X is a covering map, ı : U → X is the inclusion map and
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x̃ ∈ X̃ such that p(x̃) = x ∈ U , then there exists a map (necessarily unique) ı̂ : U → X̃ such that pı̂ = ı and

ı̂(x) = x̃ . It is an easy application that U is liftable if and only if it is open and path-connected and for all

x ∈ U , the fundamental group π1(U, x) is mapped to the singleton by the morphism ı⋆ : π1(U, x) → π1(X,x)

induced by the inclusion ı : (U, x) → (X,x).

A space X is called semilocally simply connected if each point has a liftable neighborhood and locally

simply connected if it has a base of simply connected sets. Thus, a locally simply connected space is also

semilocally simply connected.

For a covering map p : (X̃, x̃0) → (X,x0) of pointed topological spaces, the subgroup p⋆(π1(X̃, x̃0)) of

π1(X,x0) is called characteristic group of p , where p⋆ is the morphism induced by p (see [4, p.379] for the

characteristic group of a covering map in terms of covering morphism of groupoids ). Two covering maps

p : (X̃, x̃0) → (X,x0) and q : (Ỹ , ỹ0) → (X,x0) are called equivalent if their characteristic groups are equal, and

equivalently there is a homeomorphism f : (X̃, x̃0) → (Ỹ , ỹ0) such that qf = p .

We recall a construction from [24, p.295] as follows: let X be a topological space with a base point x0

and G a subgroup of π1(X,x0). Let P (X,x0) be the set of all paths of α in X with initial point x0 . Then the

relation defined on P (X,x0) by α ≃ β if and only if α(1) = β(1) and [α ◦ β−1] ∈ G is an equivalence relation.

Denote the equivalence class of α by ⟨α⟩G and define X̃G as the set of all such equivalence classes of the paths

in X with initial point x0 . Define a function p : X̃G → X by p(⟨α⟩G) = α(1). Let α0 be the constant path at

x0 and x̃0 = ⟨α0⟩G ∈ X̃G . If α ∈ P (X,x0) and U is an open neighborhood of α(1), then a path of the form

α ◦ λ , where λ is a path in U with λ(0) = α(1), is called a continuation of α . For an ⟨α⟩G ∈ X̃G and an open

neighborhood U of α(1), let (⟨α⟩G, U) = {⟨α ◦ λ⟩G : λ(I) ⊆ U} . Then the subsets (⟨α⟩G, U) form a basis for

a topology on X̃G such that the map p : (X̃G, x̃0) → (X,x0) is continuous.

In Theorem 3.6 we generalize the following result to topological groups with operations.

Theorem 2.1 [24, Theorem 10.34] Let (X,x0) be a pointed topological space and G a subgroup of π1(X,x0) .

If X is connected, locally path-connected, and semilocally simply connected, then p : (X̃G, x̃0) → (X,x0) is a

covering map with characteristic group G .

Remark 2.2 Let X be a connected, locally path-connected, and semilocally simply connected topological

space and q : (X̃, x̃0) → (X,x0) a covering map. Let G be the characteristic group of q . Then the covering

map q is equivalent to the covering map p : (X̃G, x̃0) → (X,x0) corresponding to G .

From Theorem 2.1 the following result is obtained.

Theorem 2.3 [24, Theorem 10.42] Suppose that X is a connected, locally path-connected, and semilocally

simply connected topological group. Let 0 ∈ X be the identity element and p : (X̃, 0̃) → (X, 0) a covering map.

Then the group structure of X lifts to X̃ , i.e. X̃ becomes a topological group such that 0̃ is identity and

p : (X̃, 0̃) → (X, 0) is a morphism of topological groups.
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3. Universal covers of topological groups with operations

In this section we apply the methods of Section 2 to the topological groups with operations and obtain parallel

results.

The idea of the definition of categories of groups with operations comes from [15] and [21] (see also [22])

and the definition below is from [23] and [14, p.21], which is adapted from [21].

Definition 3.1 Let C be a category of groups with a set of operations Ω and with a set E of identities such

that E includes the group laws, and the following conditions hold for the set Ωi of i-ary operations in Ω:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2 .

(b) The group operations written additively 0,− , and + are the elements of Ω0 , Ω1 , and Ω2 , respectively.

