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Abstract:Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. A generalization

in terms of a family of t -elements subsets of a v -element set was given by Pouzet. We consider a version of this

generalization modulo a prime p . We give illustrations to graphs and tournaments.
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1. Introduction

Kelly’s combinatorial lemma [24] is the assertion that the number s(F,G) of induced subgraphs of a given

graph G , isomorphic to F , is determined by the deck of G , provided that |V (F )| < |V (G)| , namely s(F,G) =

1
|V (G)|−|V (F )|

∑
x∈V (G) s(F,G−x) (where G−x is the graph induced by G on V (G) \ {x}).

In terms of a family F of t -element subsets of a v -element set, it simply says that |F| = 1
v−t

∑
x∈V (G) |F−x|

where F−x := F ∩ [V (G) \ {x}]t .
For sets U, T , we put U(T ) := {F : T ⊆ F ∈ U} and U↾K := U ∩ P(K) (where P(K) is the set of

subsets of K ) so that U↾K(T ) := {F : T ⊆ F ⊆ K,F ∈ U} and e(U) := |U | . Pouzet [31, 32] gave the following

extension of this result.

Lemma 1.1 (M.Pouzet [31]) Let t and r be integers, V be a set of size v ≥ t+ r elements, and U and U ′ be

sets of t-element subsets T of V . If for every subset K of k = t+ r elements of V , e(U↾K) = e(U ′↾K) , then

for all finite subsets T ′ and K ′ of V , such that T ′ is contained in K ′ and K ′ \T ′ has at least t+ r elements,

e(U↾K′(T ′)) = e(U ′↾K′(T ′)) .

In particular, if |V | ≥ 2t + r = t + k , we have this particular version of the combinatorial lemma of

Pouzet:

Lemma 1.2 (M.Pouzet [31]) Let v, t , and k be integers, k ≤ v , V be a set of v elements with t ≤
min(k, v − k) , and U and U ′ be sets of t-element subsets T of V . If for every k -element subset K of

V , e(U↾K) = e(U ′↾K) , then U = U ′ .
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Here we consider the case where e(U↾K) ≡ e(U ′↾K) modulo a prime p for every k -element subset K

of V ; our main result, Theorem 1.3, is then a version, modulo a prime p , of the particular version of the

combinatorial lemma of Pouzet.

Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. Pouzet’s

combinatorial lemma has been used several times in reconstruction problems (see for example [1, 5, 6, 7, 11, 12]).

Pouzet gave a proof of his lemma via a counting argument [32] and later by using linear algebra (related to

incidence matrices) [31] (the paper was published earlier).

Let n, p be positive integers, the decomposition of n =
∑n(p)

i=0 nip
i in the basis p is also denoted

[n0, n1, . . . , nn(p)]p where nn(p) ̸= 0 if and only if n ̸= 0.

Theorem 1.3 Let p be a prime number. Let v, t , and k be nonnegative integers, k ≤ v , k = [k0, k1, . . . , kk(p)]p ,

t = [t0, t1, . . . , tt(p)]p . Let V be a set of v elements with t ≤ min(k, v − k) , and U and U ′ be sets of t-element

subsets T of V . We assume that e(U↾K) ≡ e(U ′
↾K) modulo a prime p for every k -element subset K of V.

1) If ki = ti for all i < t(p) and kt(p) ≥ tt(p) , then U = U ′ .

2) If t = tt(p)p
t(p) and k =

∑k(p)
i=t(p)+1 kip

i , we have U = U ′ , or one of the sets U,U ′ is the set of all

t-element subsets of V and the other is empty, or (whenever p = 2) for all t-element subsets T of V , T ∈ U

if and only if T ̸∈ U ′ .

We prove Theorem 1.3 in Section 3. We use Wilson’s theorem (Theorem 2.2) on incidence matrices.

In a reconstruction problem of graphs up to complementation [13], Wilson’s theorem yielded the following

result:

Theorem 1.4 ([13]) Let k be an integer, 2 ≤ k ≤ v − 2 , k ≡ 0 (mod 4). Let G and G′ be 2 graphs on the

same set V of v vertices (possibly infinite). We assume that e(G↾K) has the same parity as e(G′
↾K) for all

k -element subsets K of V . Then G′ = G or G′ = G .

Here we look for similar results whenever e(G↾K) ≡ e(G′
↾K) modulo a prime p . As an illustration of

Theorem 1.3, we obtain the following result.

Theorem 1.5 Let G and G′ be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime

number and k be an integer, 2 ≤ k ≤ v−2 . We assume that for all k-element subsets K of V , e(G↾K) ≡ e(G′
↾K)

(mod p).

1) If p ≥ 3 , k ̸≡ 0, 1 (mod p) , then G′ = G .

2) If p ≥ 3 , k ≡ 0 (mod p), then G′ = G , or one of the graphs G,G′ is the complete graph and the

other is the empty graph.

3) If p = 2 , k ≡ 2 (mod 4), then G′ = G .

We give other illustrations of Theorem 1.3, to graphs in section 4 and to tournaments in section 5.

2. Incidence matrices

We consider the matrix Wt k defined as follows: Let V be a finite set, with v elements. Given nonnegative

integers t, k with t ≤ k ≤ v , let Wt k be the
(
v
t

)
by

(
v
k

)
matrix of 0’s and 1’s, the rows of which are indexed
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by the t-element subsets T of V , the columns are indexed by the k -element subsets K of V , and where the

entry Wt k(T,K) is 1 if T ⊆ K and is 0 otherwise. The matrix transpose of Wt k is denoted tWt k .

We say that a matrix D is a diagonal form for a matrix M when D is diagonal and there exist unimodular

matrices (square integral matrices that have integral inverses) E and F such that D = EMF . We do not

require that M and D are square; here ”diagonal” just means that the (i, j) entry of D is 0 if i ̸= j . A

fundamental result, due to R.M. Wilson [36], is the following.

Theorem 2.1 (R.M. Wilson [36]) For t ≤ min(k, v − k) , Wt k has as a diagonal form the
(
v
t

)
×
(
v
k

)
diagonal

matrix with diagonal entries(
k − i

t− i

)
with multiplicity

(
v

i

)
−

(
v

i− 1

)
, i = 0, 1, . . . , t.

In this statement and in Theorem 2.2,
(

v
−1

)
should be interpreted as zero.

