Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $949-964$
(c) TÜBİTAK
doi:10.3906/mat-1302-13

On a generalization of Kelly's combinatorial lemma

Aymen BEN AMIRA ${ }^{1}$, Jamel DAMMAK ${ }^{1}$, Hamza SI KADDOUR ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences of Sfax, Sfax, Tunisia
${ }^{2}$ ICJ, Department of Mathematics, University of Lyon, Claude Bernard University Lyon 1, Villeurbanne, France

Received: 08.02.2013 • Accepted: 07.05.2014 \bullet Published Online: 24.10.2014 \quad • \quad Printed: 21.11 .2014

Abstract

Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. A generalization in terms of a family of t-elements subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.

Key words: Set, matrix, graph, tournament, isomorphism

1. Introduction

Kelly's combinatorial lemma [24] is the assertion that the number $s(F, G)$ of induced subgraphs of a given graph G, isomorphic to F, is determined by the deck of G, provided that $|V(F)|<|V(G)|$, namely $s(F, G)=$ $\frac{1}{|V(G)|-|V(F)|} \sum_{x \in V(G)} s\left(F, G_{-x}\right)$ (where G_{-x} is the graph induced by G on $V(G) \backslash\{x\}$).

In terms of a family \mathcal{F} of t-element subsets of a v-element set, it simply says that $|\mathcal{F}|=\frac{1}{v-t} \sum_{x \in V(G)}\left|\mathcal{F}_{-x}\right|$ where $\mathcal{F}_{-x}:=\mathcal{F} \cap[V(G) \backslash\{x\}]^{t}$.

For sets U, T, we put $U(T):=\{F: T \subseteq F \in U\}$ and $U_{\upharpoonright K}:=U \cap \mathfrak{P}(K)$ (where $\mathfrak{P}(K)$ is the set of subsets of $K)$ so that $U_{\upharpoonright K}(T):=\{F: T \subseteq F \subseteq K, F \in U\}$ and $e(U):=|U|$. Pouzet [31, 32] gave the following extension of this result.

Lemma 1.1 (M.Pouzet [31]) Let t and r be integers, V be a set of size $v \geq t+r$ elements, and U and U^{\prime} be sets of t-element subsets T of V. If for every subset K of $k=t+r$ elements of $V, e\left(U_{\upharpoonright K}\right)=e\left(U^{\prime}{ }_{\mid K}\right)$, then for all finite subsets T^{\prime} and K^{\prime} of V, such that T^{\prime} is contained in K^{\prime} and $K^{\prime} \backslash T^{\prime}$ has at least $t+r$ elements, $e\left(U_{\upharpoonright K^{\prime}}\left(T^{\prime}\right)\right)=e\left(U^{\prime}{ }_{\mid K^{\prime}}\left(T^{\prime}\right)\right)$.

In particular, if $|V| \geq 2 t+r=t+k$, we have this particular version of the combinatorial lemma of Pouzet:

Lemma 1.2 (M.Pouzet [31]) Let v, t, and k be integers, $k \leq v, V$ be a set of v elements with $t \leq$ $\min (k, v-k)$, and U and U^{\prime} be sets of t-element subsets T of V. If for every k-element subset K of $V, e\left(U_{\uparrow K}\right)=e\left(U^{\prime}{ }_{K}\right)$, then $U=U^{\prime}$.

[^0]Here we consider the case where $e\left(U_{\upharpoonright K}\right) \equiv e\left(U^{\prime}{ }_{\mid K}\right)$ modulo a prime p for every k-element subset K of V; our main result, Theorem 1.3 , is then a version, modulo a prime p, of the particular version of the combinatorial lemma of Pouzet.

Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. Pouzet's combinatorial lemma has been used several times in reconstruction problems (see for example [1, 5, 6, 7, 11, 12]). Pouzet gave a proof of his lemma via a counting argument [32] and later by using linear algebra (related to incidence matrices) [31] (the paper was published earlier).

Let n, p be positive integers, the decomposition of $n=\sum_{i=0}^{n(p)} n_{i} p^{i}$ in the basis p is also denoted $\left[n_{0}, n_{1}, \ldots, n_{n(p)}\right]_{p}$ where $n_{n(p)} \neq 0$ if and only if $n \neq 0$.

Theorem 1.3 Let p be a prime number. Let v, t, and k be nonnegative integers, $k \leq v, k=\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$, $t=\left[t_{0}, t_{1}, \ldots, t_{t(p)}\right]_{p}$. Let V be a set of v elements with $t \leq \min (k, v-k)$, and U and U^{\prime} be sets of t-element subsets T of V. We assume that $e\left(U_{\upharpoonright K}\right) \equiv e\left(U_{\uparrow K}^{\prime}\right)$ modulo a prime p for every k-element subset K of V.

1) If $k_{i}=t_{i}$ for all $i<t(p)$ and $k_{t(p)} \geq t_{t(p)}$, then $U=U^{\prime}$.
2) If $t=t_{t(p)} p^{t(p)}$ and $k=\sum_{i=t(p)+1}^{k(p)} k_{i} p^{i}$, we have $U=U^{\prime}$, or one of the sets U, U^{\prime} is the set of all t-element subsets of V and the other is empty, or (whenever $p=2$) for all t-element subsets T of $V, T \in U$ if and only if $T \notin U^{\prime}$.

We prove Theorem 1.3 in Section 3. We use Wilson's theorem (Theorem 2.2) on incidence matrices.
In a reconstruction problem of graphs up to complementation [13], Wilson's theorem yielded the following result:

Theorem 1.4 ([13]) Let k be an integer, $2 \leq k \leq v-2, k \equiv 0(\bmod 4)$. Let G and G^{\prime} be 2 graphs on the same set V of v vertices (possibly infinite). We assume that $e\left(G_{\upharpoonright K}\right)$ has the same parity as e($\left.G_{\lceil K}^{\prime}\right)$ for all k-element subsets K of V. Then $G^{\prime}=G$ or $G^{\prime}=\bar{G}$.

Here we look for similar results whenever $e\left(G_{\upharpoonright K}\right) \equiv e\left(G_{\uparrow K}^{\prime}\right)$ modulo a prime p. As an illustration of Theorem 1.3, we obtain the following result.

Theorem 1.5 Let G and G^{\prime} be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $2 \leq k \leq v-2$. We assume that for all k-element subsets K of $V, e\left(G_{\upharpoonright K}\right) \equiv e\left(G_{\upharpoonright K}^{\prime}\right)$ $(\bmod p)$.

1) If $p \geq 3, k \not \equiv 0,1(\bmod p)$, then $G^{\prime}=G$.
2) If $p \geq 3, k \equiv 0(\bmod p)$, then $G^{\prime}=G$, or one of the graphs G, G^{\prime} is the complete graph and the other is the empty graph.
3) If $p=2, k \equiv 2(\bmod 4)$, then $G^{\prime}=G$.

We give other illustrations of Theorem 1.3, to graphs in section 4 and to tournaments in section 5 .

2. Incidence matrices

We consider the matrix $W_{t k}$ defined as follows: Let V be a finite set, with v elements. Given nonnegative integers t, k with $t \leq k \leq v$, let $W_{t k}$ be the $\binom{v}{t}$ by $\binom{v}{k}$ matrix of 0 's and 1 's, the rows of which are indexed
by the t-element subsets T of V, the columns are indexed by the k-element subsets K of V, and where the entry $W_{t k}(T, K)$ is 1 if $T \subseteq K$ and is 0 otherwise. The matrix transpose of $W_{t k}$ is denoted ${ }^{t} W_{t k}$.

We say that a matrix D is a diagonal form for a matrix M when D is diagonal and there exist unimodular matrices (square integral matrices that have integral inverses) E and F such that $D=E M F$. We do not require that M and D are square; here "diagonal" just means that the (i, j) entry of D is 0 if $i \neq j$. A fundamental result, due to R.M. Wilson [36], is the following.

Theorem 2.1 (R.M. Wilson [36]) For $t \leq \min (k, v-k)$, $W_{t k}$ has as a diagonal form the $\binom{v}{t} \times\binom{ v}{k}$ diagonal matrix with diagonal entries

$$
\binom{k-i}{t-i} \text { with multiplicity }\binom{v}{i}-\binom{v}{i-1}, \quad i=0,1, \ldots, t
$$

In this statement and in Theorem 2.2, $\binom{v}{-1}$ should be interpreted as zero.
Denote $\operatorname{rank}_{\mathbb{Q}} W_{t k}$ the rank of $W_{t k}$ over the field \mathbb{Q} of rational numbers, resp. $r a n k_{p} W_{t k}$ the rank of $W_{t k}$ over the p-element field \mathbb{F}_{p}; similarly denote $\operatorname{Ker}_{\mathbb{Q}} W_{t k}, \operatorname{Ker}_{p} W_{t k}$ the corresponding kernels. Clearly from Theorem 2.1, $\operatorname{ran}_{\mathbb{Q}} W_{t k}=\binom{v}{t}$. This yields Theorem 2.3 below due to D.H. Gottlieb [20] and independently W. Kantor [22]. On the other hand, from Theorem 2.1 follows $\operatorname{rank}_{p} W_{t k}$, as given by Theorem 2.2.