Let Ω′
2 = Ω2\{+} , Ω′

1 = Ω1\{−} and assume that if ⋆ ∈ Ω′
2 , then ⋆◦ defined by a ⋆◦ b = b ⋆ a is also in Ω′

2 .

Also assume that Ω0 = {0} .
(c) For each ⋆ ∈ Ω′

2 , E includes the identity a ⋆ (b+ c) = a ⋆ b+ a ⋆ c .

(d) For each ω ∈ Ω′
1 and ⋆ ∈ Ω′

2 , E includes the identities ω(a+b) = ω(a)+ω(b) and ω(a)⋆b = ω(a⋆b).

The category C satisfying conditions (a)–(d) is called a category of groups with operations.

In the paper from now on, C will denote a category of groups with operations.

A morphism between any 2 objects of C is a group homomorphism, which preserves the operations of

Ω′
1 and Ω′

2 .

Remark 3.2 The set Ω0 contains exactly one element, the group identity; hence, for instance, the category of

associative rings with unit is not a category of groups with operations.

Example 3.3 The categories of groups, rings not necessarily with identity, R -modules, associative, associative

commutative, Lie, Leibniz, and alternative algebras are examples of categories of groups with operations.

The category of topological groups with operations is defined in [1] as follows:

Definition 3.4 A category TC of topological groups with a set Ω of continuous operations and with a set E of

identities including the group laws such that conditions (a)–(d) in Definition 3.1 are satisfied is called a category

of topological groups with operations and the objects of TC are called topological groups with operations.

In the rest of the paper, TC will denote a category of topological groups with operations.

A morphism between any 2 objects of TC is a continuous group homomorphism, which preserves the

operations in Ω′
1 and Ω′

2 .

The categories of topological groups, topological rings, topological R -modules, and alternative topological

algebras are examples of categories of topological groups with operations.

Proposition 3.5 If X is a topological group with operations, then the fundamental group π1(X, 0) becomes a

group with operations.

Proof Let X be an object of TC and P (X, 0) the set of all paths in X with initial point 0 as described in

Section 2. There are binary operations on P (X, 0) defined by

(α ⋆ β)(t) = α(t) ⋆ β(t) (1)
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for ⋆ ∈ Ω2 and t ∈ I , unit interval, and unary operations defined by

(ωα)(t) = ω(α(t)) (2)

for ω ∈ Ω1 . Hence, the operations (1) induce binary operations on π1(X, 0) defined by

[α] ⋆ [β] = [α ⋆ β] (3)

for [α], [β] ∈ π1(X, 0). Since the binary operations ⋆ in Ω2 are continuous, it follows that the binary operations

(3) are well defined. Similarly, the operations (2) reduce the unary operations defined by

ω[α] = [ωα]. (4)

By the continuity of the unary operations ω ∈ Ω1 , the operations (4) are also well defined. The other details

can be checked and so π1(X, 0) becomes a group with operations, i.e. an object of C . 2

We now generalize Theorem 2.1 to topological groups with operations. We first make the following

preparation:

Let X be a topological group with operations. By the evaluation of the compositions and operations of

the paths in X such that α1(1) = β1(0) and α2(1) = β2(0), we have the following interchange law:

(α1 ◦ β1) ⋆ (α2 ◦ β2) = (α1 ⋆ α2) ◦ (β1 ⋆ β2) (5)

for ⋆ ∈ Ω2 , where ◦ denotes the composition of paths, and

(α ⋆ β)−1 = α−1 ⋆ β−1 (6)

for α, β ∈ P (X, 0) where, say, α−1 is the inverse path defined by α−1(t) = α(1− t) for t ∈ I . Further, we have

that

(ωα)−1 = ωα−1, (7)

ω(α ◦ β) = (ωα) ◦ (ωβ) (8)

when α(1) = β(0).

Parallel to Theorem 2.1, in the following theorem we prove a general result for topological groups with

operations.

Theorem 3.6 Let X be a topological group with operations, i.e. an object of TC , and let G be a subobject of

π1(X, 0) . Suppose that the underlying space of X is connected, locally path-connected, and semilocally simply

connected. Let p : (X̃G, 0̃) → (X, 0) be the covering map corresponding to G as a subgroup of the additive

group of π1(X, 0) by Theorem 2.1. Then the operations of X lift to X̃G , i.e. X̃G is a topological group with

operations and p : X̃G → X is a morphism of TC .