Denote rankQWt k the rank of Wt k over the field Q of rational numbers, resp. rankpWt k the rank of

Wt k over the p -element field Fp ; similarly denote KerQWt k , KerpWt k the corresponding kernels. Clearly from

Theorem 2.1, rankQWt k =
(
v
t

)
. This yields Theorem 2.3 below due to D.H. Gottlieb [20] and independently

W. Kantor [22]. On the other hand, from Theorem 2.1 follows rankpWt k , as given by Theorem 2.2.

Theorem 2.2 (R.M. Wilson [36]) For t ≤ min(k, v − k) , the rank of Wt k modulo a prime p is

∑(
v

i

)
−
(

v

i− 1

)
where the sum is extended over those indices i , 0 ≤ i ≤ t , such that p does not divide the binomial coefficient(
k−i
t−i

)
.

This yields Theorem 2.3 below due to D.H. Gottlieb [20], and independently W. Kantor [22]. A simpler

proof of Theorem 2.2 was obtained by P. Frankl [17]. Applications of Wilson’s theorem and its version modulo

p have been considered by various authors, notably Chung and Graham [10] and Dammak et al. [13].

Theorem 2.3 (D.H. Gottlieb [20], W. Kantor [22]) For t ≤ min(k, v − k) , Wt k has full row rank over the

field Q of rational numbers.

It is clear that t ≤ min(k, v − k) implies
(
v
t

)
≤

(
v
k

)
. Thus, from Theorem 2.3, we have the following

result:

Corollary 2.4 (W. Kantor [22]) For t ≤ min(k, v − k) , rankQWt k =
(
v
t

)
and thus KerQ(

tWt k) = {0} .

If k := v − t then, up to a relabelling, Wt k is the adjacency matrix At,v of the Kneser graph KG(t, v)

[19], a graph whose vertices are the t -element subsets of V , 2 subsets forming an edge if they are disjoint. The

eigenvalues of Kneser graphs are computed in [19] (Theorem 9.4.3, page 200), and thus an equivalent form of

Theorem 2.3 is:

Theorem 2.5 At,v is nonsingular for t ≤ v
2 .
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We characterize values of t and k so that dim Kerp(
tWt k) ∈ {0, 1} and give a basis of Kerp(

tWt k)

that appears in the following result.

Theorem 2.6 Let p be a prime number. Let v, t , and k be nonnegative integers, k ≤ v , k = [k0, k1, . . . , kk(p)]p ,

t = [t0, t1, . . . , tt(p)]p , t ≤ min(k, v − k) . We have:

1) kj = tj for all j < t(p) and kt(p) ≥ tt(p) if and only if Kerp(
tWt k) = {0} .

2) t = tt(p)p
t(p) and k =

∑k(p)
i=t(p)+1 kip

i if and only if dimKerp(
tWt k) = 1 and {(1, 1, · · · , 1)} is a basis

of Kerp(
tWt k) .

The proof of Theorem 2.6 uses Lucas’s theorem. The notation a | b (resp. a ∤ b) means a divides b

(resp. a does not divide b).

Theorem 2.7 (Lucas’s theorem [29]) Let p be a prime number, t, k be positive integers, t ≤ k , t =

[t0, t1, . . . , tt(p)]p and k = [k0, k1, . . . , kk(p)]p . Then

(
k

t

)
=

t(p)∏
i=0

(
ki
ti

)
(mod p), where

(
ki
ti

)
= 0 if ti > ki.

For an elementary proof of Theorem 2.7, see Fine [15]. As a consequence of Theorem 2.7, we have the

following result, which is very useful in this paper.

Corollary 2.8 Let p be a prime number, t, k be positive integers, t ≤ k , t = [t0, t1, . . . , tt(p)]p and k =

[k0, k1, . . . , kk(p)]p . Then

p|
(
k
t

)
if and only if there is i ∈ {0, 1, . . . , t(p)} such that ti > ki .

Proof of Theorem 2.6. 1) We prove that under the stated conditions
(
k−i
t−i

)
̸≡ 0 (mod p) for every

i ∈ {0, . . . , t} . From Theorem 2.1 it follows that Kerp(
tWt k) = {0} . Let i ∈ {0, . . . , t} then i = [i0, i1, . . . , it(p)]

with it(p) ≤ tt(p) . Since kj = tj for all j < t(p), then (t− i)j = (k− i)j for all j < t(p). As kt(p) ≥ tt(p) ≥ it(p)

then (k − i)t(p) ≥ (t− i)t(p) ; thus, by Corollary 2.8, p ∤
(
k−i
t−i

)
for all i ∈ {0, 1, . . . , t} . Now from Theorem 2.2,

rankp Wtk =
∑t

i=0

(
v
i

)
−

(
v

i−1

)
=

(
v
t

)
. Then Kerp(

tWt k) = {0} .

Now we prove the converse implication. From Theorem 2.1, Kerp(
tWt k) = {0} implies p ∤

(
k−i
t−i

)
for all

i ∈ {0, 1, . . . , t} , in particular p ∤
(
k
t

)
. Then by Corollary 2.8, kj ≥ tj for all j ≤ t(p). We will prove that

kj = tj for all j ≤ t(p)−1. By contradiction, let s be the least integer in {0, 1, . . . , t(p)−1} , such that ks > ts .

We have (t− (ts + 1)ps)s = p− 1, (k− (ts + 1)ps)s = ks − ts − 1 and p− 1 > ks − ts − 1. From Corollary 2.8,

p |
(
k−(ts+1)ps

t−(ts+1)ps

)
, which is impossible.

2) Set n := t(p). We begin by the direct implication. Since 0 = kn < tn then, by Corollary 2.8, p|
(
k
t

)
.

We will prove p ∤
(
k−i
t−i

)
for all i = [i0, i1, . . . , in] ∈ {1, 2, . . . , t} .

Since kj = tj = 0 for all j < n , then (t − i)j = (k − i)j for all j < n . From tn ≥ in , we have

(t−i)n ∈ {tn−in, tn−in−1} . Note that (k−i)n ∈ {p−in−1, p−in} and p−in−1 ≥ tn−in ; thus (k−i)n ≥ (t−i)n .
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Therefore, for all j ≤ n , (k − i)j ≥ (t − i)j . Then, by Corollary 2.8, p ∤
(
k−i
t−i

)
for all i ∈ {1, 2, . . . , t} .

Now from Theorem 2.2, rankp Wtk =
∑t

i=1

(
v
i

)
−

(
v

i−1

)
=

(
v
t

)
− 1, and thus dimKerp(

tWt k) = 1. Now

(1, 1, · · · , 1)Wt k = (
(
k
t

)
,
(
k
t

)
, · · · ,

(
k
t

)
). Since p |

(
k
t

)
, then (1, 1, · · · , 1)Wt k ≡ 0 (mod p). Then {(1, 1, · · · , 1)}

is a basis of Kerp(
tWt k).