Theorem 2.2 (R.M. Wilson [36]) For $t \leq \min (k, v-k)$, the rank of $W_{t k}$ modulo a prime p is

$$
\sum\binom{v}{i}-\binom{v}{i-1}
$$

where the sum is extended over those indices $i, 0 \leq i \leq t$, such that p does not divide the binomial coefficient $\binom{k-i}{t-i}$.

This yields Theorem 2.3 below due to D.H. Gottlieb [20], and independently W. Kantor [22]. A simpler proof of Theorem 2.2 was obtained by P. Frankl [17]. Applications of Wilson's theorem and its version modulo p have been considered by various authors, notably Chung and Graham [10] and Dammak et al. [13].

Theorem 2.3 (D.H. Gottlieb [20], W. Kantor [22]) For $t \leq \min (k, v-k), W_{t k}$ has full row rank over the field \mathbb{Q} of rational numbers.

It is clear that $t \leq \min (k, v-k)$ implies $\binom{v}{t} \leq\binom{ v}{k}$. Thus, from Theorem 2.3, we have the following result:

Corollary 2.4 (W. Kantor [22]) For $t \leq \min (k, v-k), \operatorname{rank}_{\mathbb{Q}} W_{t k}=\binom{v}{t}$ and thus $\operatorname{Ker}_{\mathbb{Q}}\left({ }^{t} W_{t k}\right)=\{0\}$.
If $k:=v-t$ then, up to a relabelling, $W_{t k}$ is the adjacency matrix $A_{t, v}$ of the Kneser graph $K G(t, v)$ [19], a graph whose vertices are the t-element subsets of $V, 2$ subsets forming an edge if they are disjoint. The eigenvalues of Kneser graphs are computed in [19] (Theorem 9.4.3, page 200), and thus an equivalent form of Theorem 2.3 is:

Theorem 2.5 $A_{t, v}$ is nonsingular for $t \leq \frac{v}{2}$.

We characterize values of t and k so that $\operatorname{dim} \operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right) \in\{0,1\}$ and give a basis of $K e r_{p}\left({ }^{t} W_{t k}\right)$ that appears in the following result.

Theorem 2.6 Let p be a prime number. Let v, t, and k be nonnegative integers, $k \leq v, k=\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$, $t=\left[t_{0}, t_{1}, \ldots, t_{t(p)}\right]_{p}, t \leq \min (k, v-k)$. We have:

1) $k_{j}=t_{j}$ for all $j<t(p)$ and $k_{t(p)} \geq t_{t(p)}$ if and only if $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=\{0\}$.
2) $t=t_{t(p)} p^{t(p)}$ and $k=\sum_{i=t(p)+1}^{k(p)} k_{i} p^{i}$ if and only if $\operatorname{dim} \operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=1$ and $\{(1,1, \cdots, 1)\}$ is a basis of $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)$.

The proof of Theorem 2.6 uses Lucas's theorem. The notation $a \mid b$ (resp. $a \nmid b$) means a divides b (resp. a does not divide b).

Theorem 2.7 (Lucas's theorem [29]) Let p be a prime number, t, k be positive integers, $t \leq k, t=$ $\left[t_{0}, t_{1}, \ldots, t_{t(p)}\right]_{p}$ and $k=\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$. Then

$$
\binom{k}{t}=\prod_{i=0}^{t(p)}\binom{k_{i}}{t_{i}}(\bmod p), \text { where }\binom{k_{i}}{t_{i}}=0 \text { if } t_{i}>k_{i}
$$

For an elementary proof of Theorem 2.7, see Fine [15]. As a consequence of Theorem 2.7, we have the following result, which is very useful in this paper.

Corollary 2.8 Let p be a prime number, t, k be positive integers, $t \leq k, t=\left[t_{0}, t_{1}, \ldots, t_{t(p)}\right]_{p}$ and $k=$ $\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$. Then

$$
p \left\lvert\,\binom{ k}{t}\right. \text { if and only if there is } i \in\{0,1, \ldots, t(p)\} \text { such that } t_{i}>k_{i}
$$

Proof of Theorem 2.6. 1) We prove that under the stated conditions $\binom{k-i}{t-i} \not \equiv 0(\bmod p)$ for every $i \in\{0, \ldots, t\}$. From Theorem 2.1 it follows that $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=\{0\}$. Let $i \in\{0, \ldots, t\}$ then $i=\left[i_{0}, i_{1}, \ldots, i_{t(p)}\right]$ with $i_{t(p)} \leq t_{t(p)}$. Since $k_{j}=t_{j}$ for all $j<t(p)$, then $(t-i)_{j}=(k-i)_{j}$ for all $j<t(p)$. As $k_{t(p)} \geq t_{t(p)} \geq i_{t(p)}$ then $(k-i)_{t(p)} \geq(t-i)_{t(p)}$; thus, by Corollary 2.8, $p \nmid\binom{k-i}{t-i}$ for all $i \in\{0,1, \ldots, t\}$. Now from Theorem 2.2, $\operatorname{rank}_{p} W_{t k}=\sum_{i=0}^{t}\binom{v}{i}-\binom{v}{i-1}=\binom{v}{t}$. Then $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=\{0\}$.

Now we prove the converse implication. From Theorem 2.1, $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=\{0\}$ implies $p \nmid\binom{k-i}{t-i}$ for all $i \in\{0,1, \ldots, t\}$, in particular $p \nmid\binom{k}{t}$. Then by Corollary $2.8, k_{j} \geq t_{j}$ for all $j \leq t(p)$. We will prove that $k_{j}=t_{j}$ for all $j \leq t(p)-1$. By contradiction, let s be the least integer in $\{0,1, \ldots, t(p)-1\}$, such that $k_{s}>t_{s}$. We have $\left(t-\left(t_{s}+1\right) p^{s}\right)_{s}=p-1,\left(k-\left(t_{s}+1\right) p^{s}\right)_{s}=k_{s}-t_{s}-1$ and $p-1>k_{s}-t_{s}-1$. From Corollary 2.8, $p \left\lvert\,\binom{ k-\left(t_{s}+1\right) p^{s}}{t-\left(t_{s}+1\right) p^{s}}\right.$, which is impossible.
2) Set $n:=t(p)$. We begin by the direct implication. Since $0=k_{n}<t_{n}$ then, by Corollary 2.8, $p \left\lvert\,\binom{ k}{t}\right.$. We will prove $p \nmid\binom{k-i}{t-i}$ for all $i=\left[i_{0}, i_{1}, \ldots, i_{n}\right] \in\{1,2, \ldots, t\}$.

Since $k_{j}=t_{j}=0$ for all $j<n$, then $(t-i)_{j}=(k-i)_{j}$ for all $j<n$. From $t_{n} \geq i_{n}$, we have $(t-i)_{n} \in\left\{t_{n}-i_{n}, t_{n}-i_{n}-1\right\}$. Note that $(k-i)_{n} \in\left\{p-i_{n}-1, p-i_{n}\right\}$ and $p-i_{n}-1 \geq t_{n}-i_{n}$; thus $(k-i)_{n} \geq(t-i)_{n}$.

Therefore, for all $j \leq n,(k-i)_{j} \geq(t-i)_{j}$. Then, by Corollary 2.8, $p \nmid\binom{k-i}{t-i}$ for all $i \in\{1,2, \ldots, t\}$. Now from Theorem 2.2, $\operatorname{rank}_{p} W_{t k}=\sum_{i=1}^{t}\binom{v}{i}-\binom{v}{i-1}=\binom{v}{t}-1$, and thus $\operatorname{dim} \operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)=1$. Now $(1,1, \cdots, 1) W_{t k}=\left(\binom{k}{t},\binom{k}{t}, \cdots,\binom{k}{t}\right)$. Since $p \left\lvert\,\binom{ k}{t}\right.$, then $(1,1, \cdots, 1) W_{t k} \equiv 0(\bmod p)$. Then $\{(1,1, \cdots, 1)\}$ is a basis of $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)$.

Now we prove the converse implication. Since $\{(1,1, \cdots, 1)\}$ is a basis of $\operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)$ and $(1,1, \cdots, 1) W_{t k}$ $=\left(\binom{k}{t},\binom{k}{t}, \cdots,\binom{k}{t}\right)$, then $p \left\lvert\,\binom{ k}{t}\right.$. Since $\operatorname{dim} \operatorname{Ker}_{p}\binom{t}{t k}=1$, then from Theorem 2.2, $p \nmid\binom{k-i}{t-i}$ for all $i \in\{1,2, \ldots, t\}$.

First, let us prove that $t=t_{n} p^{n}$. Note that $t_{n} \neq 0$ since $t \neq 0$. Since $p \left\lvert\,\binom{ k}{t}\right.$ then, from Corollary 2.8, there is an integer $j \in\{0,1, \ldots, n\}$ such that $t_{j}>k_{j}$. Let $A:=\left\{j<n: t_{j} \neq 0\right\}$. By contradiction, assume $A \neq \emptyset$.