Proof By the construction of X̃G in Section 2, X̃G is the set of equivalence classes defined via G . The binary

operations on P (X, 0) defined by (1) induce binary operations

⟨α⟩G ⋆ ⟨β⟩G = ⟨α ⋆ β⟩G (9)
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and the unary operations on P (X, 0) defined by (2) induce unary operations

ω⟨α⟩G = ⟨ωα⟩G (10)

on X̃G .

We now prove that operations (9) and (10) are well defined. For ⋆ ∈ Ω2 and the paths α, β, α1, β1 ∈
P (X, 0) with α(1) = α1(1) and β(1) = β1(1), we have that

[(α ⋆ β) ◦ (α1 ⋆ β1)
−1] = [(α ⋆ β) ◦ (α−1

1 ⋆ β−1
1 )] (by 6)

= [(α ◦ α−1
1 ) ⋆ (β ◦ β−1

1 )] (by 5)

= [α ◦ α−1
1 ] ⋆ [β ◦ β−1

1 ]. (by 3)

Thus, if α1 ∈ ⟨α⟩G and β1 ∈ ⟨β⟩G , then [α ◦α−1
1 ] ∈ G and [β ◦ β−1

1 ] ∈ G . Since G is a subobject of π1(X, 0),

we have that [α ◦ α−1
1 ] ⋆ [β ◦ β−1

1 ] ∈ G . Therefore, the binary operations (9) are well defined.

Similarly, for the paths α, α1 ∈ P (X, 0) with α(1) = α1(1) and ω ∈ Ω1 , we have that

[(ωα) ◦ (ωα1)
−1)] = [(ωα) ◦ (ωα−1

1 )] (by 7)

= [(ω(α ◦ α−1
1 )] (by 8)

= ω[α ◦ α−1
1 ]. (by 4)

Since G is a subobject of π1(X, 0), if [α ◦ α−1
1 ] ∈ G and ω ∈ Ω1 , then ω[α ◦ α−1

1 ] ∈ G . Hence, the unary

operations (10) are also well defined.

The axioms (a)–(d) of Definition 3.1 for X̃G are satisfied and therefore X̃G becomes a group with

operations. Further, by Theorem 2.1, p : (X̃G, 0̃) → (X, 0) is a covering map, X̃G is a topological group,

and p is a morphism of topological groups. In addition to this, we need to prove that X̃G is an object

of TC and p is a morphism of TC . To prove that the operations (9) for ⋆ ∈ Ω′
2 are continuous, let

⟨α⟩G, ⟨β⟩G ∈ X̃G and (W, ⟨α⋆β⟩G) be a basic open neighborhood of ⟨α⋆β⟩G . Here W is an open neighborhood

of (α ⋆ β)(1) = α(1) ⋆ β(1). Since the operations ⋆ : X ×X → X are continuous, there are open neighborhoods

U and V of α(1) and β(1) respectively in X such that U ⋆ V ⊆ W . Therefore, (U, ⟨α⟩G) and (V, ⟨β⟩G) are

respectively base open neighborhoods of ⟨α⟩G and ⟨β⟩G , and

(U, ⟨α⟩G) ⋆ (V, ⟨β⟩G) ⊆ (W, ⟨α ⋆ β⟩G).

Therefore, the binary operations (9) are continuous

We now prove that the unary operations (10) for ω ∈ Ω′
1 are continuous. If (V, ⟨ωα⟩) is a base open

neighborhood of ⟨ωα⟩ , then V is an open neighborhood of ωα(1), and since the unary operations ω : X → X

are continuous, there is an open neighborhood U of α(1) such that ω(U) ⊆ V . Therefore, (U, ⟨α⟩) is an open

neighborhood of ⟨α⟩ and ω(U, ⟨α⟩) ⊆ (V, ⟨ωα⟩).