Now we prove the converse implication. Since {(1, 1, · · · , 1)} is a basis of Kerp(
tWt k) and (1, 1, · · · , 1)Wt k

= (
(
k
t

)
,
(
k
t

)
, · · · ,

(
k
t

)
), then p |

(
k
t

)
. Since dim Kerp(

tWt k) = 1, then from Theorem 2.2, p ∤
(
k−i
t−i

)
for all

i ∈ {1, 2, . . . , t} .

First, let us prove that t = tnp
n . Note that tn ̸= 0 since t ̸= 0. Since p|

(
k
t

)
then, from Corollary 2.8,

there is an integer j ∈ {0, 1, . . . , n} such that tj > kj . Let A := {j < n : tj ̸= 0} . By contradiction, assume

A ̸= ∅ .
Case 1. There is j ∈ A such that tj > kj . We have (t− pn)j = tj , (k− pn)j = kj . Then from Corollary

2.8, we have p |
(
k−pn

t−pn

)
, which is impossible.

Case 2. For all j ∈ A , tj ≤ kj . Then tn > kn . We have (t − pj)n = tn , (k − pj)n = kn . Then, from

Corollary 2.8, we have p |
(
k−pj

t−pj

)
, which is impossible.

From the above 2 cases, we deduce t = tnp
n .

Secondly, since p|
(
k
t

)
, then by Corollary 2.8, tn > kn . Let us show that kn = 0. By contradiction, if

kn ̸= 0 then (t − pn)n = tn − 1 > kn − 1 = (k − pn)n . From Corollary 2.8, p |
(
k−pn

t−pn

)
, which is impossible.

Let s ∈ {0, 1, . . . , n − 1} ; let us show that ks = 0. By contradiction, if ks ̸= 0 then (t − ps)s = p − 1,

(k − ps)s = ks − 1, thus (t− ps)s > (k − ps)s and so, from Corollary 2.8, p |
(
k−ps

t−ps

)
, which is impossible. 2

3. Proof of Theorem 1.3.

Let T1, T2, · · · , T(vt) be an enumeration of the t-element subsets of V , let K1,K2, · · · ,K(vk)
be an enumeration

of the k -element subsets of V , and let Wt k be the matrix of the t-element subsets versus the k -element

subsets.

Let wU be the row matrix (u1, u2, · · · , u(vt)) where ui = 1 if Ti ∈ U , 0 otherwise. We have

wUWt k = (|{Ti ∈ U : Ti ⊆ K1}|, · · · , |{Ti ∈ U : Ti ⊆ K(vk)
}|).

wU ′Wt k = (|{Ti ∈ U ′ : Ti ⊆ K1}|, · · · , |{Ti ∈ U ′ : Ti ⊆ K(vk)
}|).

Since for all j ∈ {1, . . . ,
(
v
k

)
} , e(U↾Kj ) ≡ e(U ′↾Kj ) (mod p), then (wU − wU ′)Wt k = 0 (mod p), and so

wU − wU ′ ∈ Kerp(
tWt k).

1) Assume ki = ti for all i < t(p) and kt(p) ≥ tt(p) . From 1) of Theorem 2.6, wU −wU ′ = 0, which gives

U = U ′ .

2) Assume t = tt(p)p
t(p) and k =

∑k(p)
i=t(p)+1 kip

i . From 2) of Theorem 2.6, there is an integer λ ∈ [0, p−1]

such that wU −wU ′ = λ(1, 1, · · · , 1). It is clear that λ ∈ {0, 1,−1} . If λ = 0 then U = U ′ . If λ = 1 and p ≥ 3

then U = {T1, T2, · · · , T(vt)} , U
′ = ∅ . If λ = 1 and p = 2 then U = {T1, T2, · · · , T(vt)} , U

′ = ∅ , or T ∈ U if
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and only if T ̸∈ U ′ . If λ = −1 and p ≥ 3 then U = ∅ , U ′ = {T1, T2, · · · , T(vt)} . If λ = −1 and p = 2 then

U ′ = {T1, T2, · · · , T(vt)} , U = ∅ , or T ∈ U if and only if T ̸∈ U ′ . 2

4. Illustrations to graphs

Our notations and terminology follow [2]. A digraph G = (V,E) or G = (V (G), E(G)) is formed by a finite

set V of vertices and a set E of ordered pairs of distinct vertices, called arcs of G . The order (or cardinal)

of G is the number of its vertices. If K is a subset of V , the restriction of G to K , also called the induced

subdigraph of G on K , is the digraph G↾K := (K,K2 ∩ E). If K = V \ {x} , we denote this digraph by G−x .

Let G = (V,E) and G′ = (V ′, E′) be 2 digraphs. A one-to-one correspondence f from V onto V ′ is an

isomorphism from G onto G′ provided that for x, y ∈ V , (x, y) ∈ E if and only if (f(x), f(y)) ∈ E′ . The

digraphs G and G′ are then said to be isomorphic, which is denoted by G ≃ G′ if there is an isomorphism

from one of them onto the other. A subset I of V is an interval [16, 21, 34] (or an autonomous subset [23] or

a clan [14], or an homogeneous subset [18] or a module [35]) of G provided that for all a, b ∈ I and x ∈ V \ I ,
(a, x) ∈ E(G) if and only if (b, x) ∈ E(G), and the same for (x, a) and (x, b). For example ∅ , {x} where

x ∈ V , and V are intervals of G , called trivial intervals. A digraph is then said to be indecomposable [34] (or

primitive [14]) if all its intervals are trivial; otherwise it is said to be decomposable.

We say that G is a graph (resp. tournament) when for all distinct vertices x, y of V , (x, y) ∈ E if and

only if (y, x) ∈ E (resp. (x, y) ∈ E if and only if (y, x) ̸∈ E ); we say that {x, y} is an edge of the graph G if

(x, y) ∈ E , thus E is identified with a subset of [V ]2 , the set of pairs {x, y} of distinct elements of V .

Let G = (V,E) be a graph, the complement of G is the graph G := (V, [V ]2 \ E). We denote by

e(G) := |E(G)| the number of edges of G . The degree of a vertex x of G , denoted dG(x), is the number of

edges that contain x . A 3-element subset T of V such that all pairs belong to E(G) is a triangle of G . Let

T (G) be the set of triangles of G and let t(G) :=| T (G) | . A 3-element subset of V that is a triangle of G or

of G is a 3-homogeneous subset of G . We set H(3)(G) := T (G) ∪ T (G), the set of 3-homogeneous subsets of

G , and h(3)(G) :=| H(3)(G) | .
Another proof of Theorem 1.4 using Theorem 1.3. Here p = 2, t = 2 = [0, 1]p , and k = [0, 0, k2, . . . ]p .