Case 1. There is $j \in A$ such that $t_{j}>k_{j}$. We have $\left(t-p^{n}\right)_{j}=t_{j},\left(k-p^{n}\right)_{j}=k_{j}$. Then from Corollary 2.8, we have $p \left\lvert\,\binom{ k-p^{n}}{t-p^{n}}\right.$, which is impossible.

Case 2. For all $j \in A, t_{j} \leq k_{j}$. Then $t_{n}>k_{n}$. We have $\left(t-p^{j}\right)_{n}=t_{n},\left(k-p^{j}\right)_{n}=k_{n}$. Then, from Corollary 2.8, we have $p \left\lvert\,\binom{ k-p^{j}}{t-p^{j}}\right.$, which is impossible.

From the above 2 cases, we deduce $t=t_{n} p^{n}$.
Secondly, since $\left.p \left\lvert\, \begin{array}{c}k \\ t\end{array}\right.\right)$, then by Corollary 2.8, $t_{n}>k_{n}$. Let us show that $k_{n}=0$. By contradiction, if $k_{n} \neq 0$ then $\left(t-p^{n}\right)_{n}=t_{n}-1>k_{n}-1=\left(k-p^{n}\right)_{n}$. From Corollary 2.8, $p \left\lvert\,\binom{ k-p^{n}}{t-p^{n}}\right.$, which is impossible. Let $s \in\{0,1, \ldots, n-1\}$; let us show that $k_{s}=0$. By contradiction, if $k_{s} \neq 0$ then $\left(t-p^{s}\right)_{s}=p-1$, $\left(k-p^{s}\right)_{s}=k_{s}-1$, thus $\left(t-p^{s}\right)_{s}>\left(k-p^{s}\right)_{s}$ and so, from Corollary 2.8, $p \left\lvert\,\binom{ k-p^{s}}{t-p^{s}}\right.$, which is impossible.

3. Proof of Theorem 1.3.

Let $T_{1}, T_{2}, \cdots, T_{\binom{v}{t}}$ be an enumeration of the t-element subsets of V, let $K_{1}, K_{2}, \cdots, K_{\binom{v}{k}}$ be an enumeration of the k-element subsets of V, and let $W_{t k}$ be the matrix of the t-element subsets versus the k-element subsets.

Let w_{U} be the row matrix $\left(u_{1}, u_{2}, \cdots, u_{\binom{v}{t}}\right)$ where $u_{i}=1$ if $T_{i} \in U, 0$ otherwise. We have

$$
\begin{gathered}
w_{U} W_{t k}=\left(\left|\left\{T_{i} \in U: T_{i} \subseteq K_{1}\right\}\right|, \cdots,\left|\left\{T_{i} \in U: T_{i} \subseteq K_{\binom{v}{k}}\right\}\right|\right) \\
w_{U^{\prime}} W_{t k}=\left(\left|\left\{T_{i} \in U^{\prime}: T_{i} \subseteq K_{1}\right\}\right|, \cdots,\left|\left\{T_{i} \in U^{\prime}: T_{i} \subseteq K_{\binom{v}{k}}\right\}\right|\right) .
\end{gathered}
$$

Since for all $j \in\left\{1, \ldots,\binom{v}{k}\right\}, e\left(U_{\upharpoonright K_{j}}\right) \equiv e\left(U^{\prime}{ }_{\mid K_{j}}\right) \quad(\bmod p)$, then $\left(w_{U}-w_{U^{\prime}}\right) W_{t k}=0 \quad(\bmod p)$, and so $w_{U}-w_{U^{\prime}} \in \operatorname{Ker}_{p}\left({ }^{t} W_{t k}\right)$ 。

1) Assume $k_{i}=t_{i}$ for all $i<t(p)$ and $k_{t(p)} \geq t_{t(p)}$. From 1) of Theorem $2.6, w_{U}-w_{U^{\prime}}=0$, which gives $U=U^{\prime}$.
2) Assume $t=t_{t(p)} p^{t(p)}$ and $k=\sum_{i=t(p)+1}^{k(p)} k_{i} p^{i}$. From 2) of Theorem 2.6, there is an integer $\lambda \in[0, p-1]$ such that $w_{U}-w_{U^{\prime}}=\lambda(1,1, \cdots, 1)$. It is clear that $\lambda \in\{0,1,-1\}$. If $\lambda=0$ then $U=U^{\prime}$. If $\lambda=1$ and $p \geq 3$ then $U=\left\{T_{1}, T_{2}, \cdots, T_{\binom{v}{t}}\right\}, U^{\prime}=\emptyset$. If $\lambda=1$ and $p=2$ then $U=\left\{T_{1}, T_{2}, \cdots, T_{\binom{v}{t}}\right\}, U^{\prime}=\emptyset$, or $T \in U$ if
and only if $T \notin U^{\prime}$. If $\lambda=-1$ and $p \geq 3$ then $U=\emptyset, U^{\prime}=\left\{T_{1}, T_{2}, \cdots, T_{\binom{v}{t}}\right\}$. If $\lambda=-1$ and $p=2$ then $U^{\prime}=\left\{T_{1}, T_{2}, \cdots, T_{\binom{v}{t}}\right\}, U=\emptyset$, or $T \in U$ if and only if $T \notin U^{\prime}$.

4. Illustrations to graphs

Our notations and terminology follow [2]. A digraph $G=(V, E)$ or $G=(V(G), E(G))$ is formed by a finite set V of vertices and a set E of ordered pairs of distinct vertices, called arcs of G. The order (or cardinal) of G is the number of its vertices. If K is a subset of V, the restriction of G to K, also called the induced subdigraph of G on K, is the digraph $G_{\uparrow K}:=\left(K, K^{2} \cap E\right)$. If $K=V \backslash\{x\}$, we denote this digraph by G_{-x}. Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be 2 digraphs. A one-to-one correspondence f from V onto V^{\prime} is an isomorphism from G onto G^{\prime} provided that for $x, y \in V,(x, y) \in E$ if and only if $(f(x), f(y)) \in E^{\prime}$. The digraphs G and G^{\prime} are then said to be isomorphic, which is denoted by $G \simeq G^{\prime}$ if there is an isomorphism from one of them onto the other. A subset I of V is an interval [16, 21, 34] (or an autonomous subset [23] or a clan [14], or an homogeneous subset [18] or a module [35]) of G provided that for all $a, b \in I$ and $x \in V \backslash I$, $(a, x) \in E(G)$ if and only if $(b, x) \in E(G)$, and the same for (x, a) and (x, b). For example $\emptyset,\{x\}$ where $x \in V$, and V are intervals of G, called trivial intervals. A digraph is then said to be indecomposable [34] (or primitive [14]) if all its intervals are trivial; otherwise it is said to be decomposable.

We say that G is a graph (resp. tournament) when for all distinct vertices x, y of $V,(x, y) \in E$ if and only if $(y, x) \in E$ (resp. $(x, y) \in E$ if and only if $(y, x) \notin E)$; we say that $\{x, y\}$ is an edge of the graph G if $(x, y) \in E$, thus E is identified with a subset of $[V]^{2}$, the set of pairs $\{x, y\}$ of distinct elements of V.

Let $G=(V, E)$ be a graph, the complement of G is the graph $\bar{G}:=\left(V,[V]^{2} \backslash E\right)$. We denote by $e(G):=|E(G)|$ the number of edges of G. The degree of a vertex x of G, denoted $d_{G}(x)$, is the number of edges that contain x. A 3-element subset T of V such that all pairs belong to $E(G)$ is a triangle of G. Let $T(G)$ be the set of triangles of G and let $t(G):=|T(G)|$. A 3-element subset of V that is a triangle of G or of \bar{G} is a 3-homogeneous subset of G. We set $H^{(3)}(G):=T(G) \cup T(\bar{G})$, the set of 3-homogeneous subsets of G, and $h^{(3)}(G):=\left|H^{(3)}(G)\right|$.
Another proof of Theorem 1.4 using Theorem 1.3. Here $p=2, t=2=[0,1]_{p}$, and $k=\left[0,0, k_{2}, \ldots\right]_{p}$. From 2) of Theorem 1.3, $U=U^{\prime}$, or one of the sets U, U^{\prime} is the set of all 2 -element subsets of V and the other is empty, or for all 2 -element subsets T of $V, T \in U$ if and only if $T \notin U^{\prime}$. Thus $G^{\prime}=G$ or $G^{\prime}=\bar{G}$.
Proof of Theorem 1.5. We may suppose V finite. We set $U:=E(G), U^{\prime}:=E\left(G^{\prime}\right)$. For all $K \subseteq V$ with $|K|=k$, we have: $\{\{x, y\} \subseteq K:\{x, y\} \in U\}=E\left(G_{\upharpoonright K}\right)$ and $\left\{\{x, y\} \subseteq K:\{x, y\} \in U^{\prime}\right\}=E\left(G_{\lceil K}^{\prime}\right)$. Since $e\left(G_{\upharpoonright K}\right) \equiv e\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$, then $|\{\{x, y\} \subseteq K:\{x, y\} \in U\}| \equiv\left|\left\{\{x, y\} \subseteq K:\{x, y\} \in U^{\prime}\right\}\right|(\bmod p)$.