Moreover, the map p : X̃G → X defined by p(⟨α⟩G) = α(1) preserves the operations of Ω2 and Ω1 . 2

From Theorem 3.6, the following result can be restated.
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Theorem 3.7 Suppose that X is a topological group with operations whose underlying space is connected,

locally path-connected, and semilocally simply connected. Let p : (X̃, 0̃) → (X, 0) be a covering map such that

X̃ is path connected and the characteristic group G of p is a subobject of π1(X, 0) . Then the operations on X

lift to X̃ .

Proof By assumption, the characteristic group G of the covering map p : (X̃, 0̃) → (X, 0) is a subobject of

π1(X, 0). Thus, by Remark 2.2, we can assume that X̃ = X̃G , and hence by Theorem 3.6, the group operations

of X lift to X̃ as required. 2

In particular, in Theorem 3.6 if the subobject G of π1(X, 0) is chosen to be the singleton, then the

following corollary is obtained.

Corollary 3.8 Let X be a topological group with operations such that the underlying space of X is connected,

locally path-connected, and semilocally simply connected. Let p : (X̃, 0̃) → (X, 0) be a universal covering map.

Then the operations of X lift to X̃ .

The following proposition is useful for Theorem 3.11.

Proposition 3.9 Let X be a topological group with operations and V a liftable neighborhood of 0 in X . Then

there is a liftable neighborhood U of 0 in X such that U ⋆ U ⊆ V for ⋆ ∈ Ω2 .

Proof Since X is a topological group with operations and hence the binary operations ⋆ ∈ Ω2 are continuous,

there is an open neighborhood U of 0 in X such that U ⋆ U ⊆ V . Further, if V is liftable, then U can be

chosen as liftable, for if V is liftable, then for each x ∈ U , the fundamental group π1(U, x) is mapped to the

singleton by the morphism induced by the inclusion map ı : U → X . Here U is not necessarily path-connected

and hence not necessarily liftable. However, since the path component C0(U) of 0 in U is liftable and satisfies

these conditions, U can be replaced by the the path component C0(U) of 0 in U and it is assumed that U is

liftable. 2

Definition 3.10 Let X and Y be topological groups with operations and U an open neighborhood of 0 in

X . A continuous map ϕ : U → S is called a local morphism in TC if ϕ(a ⋆ b) = ϕ(a) ⋆ ϕ(b) when a, b ∈ U such

that a ⋆ b ∈ U for ⋆ ∈ Ω2 .

Theorem 3.11 Let X and X̃ be topological groups with operations and q : X̃ → X a morphism of TC , which

is a covering map. Let U be an open, path-connected neighborhood of 0 in X such that for each ⋆ ∈ Ω2 , the

set U ⋆ U is contained in a liftable neighbourhood V of 0 in X . Then the inclusion map i : U → X lifts to a

local morphism ı̂ : U → X̃ in TC .

Proof Since V lifts to X̃ , then U lifts to X̃ by ı̂ : U → X̃ . We now prove that ı̂ is a local morphism of

topological groups with operations. We know by the lifting theorem that ı̂ : U → X̃ is continuous. Let a, b ∈ U

be such that for each ⋆ ∈ Ω2 , a ⋆ b ∈ U . Let α and β be the paths from 0 to a and b respectively in U . Let

γ = α ⋆ β . Thus, γ is a path from 0 to a ⋆ b . Since U ⋆U ⊆ V , the paths γ is in V. Thus, the paths α, β , and

γ lift to X̃ . Suppose that α̃ , β̃ , and γ̃ are the liftings of α , β , and γ in X̃ , respectively. Then we have

q(γ̃) = γ = α ⋆ β = q(α̃) ⋆ q(β̃).
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However, q is a morphism of a topological group with operations and so we have

q(α̃ ⋆ β̃) = q(α̃) ⋆ q(β̃)

for ⋆ ∈ Ω2 . Since the paths γ̃ and α̃ ⋆ β̃ have the initial point 0̃ ∈ X̃ , by the unique path lifting

γ̃ = α̃ ⋆ β̃.

On evaluating these paths at 1 ∈ I , we have

ı̂(a ⋆ b) = ı̂(a) ⋆ ı̂(b).

2

4. Covers of crossed modules within topological groups with operations

If A and B are objects of C , an extension of A by B is an exact sequence

0 −→ A
ı−→ E

p−→ B −→ 0 (11)

in which p is surjective and ı is the kernel of p . It is split if there is a morphism s : B → E such that ps = ıdB .