From 2) of Theorem 1.3, U = U ′ , or one of the sets U,U ′ is the set of all 2-element subsets of V and the other

is empty, or for all 2-element subsets T of V , T ∈ U if and only if T ̸∈ U ′ . Thus G′ = G or G′ = G . 2

Proof of Theorem 1.5. We may suppose V finite. We set U := E(G), U ′ := E(G′). For all K ⊆ V with

|K| = k , we have: {{x, y} ⊆ K : {x, y} ∈ U} = E(G↾K) and {{x, y} ⊆ K : {x, y} ∈ U ′} = E(G′
↾K). Since

e(G↾K) ≡ e(G′
↾K) (mod p), then |{{x, y} ⊆ K : {x, y} ∈ U}| ≡ |{{x, y} ⊆ K : {x, y} ∈ U ′}| (mod p).

1) p ≥ 3, t := 2 = [2]p and k0 ≥ 2. From 1) of Theorem 1.3, U = U ′ ; thus G = G′ .

2) p ≥ 3, t := 2 = [2]p and k0 = 0. From 2) of Theorem 1.3, we have U = U ′ or one of U,U ′ is the set

of all 2-element subsets of V and the other is empty. Then G = G′ or one of the graphs G,G′ is the complete

graph and the other is the empty graph.

3) p = 2, t = 2 = [0, 1]p , and k = [0, 1, k2, . . . ]p . From 1) of Theorem 1.3, we have U = U ′ ; thus

G = G′ . 2

The following result concerns graphs G and G′ such that h(3)(G↾K) ≡ h(3)(G′
↾K) modulo a prime p , for

all k -element subsets K of V .
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Theorem 4.1 Let G and G′ be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime

number and k be an integer, 3 ≤ k ≤ v − 3 .

1) If h(3)(G↾K) = h(3)(G′
↾K) for all k -element subsets K of V then G and G′ have the same 3-element

homogeneous subsets.

2) Assume p ≥ 5 . If k ̸≡ 1, 2 (mod p) and h(3)(G↾K) ≡ h(3)(G′
↾K) (mod p) for all k -element subsets K

of V , then G and G′ have the same 3-element homogeneous subsets.

3) If (p = 2 and k ≡ 3 (mod 4)) or (p = 3 and 3 | k ), and h(3)(G↾K) ≡ h(3)(G′
↾K) (mod p) for all

k -element subsets K of V , then G and G′ have the same 3-element homogeneous subsets.

Proof We may suppose V finite.

We have H(3)(G) = {{a, b, c} : G↾{a,b,c} is a 3-element homogeneous subset} .

We set U := H(3)(G) and U ′ := H(3)(G′). For all K ⊆ V with |K| = k , we have: {T ⊆ K : T ∈ U} =

H
(3)
G↾K and {T ⊆ K : T ∈ U ′} = H

(3)
G′

↾K
. Set t :=| T |= 3.

1) Since h(3)(G↾K) = h(3)(G′
↾K) for all k -element subsets K of V then |{T ⊆ K : T ∈ U}| = |{T ⊆ K :

T ∈ U ′}| . From Lemma 1.2 it follows that U = U ′ ; then G and G′ have the same 3-element homogeneous

subsets.

2) Since h(3)(G↾K) ≡ h(3)(G′
↾K) (mod p) for all k -element subsets K of V then |{T ⊆ K : T ∈ U}| ≡

|{T ⊆ K : T ∈ U ′}| (mod p).

Case 1. k0 ≥ 3. Then p ≥ 5, t := 3 = [3]p , and t0 = 3 ≤ k0 . From 1) of Theorem 1.3 we have U = U ′ ;

thus G and G′ have the same 3-element homogeneous subsets.

Case 2. k0 = 0. Then p ≥ 5, t := 3 = [3]p . By Ramsey’s theorem [33], every graph with at least 6

vertices contains a 3-element homogeneous subset. Then U and U ′ are nonempty and so from 2) of Theorem

1.3, U = U ′ ; thus G and G′ have the same 3-element homogeneous subsets.

3) Since h(3)(G↾K) ≡ h(3)(G′
↾K) (mod p) for all k -element subsets K of V then |{T ⊆ K : T ∈ U}| ≡

|{T ⊆ K : T ∈ U ′}| (mod p).

Case 1. p = 2 and k ≡ 3 (mod 4). Let t := 3 = [1, 1]p . In this case, k = [1, 1, k2, . . . ]p ; then from 1) of

Theorem 1.3 we have U = U ′ ; thus G and G′ have the same 3-element homogeneous subsets.

Case 2. p = 3 and 3 | k . Then k = [0, k1, . . . , kk(p)]p . Let t := 3 = [0, 1]p .

Case 2.1. k1 ∈ {1, 2} ; then from 1) of Theorem 1.3 we have U = U ′ ; thus G and G′ have the same

3-element homogeneous subsets.

Case 2.2. k1 = 0. By Ramsey’s theorem [33], every graph with at least 6 vertices contains a 3-element

homogeneous subset. Then U and U ′ are nonempty, and so from 2) of Theorem 1.3, U = U ′ ; thus G and G′

have the same 3-element homogeneous subsets. 2

Let G = (V,E) be a graph. From [34], every indecomposable graph of size 4 is isomorphic to P4 =

({0, 1, 2, 3}, {{0, 1}, {1, 2}, {2, 3}}). Let P(4)(G) be the set of subsets X of V such that the induced subgraph

G↾X is isomorphic to P4 . We set p(4)(G) := |P(4)(G)| . The following result concerns graphs G and G′ such

that p(4)(G↾K) ≡ p(4)(G′
↾K) modulo a prime p , for all k -element subsets K of V .
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Theorem 4.2 Let G and G′ be 2 graphs on the same set V of v vertices. Let p be a prime number and k be

an integer, 4 ≤ k ≤ v − 4 .

1) If p(4)(G↾K) = p(4)(G′
↾K) for all k -element subsets K of V then G and G′ have the same indecom-

posable sets of size 4 .

2) Assume p(4)(G↾K) ≡ p(4)(G′
↾K) (mod p) for all k -element subsets K of V .

a) If p ≥ 5 and k ̸≡ 1, 2, 3 (mod p) , then G and G′ have the same indecomposable sets of size 4 .

b) If (p = 2 , 4 | k and 8 ∤ k ) or (p = 3 , 3 | k − 1 and 9 ∤ k − 1), then G and G′ have the same

indecomposable sets of size 4 .

c) If p = 2 and 8 | k , then G and G′ have the same indecomposable sets of size 4 , or for all 4-element

subsets T of V , G↾T is indecomposable if and only if G′
↾T is decomposable.