1) $p \geq 3, t:=2=[2]_{p}$ and $k_{0} \geq 2$. From 1) of Theorem $1.3, U=U^{\prime}$; thus $G=G^{\prime}$.
2) $p \geq 3, t:=2=[2]_{p}$ and $k_{0}=0$. From 2) of Theorem 1.3, we have $U=U^{\prime}$ or one of U, U^{\prime} is the set of all 2 -element subsets of V and the other is empty. Then $G=G^{\prime}$ or one of the graphs G, G^{\prime} is the complete graph and the other is the empty graph.
3) $p=2, t=2=[0,1]_{p}$, and $k=\left[0,1, k_{2}, \ldots\right]_{p}$. From 1) of Theorem 1.3 , we have $U=U^{\prime}$; thus $G=G^{\prime}$.

The following result concerns graphs G and G^{\prime} such that $h^{(3)}\left(G_{\upharpoonright K}\right) \equiv h^{(3)}\left(G_{\lceil K}^{\prime}\right)$ modulo a prime p, for all k-element subsets K of V.

Theorem 4.1 Let G and G^{\prime} be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $3 \leq k \leq v-3$.

1) If $h^{(3)}\left(G_{\upharpoonright K}\right)=h^{(3)}\left(G_{\upharpoonright K}^{\prime}\right)$ for all k-element subsets K of V then G and G^{\prime} have the same 3 -element homogeneous subsets.
2) Assume $p \geq 5$. If $k \not \equiv 1,2(\bmod p)$ and $h^{(3)}\left(G_{\uparrow K}\right) \equiv h^{(3)}\left(G_{\uparrow K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V, then G and G^{\prime} have the same 3 -element homogeneous subsets.
3) If $(p=2$ and $k \equiv 3(\bmod 4))$ or $(p=3$ and $3 \mid k)$, and $h^{(3)}\left(G_{\uparrow K}\right) \equiv h^{(3)}\left(G_{\uparrow K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V, then G and G^{\prime} have the same 3 -element homogeneous subsets.
Proof We may suppose V finite.
We have $H^{(3)}(G)=\left\{\{a, b, c\}: G_{\lceil\{a, b, c\}}\right.$ is a 3-element homogeneous subset $\}$.
We set $U:=H^{(3)}(G)$ and $U^{\prime}:=H^{(3)}\left(G^{\prime}\right)$. For all $K \subseteq V$ with $|K|=k$, we have: $\{T \subseteq K: T \in U\}=$ $H_{G_{\upharpoonright K}}^{(3)}$ and $\left\{T \subseteq K: T \in U^{\prime}\right\}=H_{G_{\upharpoonright K}^{\prime}}^{(3)}$. Set $t:=|T|=3$.
4) Since $h^{(3)}\left(G_{\upharpoonright K}\right)=h^{(3)}\left(G_{\upharpoonright K}^{\prime}\right)$ for all k-element subsets K of V then $|\{T \subseteq K: T \in U\}|=\mid\{T \subseteq K$: $\left.T \in U^{\prime}\right\} \mid$. From Lemma 1.2 it follows that $U=U^{\prime}$; then G and G^{\prime} have the same 3 -element homogeneous subsets.
5) Since $h^{(3)}\left(G_{\upharpoonright K}\right) \equiv h^{(3)}\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V then $|\{T \subseteq K: T \in U\}| \equiv$ $\left|\left\{T \subseteq K: T \in U^{\prime}\right\}\right|(\bmod p)$.

Case 1. $k_{0} \geq 3$. Then $p \geq 5, t:=3=[3]_{p}$, and $t_{0}=3 \leq k_{0}$. From 1) of Theorem 1.3 we have $U=U^{\prime}$; thus G and G^{\prime} have the same 3 -element homogeneous subsets.

Case 2. $k_{0}=0$. Then $p \geq 5, t:=3=[3]_{p}$. By Ramsey's theorem [33], every graph with at least 6 vertices contains a 3 -element homogeneous subset. Then U and U^{\prime} are nonempty and so from 2) of Theorem 1.3, $U=U^{\prime}$; thus G and G^{\prime} have the same 3 -element homogeneous subsets.
3) Since $h^{(3)}\left(G_{\uparrow K}\right) \equiv h^{(3)}\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V then $|\{T \subseteq K: T \in U\}| \equiv$ $\left|\left\{T \subseteq K: T \in U^{\prime}\right\}\right|(\bmod p)$.

Case 1. $p=2$ and $k \equiv 3(\bmod 4)$. Let $t:=3=[1,1]_{p}$. In this case, $k=\left[1,1, k_{2}, \ldots\right]_{p}$; then from 1$)$ of Theorem 1.3 we have $U=U^{\prime}$; thus G and G^{\prime} have the same 3 -element homogeneous subsets.

Case 2. $p=3$ and $3 \mid k$. Then $k=\left[0, k_{1}, \ldots, k_{k(p)}\right]_{p}$. Let $t:=3=[0,1]_{p}$.
Case 2.1. $k_{1} \in\{1,2\}$; then from 1) of Theorem 1.3 we have $U=U^{\prime}$; thus G and G^{\prime} have the same 3 -element homogeneous subsets.

Case 2.2. $k_{1}=0$. By Ramsey's theorem [33], every graph with at least 6 vertices contains a 3-element homogeneous subset. Then U and U^{\prime} are nonempty, and so from 2) of Theorem 1.3, $U=U^{\prime}$; thus G and G^{\prime} have the same 3 -element homogeneous subsets.

Let $G=(V, E)$ be a graph. From [34], every indecomposable graph of size 4 is isomorphic to $P_{4}=$ $(\{0,1,2,3\},\{\{0,1\},\{1,2\},\{2,3\}\})$. Let $\mathcal{P}^{(4)}(G)$ be the set of subsets X of V such that the induced subgraph $G_{\mid X}$ is isomorphic to P_{4}. We set $p^{(4)}(G):=\left|\mathcal{P}^{(4)}(G)\right|$. The following result concerns graphs G and G^{\prime} such that $p^{(4)}\left(G_{\upharpoonright K}\right) \equiv p^{(4)}\left(G_{\lceil K}^{\prime}\right)$ modulo a prime p, for all k-element subsets K of V.

Theorem 4.2 Let G and G^{\prime} be 2 graphs on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v-4$.

1) If $p^{(4)}\left(G_{\upharpoonright K}\right)=p^{(4)}\left(G_{\upharpoonright K}^{\prime}\right)$ for all k-element subsets K of V then G and G^{\prime} have the same indecomposable sets of size 4 .
2) Assume $p^{(4)}\left(G_{\upharpoonright K}\right) \equiv p^{(4)}\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V.
a) If $p \geq 5$ and $k \not \equiv 1,2,3(\bmod p)$, then G and G^{\prime} have the same indecomposable sets of size 4 .
b) If $(p=2,4 \mid k$ and $8 \nmid k)$ or $(p=3,3 \mid k-1$ and $9 \nmid k-1)$, then G and G^{\prime} have the same indecomposable sets of size 4 .
c) If $p=2$ and $8 \mid k$, then G and G^{\prime} have the same indecomposable sets of size 4 , or for all 4-element subsets T of $V, G_{\upharpoonright T}$ is indecomposable if and only if $G_{\upharpoonright T}^{\prime}$ is decomposable.

Proof Let $U:=\left\{T \subseteq V:|T|=4, G_{\mid T} \simeq P_{4}\right\}=\mathcal{P}^{(4)}(G), U^{\prime}:=\left\{T \subseteq V:|T|=4, G_{\upharpoonright T}^{\prime} \simeq P_{4}\right\}=\mathcal{P}^{(4)}\left(G^{\prime}\right)$. For all $K \subseteq V$, we have $\{T \subseteq K: T \in U\}=\mathcal{P}_{4}\left(G_{\upharpoonright K}\right)$ and $\left\{T \subseteq K: T \in U^{\prime}\right\}=\mathcal{P}_{4}\left(G_{\upharpoonright K}^{\prime}\right)$. Set $t:=|T|=4$.

1) Since $p^{(4)}\left(G_{\upharpoonright K}\right)=p^{(4)}\left(G_{\uparrow K}^{\prime}\right)$ then $|\{T \subseteq K: T \in U\}|=\left|\left\{T \subseteq K: T \in U^{\prime}\right\}\right|$. From Lemma 1.2, $U=U^{\prime}$; then G and G^{\prime} have the same indecomposable sets of size 4 .
2) We have $p^{(4)}\left(G_{\upharpoonright K}\right) \equiv p^{(4)}\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V; then $\mid\{T \subseteq K: T \in$ $U\}|\equiv|\left\{T \subseteq K: T \in U^{\prime}\right\} \mid(\bmod p)$.
a) Case 1. $k_{0} \geq 4$. Then $p \geq 5, t=4=[4]_{p}$, and $t_{0}=4 \leq k_{0}$. From 1) of Theorem 1.3 we have $U=U^{\prime}$; thus G and G^{\prime} have the same indecomposable sets of size 4 .