A split extension of A by B is called a B -structure on A . Given such a B -structure on A we get actions of B

on A corresponding to the operations in C . For any b ∈ B , a ∈ A , and ⋆ ∈ Ω′
2 we have actions called derived

actions by Orzech [21, p. 293]:

b · a = s(b) + a− s(b)
b ⋆ a = s(b) ⋆ a.

(12)

In addition to this, we note that topologically if an exact sequence (11) in TC is a split extension, then the

derived actions (12) are continuous. Thus, we can state Theorem [21, Theorem 2.4] in a topological case, which

is useful for the proof of Theorem 4.7, as follows.

Theorem 4.1 A set of actions (one for each operation in Ω2 ) is a set of continuous derived actions if and

only if the semidirect product B ⋉A with underlying set B ×A and operations

(b, a) + (b′, a′) = (b+ b′, a+ (b · a′))

(b, a) ⋆ (b′, a′) = (b ⋆ b′, a ⋆ a′ + b ⋆ a′ + a ⋆ b′)

is an object in TC .

The internal category in C is defined in [23] as follows. We follow the notations of Section 2 for groupoids.

Definition 4.2 An internal category C in C is a category in which the initial and final point maps d0, d1 : C →
C0 , the object inclusion map ϵ : C0 → C , and the partial composition ◦ : Cd1 ×d0 C → C, (a, b) 7→ a ◦ b are

morphisms in the category C .
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Note that since ϵ is a morphism in C , ϵ(0) = 0, and that the operation ◦ being a morphism implies that

for all a, b, c, d ∈ C and ⋆ ∈ Ω2 ,

(a ⋆ b) ◦ (c ⋆ d) = (a ◦ c) ⋆ (b ◦ d) (13)

whenever one side makes sense. This is called the interchange law [23].

We also note from [23] that any internal category in C is an internal groupoid since, given a ∈ C ,

a−1 = ϵd1(a) − a + ϵd0(a) satisfies a−1 ◦ a = ϵd1(a) and a ◦ a−1 = ϵd0(a). Thus, we use the term internal

groupoid rather than internal category and write G for an internal groupoid. For the category of internal

groupoids in C we use the same notation, Cat(C), as in [23]. Here a morphism f : H → G in Cat(C) is a

morphism of underlying groupoids and a morphism in C .

In particular, if C is the category of groups, then an internal groupoid G in C becomes a group-groupoid

and, in the case where C is the category of rings, an internal groupoid in C is a ring object in the category of

groupoids [18].

Definition 4.3 An internal groupoid in the category TC of topological groups with operations is called a

topological internal groupoid.

Thus, a topological internal groupoid is a topological groupoid G in which the set of morphisms and the

set G0 of objects are objects of TC and all structural maps of G , i.e the source and target maps d0, d1 : G → G0 ,

the object inclusion map ϵ : G0 → G , and the composition map ◦ : Gd1 ×d0 G → G , are morphisms of TC .

If TC is the category of topological groups, then a topological internal groupoid becomes a topological

group-groupoid.

For the category of topological internal groupoids in TC we use the notation Cat(TC). Here a morphism

f : H → G in Cat(TC) is morphism of underlying groupoids and a morphism in TC .

Theorem 4.4 Let X be an object of TC such that the underlying space is locally path-connected and semilocally

simply connected. Then the fundamental groupoid πX is a topological internal groupoid.

Proof Let X be a topological group with operations as assumed. By [5, Theorem 1], πX has a topology such

that it is a topological groupoid. We know by [5, Proposition 3] that when X and Y are endowed with such

topologies, for a continuous map f : X → Y , the induced morphism π(f) : πX → πY is also continuous. Hence,

the continuous binary operations ⋆ : X ×X → X for ⋆ ∈ Ω2 and the unary operations ω : X → X for ω ∈ Ω1

respectively induce continuous binary operations ⋆̃ : πX × πX → πX and unary operations ω̃ : πX → πX .