Proof Let U := {T ⊆ V : |T | = 4, G↾T ≃ P4} = P(4)(G), U ′ := {T ⊆ V : |T | = 4, G′
↾T ≃ P4} = P(4)(G′).

For all K ⊆ V , we have {T ⊆ K : T ∈ U} = P4(G↾K) and {T ⊆ K : T ∈ U ′} = P4(G
′
↾K). Set t := |T | = 4.

1) Since p(4)(G↾K) = p(4)(G′
↾K) then |{T ⊆ K : T ∈ U}| = |{T ⊆ K : T ∈ U ′}| . From Lemma 1.2,

U = U ′ ; then G and G′ have the same indecomposable sets of size 4.

2) We have p(4)(G↾K) ≡ p(4)(G′
↾K) (mod p) for all k -element subsets K of V ; then |{T ⊆ K : T ∈

U}| ≡ |{T ⊆ K : T ∈ U ′}| (mod p).

a) Case 1. k0 ≥ 4. Then p ≥ 5, t = 4 = [4]p , and t0 = 4 ≤ k0 . From 1) of Theorem 1.3 we have

U = U ′ ; thus G and G′ have the same indecomposable sets of size 4.

Case 2. k0 = 0. Let t := 4 = [4]p .

A graph H is k -monomorphic if G↾X ≃ G↾Y for all k -element subsets X and Y of V . If a graph of

order at least 6 is 4-monomorphic then it is 2-monomorphic and hence complete or empty. Since in every

graph of order 6, there is a restriction of size 4 not isomorphic to P4 then, from 2) of Theorem 1.3, U = U ′ ;

thus G and G′ have the same indecomposable sets of size 4.

b) Case 1. p = 2, 4 | k , and 8 ∤ k . Then t := 4 = [0, 0, 1]p and k = [0, 0, 1, k3, . . . , kk(p)]p . From 1) of

Theorem 1.3, we have U = U ′ ; thus G and G′ have the same indecomposable sets of size 4.

Case 2. p = 3, 3 | k − 1, and 9 ∤ k − 1. Then t := 4 = [1, 1]p , k = [1, k1, . . . , kk(p)]p , and t1 = 1 ≤ k1 .

From 1) of Theorem 1.3, U = U ′ , thus G and G′ have the same indecomposable sets of size 4.

c) We have p = 2, t := 4 = [0, 0, 1]p , and k = [0, 0, 0, k3, . . . , kk(p)]p . Since in every graph of or-

der 6, there is a restriction of size 4 not isomorphic to P4 , then from 2) of Theorem 1.3, U = U ′ , or for

all 4-element subsets T of V , T ∈ U if and only if T ̸∈ U ′ . Thus G and G′ have the same indecomposable

sets of size 4, or for all 4-element subsets T of V , G↾T is indecomposable if and only if G′
↾T is decomposable. 2

In a reconstruction problem of graphs up to complementation [13], Wilson’s theorem yielded the following

result:

Theorem 4.3 ([13]) Let G and G′ be 2 graphs on the same set V of v vertices (possibly infinite). Let k be

an integer, 5 ≤ k ≤ v − 2 , k ≡ 1 (mod 4). Then the following properties are equivalent:

(i) e(G↾K) has the same parity as e(G′
↾K) for all k -element subsets K of V ; and G↾K , G′

↾K have the

same 3-homogeneous subsets;

(ii) G′ = G or G′ = G .
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Here, we just want to point out that we can obtain a similar result for k ≡ 3 (mod 4), namely Theorem 4.4,

using the same proof as that of Theorem 4.3.

The boolean sum G+̇G′ of 2 graphs G = (V,E) and G′ = (V,E′) is the graph U on V whose edges are pairs

e of vertices such that e ∈ E if and only if e /∈ E′ .

Theorem 4.4 Let G and G′ be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an

integer, 3 ≤ k ≤ v − 2 , k ≡ 3 (mod 4). Then the following properties are equivalent:

(i) e(G↾K) has the same parity as e(G′
↾K) for all k -element subsets K of V ; and G↾K , G′

↾K have the

same 3-homogeneous subsets;

(ii) G′ = G .

Proof It is exactly the same as that of Theorem 4.3 (see ([13]). The implication (ii) ⇒ (i) is trivial. We

prove (i) ⇒ (ii). We may suppose V finite. We set U := G+̇G′ ; let T1, T2, · · · , T(v2) be an enumeration

of the 2-element subsets of V , and let K1,K2, · · · ,K(vk)
be an enumeration of the k -element subsets of V .

Let wU be the row matrix (u1, u2, · · · , u(v2)) where ui = 1 if Ti is an edge of U , 0 otherwise. We have

wUW2 k = (e(U↾K1), e(U↾K2), · · · , e(U↾K
(vk)

)). From the fact that e(G↾K) has the same parity as e(G′
↾K) and

e(U↾K) = e(G↾K)+e(G′
↾K)−2e(G↾K∩G′

↾K) for all k -element subsets K , wU belongs to Ker2(
tWt k). According

to Theorem 2.2, rank2W2k =
(
v
2

)
− v + 1. Hence dimKer2(

tW2 k) = v − 1.

We give a similar claim as Claim 2.8 of [13]; the proof is identical.

Claim 4.5 Let k be an integer such that 3 ≤ k ≤ v−2 , k ≡ 3 (mod 4); then Ker2(
tW2 k) consists of complete

bipartite graphs (including the empty graph).

Proof Let us recall that a star-graph of v vertices consists of a vertex linked to all other vertices, those v− 1

vertices forming an independent set. First we prove that each star-graph S belongs to K := Ker2(
tW2 k).

Let wS be the row matrix (s1, s2, · · · , s(v2)) where si = 1 if Ti is an edge of S , 0 otherwise. We have

wSW2 k = (e(S↾K1
), e(S↾K2

), · · · , e(S↾K
(vk)

)). For all i ∈ {1, . . . ,
(
v
k

)
} , e(S↾Ki

) = k − 1 if the center of the

star-graph belongs to Ki , 0 otherwise. Since k is odd, each star-graph S belongs to K . The vector space (over

the 2-element field) generated by the star-graphs on V consists of all complete bipartite graphs; since v ≥ 3,

these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is v − 1 (a

basis being made of star-graphs). Since dimKer2(
tW2 k) = v− 1, then K consists of complete bipartite graphs

as claimed. 2

A claw is a star-graph on 4 vertices, that is a graph made of a vertex joined to 3 other vertices, with no

edges between these 3 vertices. A graph is claw-free if no induced subgraph is a claw.