Case 2. $k_{0}=0$. Let $t:=4=[4]_{p}$.
A graph H is k-monomorphic if $G_{\mid X} \simeq G_{\upharpoonright Y}$ for all k-element subsets X and Y of V. If a graph of order at least 6 is 4 -monomorphic then it is 2 -monomorphic and hence complete or empty. Since in every graph of order 6 , there is a restriction of size 4 not isomorphic to P_{4} then, from 2) of Theorem $1.3, U=U^{\prime}$; thus G and G^{\prime} have the same indecomposable sets of size 4 .
b) Case 1. $p=2,4 \mid k$, and $8 \nmid k$. Then $t:=4=[0,0,1]_{p}$ and $k=\left[0,0,1, k_{3}, \ldots, k_{k(p)}\right]_{p}$. From 1) of Theorem 1.3, we have $U=U^{\prime}$; thus G and G^{\prime} have the same indecomposable sets of size 4 .

Case 2. $p=3,3 \mid k-1$, and $9 \nmid k-1$. Then $t:=4=[1,1]_{p}, k=\left[1, k_{1}, \ldots, k_{k(p)}\right]_{p}$, and $t_{1}=1 \leq k_{1}$. From 1) of Theorem 1.3, $U=U^{\prime}$, thus G and G^{\prime} have the same indecomposable sets of size 4 .
c) We have $p=2, t:=4=[0,0,1]_{p}$, and $k=\left[0,0,0, k_{3}, \ldots, k_{k(p)}\right]_{p}$. Since in every graph of order 6 , there is a restriction of size 4 not isomorphic to P_{4}, then from 2) of Theorem $1.3, U=U^{\prime}$, or for all 4-element subsets T of $V, T \in U$ if and only if $T \notin U^{\prime}$. Thus G and G^{\prime} have the same indecomposable sets of size 4 , or for all 4 -element subsets T of $V, G_{\upharpoonright T}$ is indecomposable if and only if $G_{\upharpoonright T}^{\prime}$ is decomposable.

In a reconstruction problem of graphs up to complementation [13], Wilson's theorem yielded the following result:

Theorem 4.3 ([13]) Let G and G^{\prime} be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $5 \leq k \leq v-2, k \equiv 1(\bmod 4)$. Then the following properties are equivalent:
(i) $e\left(G_{\upharpoonright K}\right)$ has the same parity as $e\left(G_{\lceil K}^{\prime}\right)$ for all k-element subsets K of V; and $G_{\upharpoonright K}, G_{\upharpoonright K}^{\prime}$ have the same 3-homogeneous subsets;
(ii) $G^{\prime}=G$ or $G^{\prime}=\bar{G}$.

Here, we just want to point out that we can obtain a similar result for $k \equiv 3(\bmod 4)$, namely Theorem 4.4, using the same proof as that of Theorem 4.3.
The boolean sum $G \dot{+} G^{\prime}$ of 2 graphs $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$ is the graph U on V whose edges are pairs e of vertices such that $e \in E$ if and only if $e \notin E^{\prime}$.

Theorem 4.4 Let G and G^{\prime} be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $3 \leq k \leq v-2, k \equiv 3(\bmod 4)$. Then the following properties are equivalent:
(i) $e\left(G_{\lceil K}\right)$ has the same parity as $e\left(G_{\lceil K}^{\prime}\right)$ for all k-element subsets K of V; and $G_{\upharpoonright K}, G_{\lceil K}^{\prime}$ have the same 3-homogeneous subsets;
(ii) $G^{\prime}=G$.

Proof It is exactly the same as that of Theorem 4.3 (see ([13]). The implication $(i i) \Rightarrow(i)$ is trivial. We prove $(i) \Rightarrow(i i)$. We may suppose V finite. We set $U:=G \dot{+} G^{\prime} ;$ let $T_{1}, T_{2}, \cdots, T_{\binom{v}{2}}$ be an enumeration of the 2 -element subsets of V, and let $K_{1}, K_{2}, \cdots, K_{\binom{v}{k}}$ be an enumeration of the k-element subsets of V. Let w_{U} be the row matrix $\left(u_{1}, u_{2}, \cdots, u_{\binom{v}{2}}\right)$ where $u_{i}=1$ if T_{i} is an edge of $U, 0$ otherwise. We have $w_{U} W_{2 k}=\left(e\left(U_{\left\lceil K_{1}\right.}\right), e\left(U_{\left\lceil K_{2}\right.}\right), \cdots, e\left(U_{\lceil K}^{\binom{v}{k}} \boldsymbol{)}\right)\right)$. From the fact that $e\left(G_{\upharpoonright K}\right)$ has the same parity as $e\left(G_{\upharpoonright K}^{\prime}\right)$ and $e\left(U_{\upharpoonright K}\right)=e\left(G_{\upharpoonright K}\right)+e\left(G_{\upharpoonright K}^{\prime}\right)-2 e\left(G_{\upharpoonright K} \cap G_{\upharpoonright K}^{\prime}\right)$ for all k-element subsets K, w_{U} belongs to $\operatorname{Ker}_{2}\left({ }^{t} W_{t k}\right)$. According to Theorem 2.2, $\operatorname{rank}_{2} W_{2 k}=\binom{v}{2}-v+1$. Hence $\operatorname{dim} \operatorname{Ker}_{2}\left({ }^{t} W_{2 k}\right)=v-1$.

We give a similar claim as Claim 2.8 of [13]; the proof is identical.

Claim 4.5 Let k be an integer such that $3 \leq k \leq v-2, k \equiv 3(\bmod 4)$; then $\operatorname{Ker}_{2}\left({ }^{t} W_{2 k}\right)$ consists of complete bipartite graphs (including the empty graph).
Proof Let us recall that a star-graph of v vertices consists of a vertex linked to all other vertices, those $v-1$ vertices forming an independent set. First we prove that each star-graph S belongs to $\mathbb{K}:=K_{2} r_{2}\left({ }^{t} W_{2 k}\right)$. Let w_{S} be the row matrix $\left(s_{1}, s_{2}, \cdots, s_{\binom{v}{2}}\right)$ where $s_{i}=1$ if T_{i} is an edge of $S, 0$ otherwise. We have $w_{S} W_{2 k}=\left(e\left(S_{\upharpoonright K_{1}}\right), e\left(S_{\mid K_{2}}\right), \cdots, e\left(S_{\upharpoonright K_{(}^{v}}^{v} \begin{array}{l} \\ k\end{array}\right)\right)$. For all $i \in\left\{1, \ldots,\binom{v}{k}\right\}, e\left(S_{\upharpoonright K_{i}}\right)=k-1$ if the center of the star-graph belongs to $K_{i}, 0$ otherwise. Since k is odd, each star-graph S belongs to \mathbb{K}. The vector space (over the 2 -element field) generated by the star-graphs on V consists of all complete bipartite graphs; since $v \geq 3$, these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is $v-1$ (a basis being made of star-graphs). Since $\operatorname{dim} \operatorname{Ker}_{2}\left({ }^{t} W_{2 k}\right)=v-1$, then \mathbb{K} consists of complete bipartite graphs as claimed.

A claw is a star-graph on 4 vertices, that is a graph made of a vertex joined to 3 other vertices, with no edges between these 3 vertices. A graph is claw-free if no induced subgraph is a claw.

Claim 4.6 ([13]) Let G and G^{\prime} be 2 graphs on the same set and having the same 3 -homogeneous subsets; then the boolean sum $U:=G \dot{+} G^{\prime}$ is claw-free.

From Claim 4.5, U is a complete bipartite graph and, from Claim 4.6, U is claw-free. Since $v \geq 5$, it follows that U is the empty graph. Hence $G^{\prime}=G$ as claimed.

5. Illustrations to tournaments

Let $T=(V, E)$ be a tournament. For 2 distinct vertices x and y of $T, x \longrightarrow_{T} y$ (or simply $x \longrightarrow y$) means that $(x, y) \in E$. For $A \subseteq V$ and $y \in V, A \longrightarrow y$ means $x \longrightarrow y$ for all $x \in A$. The degree of a vertex x of T is $d_{T}(x):=|\{y \in V: x \longrightarrow y\}|$. We denote by T^{*} the dual of T that is $T^{*}=\left(V, E^{*}\right)$ with $(x, y) \in E^{*}$ if and only if $(y, x) \in E$. A transitive tournament or a total order or k-chain (denoted O_{k}) is a tournament of cardinality k, such that for $x, y, z \in V$, if $x \longrightarrow y$ and $y \longrightarrow z$, then $x \longrightarrow z$. If x and y are 2 distinct vertices of a total order, the notation $x<y$ means that $x \longrightarrow y$. The tournament $C_{3}:=\{\{0,1,2\},\{(0,1),(1,2),(2,0)\}\}$ (resp. $\left.C_{4}:=(\{0,1,2,3\},\{(0,3),(0,1),(3,1),(1,2),(2,0),(2,3)\})\right)$ is a 3 -cycle (resp. 4-cycle) (see Figure 1). A diamond is a tournament on 4 vertices admitting only 1 interval of cardinality 3 , which is a 3 -cycle. Up to isomorphism, there are exactly 2 diamonds δ^{+}and $\delta^{-}=\left(\delta^{+}\right)^{*}$, where δ^{+}is the tournament defined on $\{0,1,2,3\}$ by $\delta_{\mid\{0,1,2\}}^{+}=C_{3}$ and $\{0,1,2\} \rightarrow 3$. A tournament isomorphic to δ^{+}(resp. isomorphic to δ^{-}) is said to be a positive diamond (resp. negative diamond) (see Figure 1). The boolean sum $U:=T \dot{+} T^{\prime}$ of 2 tournaments, $T=(V, E)$ and $T^{\prime}=\left(V, E^{\prime}\right)$, is the graph U on V whose edges are pairs $\{x, y\}$ of vertices such that $(x, y) \in E$ if and only if $(x, y) \notin E^{\prime}$.