The set of morphisms thus becomes a topological group with operations. The groupoid structural maps are

morphisms of topological groups with operations, i.e. preserve the operations. Therefore, πX becomes a topo-

logical internal groupoid. 2

Proposition 4.5 Let X and Y be topological groups with operations such that the underlying spaces are locally

path-connected and semilocally simply connected. Then π(X × Y ) and πX × πY are isomorphic as topological

internal groupoids.

Proof By Theorem 4.4, π(X × Y ) and πX × πY are topological internal groupoids, and by [5, Proposition

5], they are isomorphic as topological groupoids. The other details follow. 2
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Similar to the crossed module in C formulated in [23, Proposition 2], we define a crossed module in TC

as follows:

Definition 4.6 A crossed module in TC is a morphism α : A → B in TC , where B acts topologically on A

(i.e. we have continuous derived actions in TC) with the following conditions for any b ∈ B , a, a′ ∈ A , and

⋆ ∈ Ω′
2 :

CM1 α(b · a) = b+ α(a)− b ;

CM2 α(a) · a′ = a+ a′ − a ;

CM3 α(a) ⋆ a′ = a ⋆ a′ ;

CM4 α(b ⋆ a) = b ⋆ α(a) and α(a ⋆ b) = α(a) ⋆ b .

A morphism from α : A → B to α′ : A′ → B′ is a pair f1 : A → A′ and f2 : B → B′ of the morphisms

in TC such that

1. f2α(a) = α′f1(a),

2. f1(b · a) = f2(b) · f1(a),

3. f1(b ⋆ a) = f2(b) ⋆ f1(a),

for any x ∈ B , a ∈ A and ⋆ ∈ Ω′
2 . Thus, we have a category XMod(TC) of crossed modules in TC .

The algebraic case of the following theorem was proven in C in [23, Theorem 1]. We now prove the

topological version as follows.

Theorem 4.7 The category XMod(TC) of crossed modules in TC and the category Cat(TC) of internal

groupoids in TC are equivalent.

Proof We give a sketch of a proof based on that of the algebraic case. A functor δ : Cat(TC) → XMod(TC) is

defined as follows: for a topological internal groupoid G , let δ(G) be the topological crossed module (A,B, d1)

in TC , where A = Kerd0 , B = G0 , and d1 : A → B is the restriction of the target point map. Here A and

B inherit the structures of a topological group with operations from that of G , and the target point map

d1 : A → B is a morphism in TC . Further, the actions B × A → A on the topological group with operations

A given by

b · a = ϵ(b) + a− ϵ(b)

b ⋆ a = ϵ(b) ⋆ a

for a ∈ A , b ∈ B are continuous by the continuities of ϵ and the operations in Ω2 , and the axioms of Definition

4.6 are satisfied. Thus, (A,B, d1) becomes a crossed module in TC .

Conversely, define a functor η : XMod(TC) → Cat(TC) in the following way. For a crossed module

(A,B, α) in TC , define a topological internal groupoid η(A,B, α) whose set of objects is the topological

group with operations B and set of morphisms is the semidirect product B ⋉ A , which is a topological
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group with operations by Theorem 4.1. The source and target point maps are defined to be d0(b, a) = b

and d1(b, a) = α(a) + b while the object inclusion map and groupoid composition is given by ϵ(b) = (b, 0) and

(b, a) ◦ (b1, a1) = (b, a1 + a)

whenever b1 = α(a) + b . These structural maps are all continuous and therefore η(A,B, α) is a topological

internal groupoid.

The other details of the proof are obtained from that of [23, Theorem 1].

2

A morphism of groupoids p : H → G is called a covering morphism and H a covering groupoid of G if for

each x̃ ∈ H0 the restriction StH x̃ → StGp(x̃) of p is a bijection. Let Gd0
×pH0 be the pullback of d0 : G → G0

and p : H0 → G0 . If p : H → G is a covering morphism, there is a lifting function sp : Gd0 ×pH0 → H assigning

to the pair (a, x̃) the unique element b ∈ StH x̃ such that p(b) = a and sp is inverse to (p, d0) : H → Gd0
×pH0 .