Claim 4.6 ([13]) Let G and G′ be 2 graphs on the same set and having the same 3-homogeneous subsets; then

the boolean sum U := G+̇G′ is claw-free.

From Claim 4.5, U is a complete bipartite graph and, from Claim 4.6, U is claw-free. Since v ≥ 5, it

follows that U is the empty graph. Hence G′ = G as claimed. 2
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5. Illustrations to tournaments

Let T = (V,E) be a tournament. For 2 distinct vertices x and y of T , x −→T y (or simply x −→ y ) means

that (x, y) ∈ E . For A ⊆ V and y ∈ V , A −→ y means x −→ y for all x ∈ A . The degree of a vertex x of T is

dT (x) := |{y ∈ V : x −→ y}| . We denote by T ∗ the dual of T that is T ∗ = (V,E∗) with (x, y) ∈ E∗ if and only

if (y, x) ∈ E . A transitive tournament or a total order or k -chain (denoted Ok ) is a tournament of cardinality

k , such that for x, y, z ∈ V , if x −→ y and y −→ z , then x −→ z . If x and y are 2 distinct vertices of a

total order, the notation x < y means that x −→ y . The tournament C3 := {{0, 1, 2}, {(0, 1), (1, 2), (2, 0)}}
(resp. C4 := ({0, 1, 2, 3}, {(0, 3), (0, 1), (3, 1), (1, 2), (2, 0), (2, 3)})) is a 3-cycle (resp. 4-cycle) (see Figure 1).

A diamond is a tournament on 4 vertices admitting only 1 interval of cardinality 3, which is a 3-cycle. Up

to isomorphism, there are exactly 2 diamonds δ+ and δ− = (δ+)∗ , where δ+ is the tournament defined on

{0, 1, 2, 3} by δ+↾{0,1,2} = C3 and {0, 1, 2} → 3. A tournament isomorphic to δ+ (resp. isomorphic to δ− )

is said to be a positive diamond (resp. negative diamond) (see Figure 1). The boolean sum U := T +̇T ′ of 2

tournaments, T = (V,E) and T ′ = (V,E′), is the graph U on V whose edges are pairs {x, y} of vertices such

that (x, y) ∈ E if and only if (x, y) /∈ E′ .

Theorem 5.1 Let T = (V,E) and T ′ = (V,E′) be 2 tournaments on the same set V of v vertices (possibly

infinite). Let p be a prime number and k be an integer, 2 ≤ k ≤ v − 2 . Let G := T +̇T ′ . We assume that for

all k -element subsets K of V , e(G↾K) ≡ 0 (mod p). Then

1) T ′ = T if (p ≥ 3 , k ̸≡ 0, 1 (mod p)) or (p = 2 , k ≡ 2 (mod 4)).

2) T ′ = T or T ′ = T ∗ if (p ≥ 3 , k ≡ 0 (mod p)) or (p = 2 , k ≡ 0 (mod 4)).

Proof We may suppose V finite. The proof reduces to say when G is the empty graph or when G is either

empty or full. We set G′ := The empty graph. Then e(G↾K) ≡ e(G′
↾K) (mod p).

1) Use respectively 1) of Theorem 1.5 and 3) of Theorem 1.5.

2) Use respectively 2) of Theorem 1.5 and Theorem 1.4. 2

Let T be a tournament; we set C(3)(T ) := {{a, b, c} : T↾{a,b,c} is a 3-cycle} , and c(3)(T ) :=| C(3)(T ) | .
Let T = (V,E) and T ′ = (V,E′) be 2 tournaments and let k be a nonnegative integer; T and T ′ are k -

hypomorphic [8, 27] (resp. k -hypomorphic up to duality) if for every k -element subset K of V , the induced

subtournaments T ′
↾K and T↾K are isomorphic (resp. T ′

↾K is isomorphic to T↾K or to T ∗
↾K ). We say that T and

T ′ are (≤ k )-hypomorphic if T and T ′ are h -hypomorphic for every h ≤ k . Similarly, we say that T and T ′ are

(≤ k)-hypomorphic up to duality if T and T ′ are h -hypomorphic up to duality for every h ≤ k . Clearly, 2 (≤ 3)-

hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3)-hypomorphic tournaments

have the same indecomposable structures and if a component in the tree decomposition is indecomposable, then

the corresponding one is equal or dual [9].
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Figure 1. Cycle C3 , Cycle C4 , Positive Diamond, Negative Diamond.
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Theorem 5.2 Let T and T ′ be 2 tournaments on the same set V of v vertices. Let p be a prime number and

k be an integer, 3 ≤ k ≤ v − 3 .

1) If c(3)(T↾K) = c(3)(T ′
↾K) for all k -element subsets K of V then T and T ′ are (≤ 3)-hypomorphic.

2) Assume p ≥ 5 . If k ̸≡ 1, 2 (mod p), and c(3)(T↾K) ≡ c(3)(T ′
↾K) (mod p) for all k -element subsets K

of V , then T and T ′ are (≤ 3)-hypomorphic.

3) If (p = 2 and k ≡ 3 (mod 4)) or (p = 3 and 3 | k ), and c(3)(G↾K) ≡ c(3)(G′
↾K) (mod p) for all

k -element subsets K of V , then T and T ′ are (≤ 3)-hypomorphic.

Proof Since every tournament of cardinality ≥ 4 has at least a restriction of cardinality 3 that is not a

3-cycle, then the proof is similar to that of Theorem 4.1. 2

Let T be a tournament; we set D+
4 (T ) := {{a, b, c, d} : T↾{a,b,c,d} ≃ δ+} , D−

4 (T ) := {{a, b, c, d} :

T↾{a,b,c,d} ≃ δ−} , d+4 (T ) :=| D+
4 (T ) | , and d−4 (T ) :=| D−

4 (T ) | .

It is well known that every subtournament of order 4 of a tournament is a diamond, a 4-chain, or a

4-cycle subtournament. We have c(3)(O4) = 0, c(3)(δ+) = c(3)(δ−) = 1, c(3)(C4) = 2, and C4 ≃ C∗
4 . The

(≤ 4)-hypomorphy has been studied by G. Lopez and C. Rauzy [27, 28].

Theorem 5.3 Let T and T ′ be 2 (≤ 3)-hypomorphic tournaments on the same set V of v vertices. Let p be

a prime number and k be an integer, 4 ≤ k ≤ v − 4 .

1) If d+4 (T↾K) = d+4 (T
′
↾K) for all k -element subsets K of V then T ′ and T are (≤ 4)-hypomorphic.