Theorem 5.1 Let $T=(V, E)$ and $T^{\prime}=\left(V, E^{\prime}\right)$ be 2 tournaments on the same set V of vertices (possibly infinite). Let p be a prime number and k be an integer, $2 \leq k \leq v-2$. Let $G:=T \dot{+} T^{\prime}$. We assume that for all k-element subsets K of $V, e\left(G_{\lceil K}\right) \equiv 0(\bmod p)$. Then

1) $T^{\prime}=T$ if $(p \geq 3, k \not \equiv 0,1(\bmod p))$ or $(p=2, k \equiv 2(\bmod 4))$.
2) $T^{\prime}=T$ or $T^{\prime}=T^{*}$ if $(p \geq 3, k \equiv 0(\bmod p))$ or $(p=2, k \equiv 0(\bmod 4))$.

Proof We may suppose V finite. The proof reduces to say when G is the empty graph or when G is either empty or full. We set $G^{\prime}:=$ The empty graph. Then $e\left(G_{\upharpoonright K}\right) \equiv e\left(G_{\upharpoonright K}^{\prime}\right)(\bmod p)$.

1) Use respectively 1) of Theorem 1.5 and 3) of Theorem 1.5 .
2) Use respectively 2) of Theorem 1.5 and Theorem 1.4.

Let T be a tournament; we set $C^{(3)}(T):=\left\{\{a, b, c\}: T_{\lceil\{a, b, c\}}\right.$ is a 3 -cycle $\}$, and $c^{(3)}(T):=\left|C^{(3)}(T)\right|$. Let $T=(V, E)$ and $T^{\prime}=\left(V, E^{\prime}\right)$ be 2 tournaments and let k be a nonnegative integer; T and T^{\prime} are k hypomorphic [8, 27] (resp. k-hypomorphic up to duality) if for every k-element subset K of V, the induced subtournaments $T_{\uparrow K}^{\prime}$ and $T_{\uparrow K}$ are isomorphic (resp. $T_{\uparrow K}^{\prime}$ is isomorphic to $T_{\uparrow K}$ or to $T_{\uparrow K}^{*}$). We say that T and T^{\prime} are ($\leq k$)-hypomorphic if T and T^{\prime} are h-hypomorphic for every $h \leq k$. Similarly, we say that T and T^{\prime} are $(\leq k)$-hypomorphic up to duality if T and T^{\prime} are h-hypomorphic up to duality for every $h \leq k$. Clearly, $2(\leq 3)$ hypomorphic tournaments have the same diamonds. Furthermore, note that $2(\leq 3)$-hypomorphic tournaments have the same indecomposable structures and if a component in the tree decomposition is indecomposable, then the corresponding one is equal or dual [9].

Figure 1. Cycle C_{3}, Cycle C_{4}, Positive Diamond, Negative Diamond.

Theorem 5.2 Let T and T^{\prime} be 2 tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $3 \leq k \leq v-3$.

1) If $c^{(3)}\left(T_{\uparrow K}\right)=c^{(3)}\left(T_{\uparrow K}^{\prime}\right)$ for all k-element subsets K of V then T and T^{\prime} are (≤ 3)-hypomorphic.
2) Assume $p \geq 5$. If $k \not \equiv 1,2(\bmod p)$, and $c^{(3)}\left(T_{\lceil K}\right) \equiv c^{(3)}\left(T_{\uparrow K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V, then T and T^{\prime} are (≤ 3)-hypomorphic.
3) If $(p=2$ and $k \equiv 3(\bmod 4))$ or $(p=3$ and $3 \mid k)$, and $c^{(3)}\left(G_{\uparrow K}\right) \equiv c^{(3)}\left(G_{\uparrow K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V, then T and T^{\prime} are (≤ 3)-hypomorphic.

Proof Since every tournament of cardinality ≥ 4 has at least a restriction of cardinality 3 that is not a 3 -cycle, then the proof is similar to that of Theorem 4.1.

Let T be a tournament; we set $D_{4}^{+}(T):=\left\{\{a, b, c, d\}: T_{\upharpoonright\{a, b, c, d\}} \simeq \delta^{+}\right\}, D_{4}^{-}(T):=\{\{a, b, c, d\}:$ $\left.T_{\backslash\{a, b, c, d\}} \simeq \delta^{-}\right\}, d_{4}^{+}(T):=\left|D_{4}^{+}(T)\right|$, and $d_{4}^{-}(T):=\left|D_{4}^{-}(T)\right|$.

It is well known that every subtournament of order 4 of a tournament is a diamond, a 4-chain, or a 4 -cycle subtournament. We have $c^{(3)}\left(O_{4}\right)=0, c^{(3)}\left(\delta^{+}\right)=c^{(3)}\left(\delta^{-}\right)=1, c^{(3)}\left(C_{4}\right)=2$, and $C_{4} \simeq C_{4}^{*}$. The (≤ 4)-hypomorphy has been studied by G. Lopez and C. Rauzy [27, 28].

Theorem 5.3 Let T and T^{\prime} be $2(\leq 3)$-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v-4$.

1) If $d_{4}^{+}\left(T_{\uparrow K}\right)=d_{4}^{+}\left(T_{\uparrow K}^{\prime}\right)$ for all k-element subsets K of V then T^{\prime} and T are (≤ 4)-hypomorphic.
2) Assume $d_{4}^{+}\left(T_{\uparrow K}\right) \equiv d_{4}^{+}\left(T_{\uparrow K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V.
a) If $p \geq 5$ and $k \not \equiv 1,2,3(\bmod p)$, then T^{\prime} and T are (≤ 4)-hypomorphic.
b) If ($p=3,3 \mid k-1$ and $9 \nmid k-1$) or $(p=2,4 \mid k$ and $8 \nmid k)$, then T^{\prime} and T are (≤ 4)-hypomorphic.
c) If $p=2$ and $8 \mid k$, then T^{\prime} and T are (≤ 4)-hypomorphic.

Proof Let $U^{+}:=\left\{S \subseteq V, T_{\upharpoonright S} \simeq \delta^{+}\right\}=D_{4}^{+}(T), U^{\prime+}:=D_{4}^{+}\left(T^{\prime}\right), U^{-}:=D_{4}^{-}(T)$, and $U^{\prime-}:=D_{4}^{-}\left(T^{\prime}\right)$.

Claim 5.4 If T and T^{\prime} are (≤ 3)-hypomorphic and $U^{+}=U^{\prime+}$, then $U^{-}=U^{\prime-} ; T$ and T^{\prime} are (≤ 4)hypomorphic.
Proof Let $S \in U^{-}, T_{\upharpoonright S} \simeq \delta^{-}$. Since T and T^{\prime} are (≤ 3)-hypomorphic, then $T_{\upharpoonright S}^{\prime} \simeq \delta^{+}$or $T_{\upharpoonright S}^{\prime} \simeq \delta^{-}$. We have $\left\{S \subseteq V, T_{\upharpoonright S}^{\prime} \simeq \delta^{+}\right\}=\left\{S \subseteq V, T_{\upharpoonright S} \simeq \delta^{+}\right\}$; then $T_{\upharpoonright S}^{\prime} \simeq \delta^{-}, S \in U^{\prime-}$ and $U^{-}=U^{\prime-}$. Therefore, for $X \subset V$, if $T_{\lceil X}$ is a diamond then $T_{\lceil X}^{\prime} \simeq T_{\lceil X}$.

Now we prove that T and T^{\prime} are 4-hypomorphic. Let $X \subset V$ such that $|X|=4$. If $T_{\uparrow X} \simeq C_{4}$, then $c^{(3)}\left(T_{\lceil X}\right)=2$. Since T and T^{\prime} are (≤ 3)-hypomorphic then $c^{(3)}\left(T_{\lceil X}^{\prime}\right)=2$; thus $T_{\lceil X}^{\prime} \simeq T_{\lceil X} \simeq C_{4}$. The same, if $T_{\uparrow X} \simeq O_{4}$ then $T_{\mid X}^{\prime} \simeq T_{\mid X} \simeq O_{4}$. Therefore, T^{\prime} and T are (≤ 4)-hypomorphic.

From Claim 5.4, it is sufficient to prove that $U^{+}=U^{\prime+}$.
For all $K \subseteq V$ with $|K|=k$, we have $\left\{S \subseteq K: S \in U^{+}\right\}=D_{4}^{+}\left(T_{\mid K}\right)$ and $\left\{S \subseteq K: S \in U^{\prime+}\right\}=$ $D_{4}^{+}\left(T_{\uparrow K}^{\prime}\right)$.