Thus, it can be stated that p is a covering morphism if and only if (p, d0) : H → Gd0 ×p H0 is a bijection. In

terms of this function (p, d0), the notion of of topological covering morphism is defined in [6, p.144] as follows:

A morphism of topological groupoids p : H → G is called a topological covering morphism if the function

(p, d0) : H → Gd0 ×p H0 is a homeomorphism. Therefore, we can generalize this concept to the more general

topological internal groupoids and call a morphism p : H → G of Cat(TC) a covering morphism if it is a

topological groupoid covering on the underlying topological groupoids.

Proposition 4.8 If f : X̃ → X is a covering map in TC such that the underlying spaces are locally path-

connected and semilocally simply connected, then πf : πX̃ → πX is a covering morphism in Cat(TC).

Proof By Theorem 4.4, πX and πY are topological internal groupoids, and by [5, Theorem 4], πf : πX → πY

is a topological covering morphism of topological groupoids. The other details follow. 2

Thus, by the equivalence of the categories proven in Theorem 4.7, evaluating this notion in the crossed

modules in TC we obtain the cover of a crossed module in TC as follows.

If f : H → G is a covering morphism in Cat(TC) and (f1, f2) is the morphism of crossed modules

corresponding to f , then f1 : Ã → A is an isomorphism in TC , where Ã = StH 0̃ , A = StG0, and f1 is the

restriction of f . Therefore, we call a morphism (f1, f2) of crossed modules in TC a cover if f1 : Ã → A is an

isomorphism in TC .

Let G be a topological internal groupoid, i.e. an object of Cat(TC). Let CovCat(TC)/G be the category of

covers of G in the category Cat(TC). Thus, the objects of CovCat(TC)/G are the covering morphisms p : H → G

over G in Cat(TC) and a morphism from p : H → G to q : K → G is a morphism f : H → K in Cat(TC) such

that qf = p .

The algebraic case of the following theorem was proven in [1, Theorem 5.3]. We have the topological

version of this theorem for TC as follows.

Theorem 4.9 Let G be an object of Cat(TC) and α : A → B the crossed module in TC corresponding to G by

Theorem 4.7. Let CovXMod(TC)/(α : A → B) be the category of covers of α : A → B in TC . Then the categories

CovCat(TC)/G and CovXMod(TC)/(α : A → B) are equivalent.

Proof If f : H → G is a covering morphism in Cat(TC) and

(f1, f2) : (Ã, B̃, α̃) → (A,B, α)
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is the morphism of crossed modules in TC corresponding to f by Theorem 4.7, then f1 : Ã → A becomes

an isomorphism in the category TC , where Ã = StH 0̃ , A = StG0, and f1 is the restriction of f . Therefore,

(f1, f2) is a covering morphism in XMod(TC) and so in this way we have a functor

δ : CovCat(TC)/G → CovXMod(TC)/(α : A → B).

Conversely, let (f1, f2) : (Ã, B̃, α̃) → (A,B, α) be a covering morphism of crossed modules in XMod(TC)

and f : H → G the morphism of Cat(TC) corresponding to (f1, f2), where H = B̃ ⋉ Ã and G = B ⋉A . Since

f1 : Ã → A is an isomorphism in TC as stated above (p, d0) : H → Gd0 ×p H0 is a bijection, which is inverse

to the lifting function sp : Gd0
×p H0 → H . Since f1 and f2 are continuous, the maps sp and (p, d0) are

continuous, i.e. f is a covering morphism in Cat(TC). Therefore, we have another functor

η : CovXMod(TC)/(α : A → B) → CovCat(TC)/G.

The other details of the equivalence of categories follow the proof of Theorem 4.7

2

As a result of Theorem 4.9, the following corollary can be stated.

Corollary 4.10 Let X be an object of TC such that the underlying space is locally path-connected and semilo-

cally simply connected. Then the category CovCat(TC)/πX of coverings of πX in the category Cat(TC) and the

category

CovXMod/(d1 : StπX0 → X)

of coverings of the crossed module d1 : StπX0 → X in XMod(TC) are equivalent.

Proof If X is an object of TC such that the underlying space is locally path-connected and semilocally simply

connected, then by Theorem 4.4 πX becomes an object of Cat(TC). Therefore, the proof follows by Theorem

4.9. 2
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[19] Mucuk O, Kılıçarslan B, Şahan T, Alemdar N. Group-groupoid and monodromy groupoid. Topol Appl 2011; 158:

2034–2042.
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