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doi:10.3906/mat-1301-4

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On the K -ring of the classifying space of the generalized quaternion group

Mehmet KIRDAR∗, Sevilay ÖZDEMİR
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Abstract: We describe the K -ring of the classifying space of the generalized quaternion group in terms of generators

and the minimal set of relations. We also compute the order of the main generator in the truncated rings.
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1. Introduction

The K -ring of the classifying space BQ2n of the generalized quaternion group Q2n , n ≥ 3, is described

classically in [4] and [7]. In this note, we describe these rings in a simpler way, by a minimal set of relations

on a minimal set of generators. We also make connections between these computations and those done for the

lens spaces.

In particular, we compute the order of the main generator of that ring in its truncations, i.e. the K̃ -order

of the main vector bundle over the corresponding spherical forms, in a much shorter way than is done in [7].

The reader may find more about the geometric meaning of these orders and quaternionic spherical forms in [4]

and [7].

The description of the K -ring is done from the representation ring of the group Q2n via the Atiyah–Segal

Completion Theorem (ASCT), which says that the K -ring of the classifying space of a group is the completion

of the representation ring of this group at its augmentation ideal.

Most importantly, we also check the minimality of the relations we found, through the Atiyah–Hirzebruch

Spectral Sequence (AHSS), and this will also guarantee that the required completion of the representation ring

mentioned in ASCT is thus achieved. The reader who wants to search deep down for the mysterious ASCT and

AHSS may start with the papers by their creators, [1], [2].

In connection with and parallel to this problem, the reader should also look at the descriptions for cyclic

and dihedral groups. A quick survey for the K -rings of the classifying spaces of cyclic and dihedral groups can

be found in [6]. The complete result for the dihedral groups is also published before this paper, in [5], which

surprisingly uses the results of this paper for the complicated even case of its problem.

2. Representations

The quaternion group Q2n , where n ≥ 3, is generated by 2 elements x and y with the relations x2
n−1

= 1,

x2
n−2

= y2 and xyx = y. Note that x generates a cyclic group of order 2n−1 , and y generates a cyclic group
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of order 4. Note also that x2
n−2

, which is equal to y2, generates a cyclic group of order 2. We keep in mind

these natural group inclusions of the cyclic groups in Q2n .

There are 4 one-dimensional irreducible complex representations of Q2n . We will denote them by 1, η1, η2 ,

and η3. They are explained by 1× 1 matrices in [7].

There are 2n−2 − 1 two-dimensional irreducible complex representations of Q2n . We will denote them

by di where 1 ≤ i ≤ 2n−2 − 1. Actually, di makes sense for any integer i and this will be clarified below.

Since all we need will be the relations that they can generate, we will not describe these representations

by matrices here. The descriptions of these representations by 2× 2 matrices are given in [7].

Before presenting the relations let us set 2n = 2m = 4k. We have this convention from now on. Note

that k ≥ 2 and it is a power of 2 too.

Now, we will list all possible relations in the representation ring R(Q4k). First of all, η3 = η1η2. Since

η21 = η22 = 1, we also have the relation η23 = 1. For di ’s, we have the start d0 = 1 + η1 and we have the end

dk = η2 + η3.

The main relation, which is the most important of all, is

didj = di+j + di−j .

This relation makes sense for any integer couple i, j because of the following fact: di = dm−i for all

integers i.

Another set of relations are for the products of the one- and two-dimensional representations, and they

are: η1di = di and η2di = dk−i for all i . Since, η3 = η1η2, it follows that η3di = dk−i for all i , the same as
η2.

We deduce from the relations above that the representation ring of Q2n is just generated by η1, η2 , and

d1, by means of tensor products and direct sums. The minimal polynomials on η1, η2 , and d1 that define the

ring can be found from these relations, but we will do that in our new variables.

3. Cohomology

Integral cohomology of Q4k, k ≥ 2, is the following and can be found in [3]:

Hp(BQ4k;Z) =


Z
Z2 ⊕ Z2

Z4k

0

p = 0
if p = 4s+ 2
if p = 4s, s ≥ 1
if p is odd.

Note that the odd dimensional cohomology vanishes. Because of that, the AHSS, which converges to

K(BQ4k), collapses on page 2 so that the K -ring is completely determined by the integral cohomology and

vice versa. Here, we also notice that the cohomology is periodic.