1) Since $d_{4}^{+}\left(T_{\uparrow K}\right)=d_{4}^{+}\left(T_{\uparrow K}^{\prime}\right)$ then $\left|\left\{S \subseteq K: S \in U^{+}\right\}\right|=\left|\left\{S \subseteq K: S \in U^{\prime+}\right\}\right|$. From Lemma 1.2, we have $U^{+}=U^{\prime+}$.
2) We have $d_{4}^{+}\left(T_{\upharpoonright K}\right) \equiv d_{4}^{+}\left(T_{\lceil K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V; then $\left|\left\{S \subseteq K: S \in U^{+}\right\}\right| \equiv$ $\left|\left\{S \subseteq K: S \in U^{\prime+}\right\}\right|(\bmod p)$.
a) Case 1. $k_{0} \geq 4$. Then $p \geq 5, t:=4=[4]_{p}, k=\left[k_{0}, \ldots\right]_{p}$, and $t_{0}=4 \leq k_{0}$. From 1) of Theorem 1.3 we have $U^{+}=U^{\prime+}$.

Case 2. $k_{0}=0$. Then $p \geq 5, t:=4=[4]_{p}$, and $k=\left[0, k_{1}, \ldots\right]_{p}$. Since every tournament of cardinality ≥ 5 has at least a restriction of cardinality 4 that is not a diamond, then from 2) of Theorem $1.3, U^{+}=U^{\prime+}$.
b) Case 1. $p=3,3 \mid k-1$ and $9 \nmid k-1$. Then $t:=4=[1,1]_{p}, k=\left[1, k_{1}, \ldots, k_{k(p)}\right]_{p}$ and $t_{1}=1 \leq k_{1}$. From 1) of Theorem 1.3 we have $U^{+}=U^{\prime+}$.

Case 2. $p=2,4 \mid k$ and $8 \nmid k$. Then $t:=4=[0,0,1]_{p}$ and $k=\left[0,0,1, k_{3}, \ldots, k_{k(p)}\right]_{p}$.
From 1) of Theorem 1.3 we have $U^{+}=U^{\prime+}$.
c) We have $p=2, t:=4=[0,0,1]_{p}, k=\left[0,0,0, k_{3}, \ldots, k_{k(p)}\right]_{p}$. Since every tournament of cardinality ≥ 5 has at least a restriction of cardinality 4 that is not a diamond, and the fact that T and T^{\prime} are 3-hypomorphic, then from 2) of Theorem 1.3, $U^{+}=U^{\prime+}$; thus T^{\prime} and T are (≤ 5)-hypomorphic, or for all 4-element subsets S of $\mathrm{V}, T_{\lceil S}$ is isomorphic to δ^{+}if and only if $T_{\upharpoonright S}^{\prime}$ is isomorphic to δ^{-}.

In fact, in Theorem 5.3, the conclusion is that T^{\prime} and T are (≤ 5)-hypomorphic; this follows from Lemma 5.5 below.

Lemma 5.5 ([5]) Let T and T^{\prime} be 2 (≤ 4)-hypomorphic tournaments on at least 5 vertices. Then, T and T^{\prime} are (≤ 5)-hypomorphic.

Comment. Let T and T^{\prime} be $2(\leq 3)$-hypomorphic tournaments on the same set V of v vertices. Let U (respectively U^{\prime}) be the set of positive diamonds of T (respectively of T^{\prime}). Then 2) of Theorem 1.3 with $U \neq U^{\prime}$ cannot occur. Indeed, from 2) of Theorem 1.3, it follows that if $U \neq U^{\prime}$ then for every 4-element subset X of $V, T_{\mid X}$ is a positive diamond if and only if $T^{\prime}{ }_{X X}$ is not a positive diamond. This implies that for every 4-element subset Y of V such that $T^{\prime}{ }_{\upharpoonright Y}$ is not a diamond, $T_{\uparrow Y}$ is a positive diamond. Since there are such Y (a 5 -element tournament has 0 or 2 diamonds, see H. Bouchaala [4]), this contradicts the 3 -hypomorphy.

Let m be an integer, $m \geq 1, S=(\{0,1, \ldots, m-1\}, A)$ be a digraph and for $i<m$ a digraph $G_{i}=\left(V_{i}, A_{i}\right)$ such that the V_{i} 's are nonempty and pairwise disjoint. The lexicographic sum over S of the G_{i} 's or simply the S-sum of the G_{i} 's is the digraph denoted by $S\left(G_{0}, G_{1}, \ldots, G_{m-1}\right)$ and defined on the union of the V_{i} 's as follows: given $x \in V_{i}$ and $y \in V_{j}$, where $i, j \in\{0,1, \ldots, m-1\},(x, y)$ is an arc of $S\left(G_{0}, G_{1}, \ldots, G_{m-1}\right)$ if either $i=j$ and $(x, y) \in A_{i}$ or $i \neq j$ and $(i, j) \in A$: this digraph replaces each vertex i of S by G_{i}. We say that the vertex i of S is dilated by G_{i}.

We define, for each integer $h \geq 0$, the tournament $T_{2 h+1}$ (see Figure 2) on $\{0, \ldots, 2 h\}$ as follows. For $i, j \in\{0, \ldots, 2 h\}, i \longrightarrow j$ if there exists $k \in\{1, \ldots, h\}$ such that $j=i+k$ modulo $2 h+1$. A tournament T is said to be an element of $D\left(T_{2 h+1}\right)$ if T is obtained by dilating each vertex of $T_{2 h+1}$ by a finite chain p_{i}, and then $T=T_{2 h+1}\left(p_{0}, p_{1}, \ldots, p_{2 h}\right)$. We recall that $T_{2 h+1}$ is indecomposable and $D\left(T_{2 h+1}\right)$ is the class of finite tournaments without a diamond [27]; this class was obtained previously by Moon [30].

We define the tournament $\beta_{6}^{+}:=T_{3}\left(p_{0}, p_{1}, p_{2}\right)$ with $p_{0}=(0<1<2), p_{1}=(3<4)$, and $\left|p_{2}\right|=1$ (see Figure 3). We set $\beta_{6}^{-}:=\left(\beta_{6}^{+}\right)^{*}$.

Figure 2. Circular tournament $T_{2 h+1}$.

Figure 3. β_{6}^{+}.

For a tournament $T=(V, E)$, we set $B_{6}^{+}(T):=\left\{S \subseteq V: T_{\upharpoonright S} \simeq \beta_{6}^{+}\right\}, B_{6}^{-}(T):=\left\{S \subseteq V: T_{\uparrow S} \simeq \beta_{6}^{-}\right\}$, $b_{6}^{+}(T):=\left|B_{6}^{+}(T)\right|$, and $b_{6}^{-}(T):=\left|B_{6}^{-}(T)\right|$.

Two tournaments T and T^{\prime} on the same vertex set V are hereditarily isomorphic if for all $X \subseteq V, T_{\uparrow X}$ and $T_{\mid X}^{\prime}$ are isomorphic [3].

Let $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$ be $2(\leq 2)$-hypomorphic digraphs. Denote $D_{G, G^{\prime}}$ the binary relation on V such that: for $x \in V, x D_{G, G^{\prime}} x$; and for $x \neq y \in V, x D_{G, G^{\prime}} y$ if there exists a sequence $x_{0}=x, \ldots, x_{n}=y$ of elements of V satisfying $\left(x_{i}, x_{i+1}\right) \in E$ if and only if $\left(x_{i}, x_{i+1}\right) \notin E^{\prime}$, for all $i, 0 \leq i \leq n-1$. The relation $D_{G, G^{\prime}}$ is an equivalence relation called the difference relation; its classes are called difference classes.

Using difference classes, G. Lopez [25, 26] showed that if T and T^{\prime} are (≤ 6)-hypomorphic then T and T^{\prime} are isomorphic. One may deduce the next corollary.

Corollary 5.6 ([25, 26]) Let T and T^{\prime} be 2 tournaments. We have the following properties:

1) If T and T^{\prime} are (≤ 6)-hypomorphic then T and T^{\prime} are hereditarily isomorphic.
2) If for each equivalence class C of $D_{T, T^{\prime}}, C$ is an interval of T and T^{\prime}, and $T_{\uparrow C}^{\prime}, T_{\uparrow C}$ are (≤ 6)hypomorphic, then T and T^{\prime} are hereditarily isomorphic.

Lemma 5.7 [27] Given $2(\leq 4)$-hypomorphic tournaments T and T^{\prime}, and C an equivalence class of $D_{T, T^{\prime}}$, then:

1) C is an interval of T^{\prime} and T.
2) Every 3-cycle in $T_{\uparrow C}$ is reversed in $T_{\uparrow C}^{\prime}$.
3) There exists an integer $h \geq 0$ such that $T_{\uparrow C}=T_{2 h+1}\left(p_{0}, p_{1}, \ldots, p_{2 h}\right)$ and $T_{\uparrow C}^{\prime}=T_{2 h+1}^{*}\left(p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{2 h}^{\prime}\right)$ with p_{i}, p_{i}^{\prime} as chains on the same basis, for all $i \in\{0,1, \ldots, 2 h\}$.