2) Assume d+4 (T↾K) ≡ d+4 (T
′
↾K) (mod p) for all k -element subsets K of V .

a) If p ≥ 5 and k ̸≡ 1, 2, 3 (mod p), then T ′ and T are (≤ 4)-hypomorphic.

b) If (p = 3 , 3 | k−1 and 9 ∤ k−1) or (p = 2 , 4 | k and 8 ∤ k ), then T ′ and T are (≤ 4)-hypomorphic.

c) If p = 2 and 8 | k , then T ′ and T are (≤ 4)-hypomorphic.

Proof Let U+ := {S ⊆ V, T↾S ≃ δ+} = D+
4 (T ), U

′+ := D+
4 (T

′), U− := D−
4 (T ), and U ′− := D−

4 (T
′).

Claim 5.4 If T and T ′ are (≤ 3)-hypomorphic and U+ = U ′+ , then U− = U ′− ; T and T ′ are (≤ 4)-

hypomorphic.

Proof Let S ∈ U− , T↾S ≃ δ− . Since T and T ′ are (≤ 3)-hypomorphic, then T ′
↾S ≃ δ+ or T ′

↾S ≃ δ− . We

have {S ⊆ V, T ′
↾S ≃ δ+} = {S ⊆ V, T↾S ≃ δ+} ; then T ′

↾S ≃ δ− , S ∈ U ′− and U− = U ′− . Therefore, for

X ⊂ V , if T↾X is a diamond then T ′
↾X ≃ T↾X .

Now we prove that T and T ′ are 4-hypomorphic. Let X ⊂ V such that |X| = 4. If T↾X ≃ C4 , then

c(3)(T↾X) = 2. Since T and T ′ are (≤ 3)-hypomorphic then c(3)(T ′
↾X) = 2; thus T ′

↾X ≃ T↾X ≃ C4 . The same,

if T↾X ≃ O4 then T ′
↾X ≃ T↾X ≃ O4 . Therefore, T

′ and T are (≤ 4)-hypomorphic. 2

From Claim 5.4, it is sufficient to prove that U+ = U ′+ .

For all K ⊆ V with |K| = k , we have {S ⊆ K : S ∈ U+} = D+
4 (T↾K) and {S ⊆ K : S ∈ U ′+} =

D+
4 (T

′
↾K).

1) Since d+4 (T↾K) = d+4 (T
′
↾K) then |{S ⊆ K : S ∈ U+}| = |{S ⊆ K : S ∈ U ′+}| . From Lemma 1.2, we

have U+ = U ′+ .
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2) We have d+4 (T↾K) ≡ d+4 (T
′
↾K) (mod p) for all k -element subsets K of V ; then |{S ⊆ K : S ∈ U+}| ≡

|{S ⊆ K : S ∈ U ′+}| (mod p).

a) Case 1. k0 ≥ 4. Then p ≥ 5, t := 4 = [4]p , k = [k0, . . . ]p , and t0 = 4 ≤ k0 . From 1) of Theorem 1.3

we have U+ = U ′+ .

Case 2. k0 = 0. Then p ≥ 5, t := 4 = [4]p , and k = [0, k1, . . . ]p . Since every tournament of cardinality

≥ 5 has at least a restriction of cardinality 4 that is not a diamond, then from 2) of Theorem 1.3, U+ = U ′+ .

b) Case 1. p = 3, 3 | k − 1 and 9 ∤ k − 1. Then t := 4 = [1, 1]p , k = [1, k1, . . . , kk(p)]p and t1 = 1 ≤ k1 .

From 1) of Theorem 1.3 we have U+ = U ′+ .

Case 2. p = 2, 4 | k and 8 ∤ k . Then t := 4 = [0, 0, 1]p and k = [0, 0, 1, k3, . . . , kk(p)]p .

From 1) of Theorem 1.3 we have U+ = U ′+ .

c) We have p = 2, t := 4 = [0, 0, 1]p , k = [0, 0, 0, k3, . . . , kk(p)]p . Since every tournament of cardinal-

ity ≥ 5 has at least a restriction of cardinality 4 that is not a diamond, and the fact that T and T ′ are

3-hypomorphic, then from 2) of Theorem 1.3, U+ = U ′+ ; thus T ′ and T are (≤ 5)-hypomorphic, or for all

4-element subsets S of V, T↾S is isomorphic to δ+ if and only if T ′
↾S is isomorphic to δ− . 2

In fact, in Theorem 5.3, the conclusion is that T ′ and T are (≤ 5)-hypomorphic; this follows from

Lemma 5.5 below.

Lemma 5.5 ([5]) Let T and T ′ be 2 (≤ 4)-hypomorphic tournaments on at least 5 vertices. Then, T and T ′

are (≤ 5)-hypomorphic.

Comment. Let T and T ′ be 2 (≤ 3)-hypomorphic tournaments on the same set V of v vertices. Let U

(respectively U ′ ) be the set of positive diamonds of T (respectively of T ′ ). Then 2) of Theorem 1.3 with U ̸= U ′

cannot occur. Indeed, from 2) of Theorem 1.3, it follows that if U ̸= U ′ then for every 4-element subset X

of V , T↾X is a positive diamond if and only if T ′↾X is not a positive diamond. This implies that for every

4-element subset Y of V such that T ′↾Y is not a diamond, T↾Y is a positive diamond. Since there are such Y

(a 5-element tournament has 0 or 2 diamonds, see H. Bouchaala [4]), this contradicts the 3-hypomorphy.

Let m be an integer, m ≥ 1, S = ({0, 1, . . . ,m − 1}, A) be a digraph and for i < m a digraph

Gi = (Vi, Ai) such that the Vi ’s are nonempty and pairwise disjoint. The lexicographic sum over S of the Gi ’s

or simply the S-sum of the Gi ’s is the digraph denoted by S(G0, G1, . . . , Gm−1) and defined on the union of the

Vi ’s as follows: given x ∈ Vi and y ∈ Vj , where i, j ∈ {0, 1, . . . ,m−1} , (x, y) is an arc of S(G0, G1, . . . , Gm−1)

if either i = j and (x, y) ∈ Ai or i ̸= j and (i, j) ∈ A : this digraph replaces each vertex i of S by Gi . We say

that the vertex i of S is dilated by Gi .

We define, for each integer h ≥ 0, the tournament T2h+1 (see Figure 2) on {0, . . . , 2h} as follows. For

i, j ∈ {0, . . . , 2h} , i −→ j if there exists k ∈ {1, . . . , h} such that j = i+ k modulo 2h+1. A tournament T is

said to be an element of D(T2h+1) if T is obtained by dilating each vertex of T2h+1 by a finite chain pi , and

then T = T2h+1(p0, p1, . . . , p2h). We recall that T2h+1 is indecomposable and D(T2h+1) is the class of finite

tournaments without a diamond [27]; this class was obtained previously by Moon [30].