The relations of the cohomology ring can also be found in [3]. Note that these relations are quite different

than those in the K -ring. We do not try to find connections between these relations. We just compare the

orders of the elements of K(BQ4k) in the filtrations of the spectral sequence with the sizes of the cohomology

groups to prove that the relations we found are minimal.
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4. K-Rings

Corresponding to the representations η1, η2 , and d1, there are induced vector bundles over the classifying

space BQ4k and we denote them by the same letters. We will set the reduced vector bundles as v1 = η1 − 1,

v2 = η2 − 1, and, most importantly, the main element ϕ = d1 − 2. Due to the ASCT, the elements v1, v2 , and

ϕ generate K(BQ4k). All we need is to find the minimal relations on these generators so that the ring is well

described.

First of all, since η21 = η22 = 1, we have the following relations:

v21 = −2v and v22 = −2v2 (Relations 1 & 2).

We note that the above relations are the standard relations for real line bundles over the classifying

spaces. These small and simple relations on vi ’s explain the cohomology groups H4s+2(BQ4k;Z) = Z2 ⊕ Z2 ,

which are the (4s+2)-th filtrations E4s+2,−4s−2
∞ on the main diagonal of the AHSS. The first Z2 in the direct

sum is generated by vs1 and the second Z2 is generated by vs2 where s ≥ 1.

Next we should explain Z4k ’s that occur in the cohomology ring; in other words, we should explain the

filtrations E4s,−4s
∞ , s ≥ 1, of the AHSS. This will not be easy.

Recall the natural inclusion of Z2k in Q4k defined by the element x ∈ Q4k. This inclusion results in a

natural ring homomorphism K(BQ4k) → K(BZ2k).

Under this homomorphism, the image of the virtual bundle di−2 in K(BZ2k) is η
i+η−i−2, where η is the

one and only generator of K(BZ2k) and the one and only relation it satisfies is η2k = 1. We set w = η+η−1−2

in K(BZ2k). The element w generates a subring of K(BZ2k) that is isomorphic to the subring of KO(BZ2k),

solely generated by w. Actually it is almost isomorphic, except for a Z2 direct summand generated by the

tautological one-dimensional reduced real bundle, traditionally denoted by λ. Note that KO(BZ2k) is the real

topological K -theory of the space BZ2k.

Hence, under the natural homomorphism mentioned above, the image of di − 2 in K(BZ2k) is ψi(w),

where ψi is the Adams operation of degree i. Let us recall from [6] the effect of (the real) Adams operation of

degree i, on the main generator w of KO(BZ2k) :

ψi(w) =
i∑

j=1

(
i
j

)(
i+j−1

j

)(
2j−1

j

) wj

We name the above polynomial ”quadratic binomial of degree i” because of its connection to the real

part of a root of unity and because its coefficients are polynomials of i2 . In particular, under the above ring

homomorphism, ϕ maps exactly on w.

On the other hand, in the ring K(BQ4k), we have dk+1 − dk−1 = 0. Practically, we observe that this

gives a polynomial in ϕ of degree k + 1, with no one-dimensional bundles involved. This is true for any di

where i is odd. They can be written as a polynomial of ϕ and only ϕ.

In the ring KO(BZ2k), we know that the main relation is ψk+1(w) − ψk−1(w) = 0, [6]. Furthermore,

we deduce that ψk+1(ϕ)− ψk−1(ϕ) = 0 in the ring K(BQ4k) too. We also conclude that

di − 2 = ψi(ϕ) when i is odd.

We can also prove this very important fact from the relations of the representation ring without referring to

lens spaces, but this would take longer. Lens spaces make this tricky.
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The polynomials g2k(ϕ) = ψk+1(ϕ)− ψk−1(ϕ) are given by the following series:

g2k(ϕ) = 4kϕ+
k∑

j=2

2k2 + j − 1

(j − 1)(2j − 1)

(
k + j − 2

2j − 3

)
ϕj + ϕk+1

Hence, the following relation is satisfied in K(BQ4k):

g2k(ϕ) = 0 (Relation 3).