We define the tournament β+
6 := T3(p0, p1, p2) with p0 = (0 < 1 < 2), p1 = (3 < 4), and |p2| = 1 (see

Figure 3). We set β−
6 := (β+

6 )∗ .
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Figure 2. Circular tournament T2h+1 .
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Figure 3. β+
6 .

For a tournament T = (V,E), we set B+
6 (T ) := {S ⊆ V : T↾S ≃ β+

6 } , B−
6 (T ) := {S ⊆ V : T↾S ≃ β−

6 } ,
b+6 (T ) :=| B+

6 (T ) | , and b−6 (T ) :=| B−
6 (T ) | .

Two tournaments T and T ′ on the same vertex set V are hereditarily isomorphic if for all X ⊆ V , T↾X
and T ′

↾X are isomorphic [3].

Let G = (V,E) and G′ = (V,E′) be 2 (≤ 2)-hypomorphic digraphs. Denote DG,G′ the binary relation

on V such that: for x ∈ V , xDG,G′x ; and for x ̸= y ∈ V , xDG,G′y if there exists a sequence x0 = x, ..., xn = y

of elements of V satisfying (xi, xi+1) ∈ E if and only if (xi, xi+1) /∈ E′ , for all i , 0 ≤ i ≤ n− 1. The relation

DG,G′ is an equivalence relation called the difference relation; its classes are called difference classes.

Using difference classes, G. Lopez [25, 26] showed that if T and T ′ are (≤ 6)-hypomorphic then T and

T ′ are isomorphic. One may deduce the next corollary.

Corollary 5.6 ([25, 26]) Let T and T ′ be 2 tournaments. We have the following properties:

1) If T and T ′ are (≤ 6)-hypomorphic then T and T ′ are hereditarily isomorphic.

2) If for each equivalence class C of DT,T ′ , C is an interval of T and T ′ , and T ′
↾C , T↾C are (≤ 6)-

hypomorphic, then T and T ′ are hereditarily isomorphic.

Lemma 5.7 [27] Given 2 (≤ 4)-hypomorphic tournaments T and T ′ , and C an equivalence class of DT,T ′ ,

then:

1) C is an interval of T ′ and T .

2) Every 3-cycle in T↾C is reversed in T ′
↾C .

3) There exists an integer h ≥ 0 such that T↾C = T2h+1(p0, p1, . . . , p2h) and T ′
↾C = T ∗

2h+1(p
′
0, p

′
1, . . . , p

′
2h)

with pi , p′i as chains on the same basis, for all i ∈ {0, 1, . . . , 2h} .

Theorem 5.8 Let T and T ′ be 2 (≤ 4)-hypomorphic tournaments on the same set V of v vertices. Let p be

a prime number and k = [k0, k1, . . . , kk(p)]p be an integer, 6 ≤ k ≤ v − 6 .
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1) If b+6 (T↾K) = b+6 (T
′
↾K) for all k -element subsets K of V then T ′ and T are (≤ 6)-hypomorphic and

thus hereditarily isomorphic.

2) Assume b+6 (T↾K) ≡ b+6 (T
′
↾K) (mod p) for all k -element subsets K of V .

a) If p ≥ 7 , and k0 ≥ 6 or k0 = 0 , then T ′ and T are (≤ 6)-hypomorphic and thus hereditarily

isomorphic.

b) If (p = 5 , k0 = 1 , and k1 ̸= 0) or (p = 3 , k0 = 0 , and k1 = 2) or (p = 3 and k0 = k1 = 0) or

(p = 2 , k0 = 0 , and k1 = k2 = 1), then T ′ and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.

Proof From Lemma 5.5, T and T ′ are (≤ 5)-hypomorphic. Let U+ := {S ⊆ V, T↾S ≃ β+
6 } = B+

6 (T ),

U ′+ := B+
6 (T ′), U− := {S ⊆ V, T↾S ≃ β−

6 } = B−
6 (T ), U ′− := B−

6 (T ′).

Every tournament of cardinality ≥ 7 has at least a restriction of cardinality 6 that is neither isomorphic

to β+
6 nor to β−

6 . Then, for all cases, similarly to the proof of Theorem 5.3, we have U+ = U ′+ .

Let C be an equivalence class of DT,T ′ , S ∈ U− , T↾S ≃ β−
6 . Since T and T ′ are (≤ 3)-hypomorphic,

then T ′
↾S ≃ β+

6 or T ′
↾S ≃ β−

6 . We have {S ⊆ V, T ′
↾S ≃ β+

6 } = {S ⊆ V, T↾S ≃ β+
6 } ; then T ′

↾S ≃ β−
6 , S ∈ U ′− ,

and U− = U ′− . Let X ⊆ C such that |X| = 6; if TX ≃ β+
6 then, from 2) of Lemma 5.7, T ′

X ≃ β−
6 , which

is impossible, and so TC and T ′
C do not have a restriction of cardinality 6 isomorphic to β+

6 and β−
6 . From

Lemma 5.9 below, T↾C and T ′
↾C are (≤ 6)-hypomorphic.

Lemma 5.9 ([3]) Let T and T ′ be 2 (≤ 5)-hypomorphic tournaments defined on a vertex set V such that

for all X ⊆ V , if T↾X is isomorphic to β+
6 or to β−

6 , then T ′
↾X is isomorphic to T↾X . Then T and T ′ are

(≤ 6)-hypomorphic.

From 1) of Lemma 5.7, C is an interval of T ′ and T . Then, from 2) of Corollary 5.6, T and T ′ are hereditarily

isomorphic. 2

From Theorem 5.2, Theorem 5.3, and Theorem 5.8, we deduce the following result.

Corollary 5.10 Let T and T ′ be 2 tournaments on the same set V of v vertices. Let p be a prime number

and k = [k0, k1, . . . , kk(p)]p be an integer, 6 ≤ k ≤ v − 6 .

1) If c(3)(T↾K) = c(3)(T ′
↾K) , d+4 (T↾K) = d+4 (T

′
↾K) , and b+6 (T↾K) = b+6 (T

′
↾K) for all k -element subsets K

of V then T ′ and T are hereditarily isomorphic.

2) Assume c(3)(T↾K) ≡ c(3)(T ′
↾K) , d+4 (T↾K) ≡ d+4 (T

′
↾K) , and b+6 (T↾K) ≡ b+6 (T

′
↾K) (mod p) for all k -

element subsets K of V .

If p ≥ 7 , and k0 ≥ 6 or k0 = 0 , then T ′ and T are hereditarily isomorphic.
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