From this relation, we deduce that ϕ satisfies a relation in the form

4kϕ = f(ϕ)ϕ2

where f(ϕ) ∈ K(BQ4k) is a virtual bundle generated by ϕ. This explains the fact that the 4-th filtration E4,−4
∞

on the last page of the main diagonal of AHSS is generated by maybe ϕ (or maybe ϕ − v1 − v2 etc.) and is

isomorphic to H4(BQ4k;Z) = Z4k. We do not want to speculate much about that filtration in the spectral
sequence.

By multiplying this relation by powers of ϕ, all 4s -th filtrations on the main diagonal of AHSS, i.e. all

groups H4s(BQ4k;Z) = Z4k in the cohomology, are similarly explained.

However, we are still not done! It turns out that Relation 3 is not minimal. We will prove it when we

talk about the minimal relation for the cross product v1v2. We also did not explain the products v1ϕ and v1ϕ .

Without these relations, the ring cannot be completely described, although more or less the filtrations of the

diagonal of the AHSS are explained.

Let us first find the minimal relations for the products viϕ where i = 1 or 2, and explain why they are

not needed to occupy any place on the AHSS.

From the relations η1d1 = d1, it immediately follows that

v1ϕ = −2v1 (Relation 4).

This takes care of the product v1ϕ. Next we will take care of the product v2ϕ. From the relation, η2d1 = dk−1,

since dk−1 = ψk−1(ϕ) + 2, we obtain

v2ϕ = ψk−1(ϕ)− ϕ− 2v2 (Relation 5).

Therefore, viϕ where i = 1 or 2 are dependent variables, and we do not have to search a place on the AHSS

for them.

Finally let us explain what remained, in other words, let us find the minimal relation for the cross product

v1v2. It turns out that the main relation is not Relation 3, but that one. In fact, we will discard our favorite

relation, Relation 3, from the minimal set of relations.

We will separate the cases n = 3 and n ≥ 4, since it turns out that Q8 is a little different than the

bigger generalized quaternion groups.

For k = 2, from the relation d21 = d2 + d0 = 1 + η1 + η2 + η3, we have

v1v2 = 4ϕ+ ϕ2 − 2v1 − 2v2 (Relation 6, for n = 3).
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This is the main relation for K(BQ8). If we multiply this equation by ϕ+ 2, an amazing thing happens

and we find Relation 3. In other words, we can remove Relation 3 from the minimal list of relations that

describes the ring.

For n ≥ 4, starting from the relation d21 = d2 + d0, by using the relation d2i = d2i + d0 repeatedly,

one inside the other, we can obtain the relation dk − d0 = ψk(ϕ). Along the way, amusingly, we obtain the

polynomials ψi(ϕ), where i is a power of 2, in terms of ψ
i
2 (ϕ). Thus, we have

v1v2 = ψk(ϕ)− 2v2 (Relation 6, for n ≥ 4).

We will throw away Relation 3 for n ≥ 4 too. We multiply Relation 6 above by ϕ+ 2 and then we use

Relations 4 and 5 properly in the equation we obtained, and again amazingly find Relation 3. This also removes

doubts from the obscure explanations given above when we derived this relation trickily from the lens spaces.

We sum up everything in:

Theorem 1 K(BQ2n) is generated by v1, v2 , and ϕ with the minimal set of relations (1),(2),(4),(5), and (6)

above.

5. Orders

In [7], Proposition 5.1, the order of the element ϕ in the truncated ring R(Q4k)⧸ϕ2R(Q4k), after a lot of work

by huge matrices, is found as 4k. He used these orders to answer some geometric problems, namely problems

about immersion of spaces S4N+3⧸Q4k called quaternionic spherical forms, in real Euclidean spaces. However,

from the relation 4kϕ = f(ϕ)ϕ2 we found above, this is evident.

Similarly, we can find the order of ϕ in the truncated ring R(Q4k)⧸ϕN+1R(Q4k) by careful counting.

In Relation 3, we observe that the coefficient of ϕ2 is k(2k2+1)
3 whose primary 2 factor is k = 2n−2. Since the

coefficient of ϕ is 4k = 2n , the jump between them is 2n

2n−2 = 4. Therefore, the total count up to ϕN+1 must

be 4k.4N−1. Hence, we have

Corollary 2 The order of ϕ in K(S4N+3⧸Q4k) is 2n+2N−2.
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