Theorem 5.8 Let T and T^{\prime} be $2(\leq 4)$-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and $k=\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$ be an integer, $6 \leq k \leq v-6$.

1) If $b_{6}^{+}\left(T_{\lceil K}\right)=b_{6}^{+}\left(T_{\uparrow K}^{\prime}\right)$ for all k-element subsets K of V then T^{\prime} and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.
2) Assume $b_{6}^{+}\left(T_{\lceil K}\right) \equiv b_{6}^{+}\left(T_{\lceil K}^{\prime}\right)(\bmod p)$ for all k-element subsets K of V.
a) If $p \geq 7$, and $k_{0} \geq 6$ or $k_{0}=0$, then T^{\prime} and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.
b) If $\left(p=5, k_{0}=1\right.$, and $\left.k_{1} \neq 0\right)$ or $\left(p=3, k_{0}=0\right.$, and $\left.k_{1}=2\right)$ or ($p=3$ and $\left.k_{0}=k_{1}=0\right)$ or ($p=2, k_{0}=0$, and $k_{1}=k_{2}=1$), then T^{\prime} and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.
Proof From Lemma 5.5, T and T^{\prime} are (≤ 5)-hypomorphic. Let $U^{+}:=\left\{S \subseteq V, T_{\upharpoonright S} \simeq \beta_{6}^{+}\right\}=B_{6}^{+}(T)$, $U^{\prime+}:=B_{6}^{+}\left(T^{\prime}\right), U^{-}:=\left\{S \subseteq V, T_{\upharpoonright S} \simeq \beta_{6}^{-}\right\}=B_{6}^{-}(T), U^{\prime-}:=B_{6}^{-}\left(T^{\prime}\right)$.

Every tournament of cardinality ≥ 7 has at least a restriction of cardinality 6 that is neither isomorphic to β_{6}^{+}nor to β_{6}^{-}. Then, for all cases, similarly to the proof of Theorem 5.3, we have $U^{+}=U^{\prime+}$.

Let C be an equivalence class of $D_{T, T^{\prime}}, S \in U^{-}, T_{\uparrow S} \simeq \beta_{6}^{-}$. Since T and T^{\prime} are (≤ 3)-hypomorphic, then $T_{\upharpoonright S}^{\prime} \simeq \beta_{6}^{+}$or $T_{\upharpoonright S}^{\prime} \simeq \beta_{6}^{-}$. We have $\left\{S \subseteq V, T_{\lceil S}^{\prime} \simeq \beta_{6}^{+}\right\}=\left\{S \subseteq V, T_{\upharpoonright S} \simeq \beta_{6}^{+}\right\}$; then $T_{\lceil S}^{\prime} \simeq \beta_{6}^{-}, S \in U^{\prime-}$, and $U^{-}=U^{\prime-}$. Let $X \subseteq C$ such that $|X|=6$; if $T_{X} \simeq \beta_{6}^{+}$then, from 2) of Lemma 5.7, $T_{X}^{\prime} \simeq \beta_{6}^{-}$, which is impossible, and so T_{C} and T_{C}^{\prime} do not have a restriction of cardinality 6 isomorphic to β_{6}^{+}and β_{6}^{-}. From Lemma 5.9 below, $T_{\lceil C}$ and $T_{\lceil C}^{\prime}$ are (≤ 6)-hypomorphic.

Lemma 5.9 ([3]) Let T and T^{\prime} be $2(\leq 5)$-hypomorphic tournaments defined on a vertex set V such that for all $X \subseteq V$, if $T_{\lceil X}$ is isomorphic to β_{6}^{+}or to β_{6}^{-}, then $T_{\lceil X}^{\prime}$ is isomorphic to $T_{\lceil X}$. Then T and T^{\prime} are (≤ 6)-hypomorphic.

From 1) of Lemma 5.7, C is an interval of T^{\prime} and T. Then, from 2) of Corollary 5.6, T and T^{\prime} are hereditarily isomorphic.

From Theorem 5.2, Theorem 5.3, and Theorem 5.8, we deduce the following result.
Corollary 5.10 Let T and T^{\prime} be 2 tournaments on the same set V of v vertices. Let p be a prime number and $k=\left[k_{0}, k_{1}, \ldots, k_{k(p)}\right]_{p}$ be an integer, $6 \leq k \leq v-6$.

1) If $c^{(3)}\left(T_{\upharpoonright K}\right)=c^{(3)}\left(T_{\upharpoonright K}^{\prime}\right), d_{4}^{+}\left(T_{\upharpoonright K}\right)=d_{4}^{+}\left(T_{\upharpoonright K}^{\prime}\right)$, and $b_{6}^{+}\left(T_{\upharpoonright K}\right)=b_{6}^{+}\left(T_{\mid K}^{\prime}\right)$ for all k-element subsets K of V then T^{\prime} and T are hereditarily isomorphic.
2) Assume $c^{(3)}\left(T_{\uparrow K}\right) \equiv c^{(3)}\left(T_{\lceil K}^{\prime}\right)$, $d_{4}^{+}\left(T_{\upharpoonright K}\right) \equiv d_{4}^{+}\left(T_{\lceil K}^{\prime}\right)$, and $b_{6}^{+}\left(T_{\uparrow K}\right) \equiv b_{6}^{+}\left(T_{\lceil K}^{\prime}\right)(\bmod p)$ for all $k-$ element subsets K of V.

If $p \geq 7$, and $k_{0} \geq 6$ or $k_{0}=0$, then T^{\prime} and T are hereditarily isomorphic.

References

[1] Achour M, Boudabbous Y, Boussairi A. Les paires de tournois $\{-3\}$-hypomorphes [Pairs of $\{-3\}$-hypomorphic tournaments]. C R Math Acad Sci Paris 2012; 350: 433-437.
[2] Bondy JA. Basic graph theory: paths and circuits, Handbook of combinatorics, Vol. 1, Ed. Graham RL, Grötschel M and Lovász L. North-Holland, 1995, pp. 3-110.
[3] Bouaziz M, Boudabbous Y, El Amri N. Hereditary hemimorphy of $\{-k\}$-hemimorphic tournaments for $k \geq 5$. J Korean Math Soc 2011; 48: 599-626.

BEN AMIRA et al./Turk J Math

[4] Bouchaala H. Sur la répartition des diamants dans un tournoi [Distribution of diamonds in a tournament]. C R Math Acad Sci Paris 2004; 338: 109-112. (article in French with an abstract in English)
[5] Boudabbous Y. Isomorphie héréditaire et $\{-4\}$-hypomorphie pour les tournois [Hereditary isomorphy and $\{-4\}$ hypomorphy for tournaments]. C R Math Acad Sci Paris 2009; 347: 841-844. (article in French with an abstract in English)
[6] Boudabbous Y, Dammak J. Sur la ($-k$)-demi-reconstructibilité des tournois finis [On the ($-k$)-halfreconstructibility of finite tournaments]. C R Acad Sci Paris Sér I Math 1998; 326: 1037-1040. (article in French with an abstract in English)
[7] Boudabbous Y, Lopez G. Procédé de construction des relations binaires non (≤ 3)-reconstructibles [A construction process for non-(≤ 3)-reconstructible binary relations]. C R Acad Sci Paris Sér I Math 1999; 329: 845-848. (article in French with an abstract in English)
[8] Boudabbous Y, Lopez G. The minimal non-($\leq k$)-reconstructible relations. Discrete Math 2005; 291: 19-40.
[9] Boussaïri A, Ille P, Lopez G, Thomassé S. Hypomorphie et inversion locale entre graphes [Hypomorphy and local inversion between graphs]. C. R. Acad Sci Paris Sér I Math. 1993; 317: 125-128. (article in French with an abstract in English)
[10] Chung FRK, Graham RL. Cohomological aspects of hypergraphs. Trans Amer Math Soc 1992; 334: 365-388.
[11] Dammak J. La (-5)-demi-reconstructibilité des relations binaires connexes finies [The (-5)-half-reconstructibility of finite connected binary relations]. Proyecciones 2003; 22: 181-199. (article in French with an abstract in English)
[12] Dammak J. Le seuil de reconstructibilité par le haut modulo la dualité des relations binaires finies [Threshold of top-down reconstruction of finite binary relations modulo duality]. Proyecciones 2003; 22: 209-236. (article in French with an abstract in English)
[13] Dammak J, Lopez G, Pouzet M, Si Kaddour H. Hypomorphy of graphs up to complementation. JCTB, Series B 2009; 99: 84-96.
[14] Ehrenfeucht A, Rozenberg G. Primitivity is hereditary for 2-structures. Theoret Comput Sc 1990; 70: 343-358.
[15] Fine NJ. Binomial coefficients modulo a prime. American Mathematical Monthly 1947; 54: 589-592.
[16] Fraïssé R. L'intervalle en théorie des relations; ses généralisations; filtre intervallaire et clôture d'une relation [The interval in relation theory; its generalizations; interval filter and closure of a relation]. In: Pouzet M, Richard D, editors. Orders: Description and Roles; 1982; L'Arbresle, France. Amsterdam: North-Holland, 1984, pp. 313-341. (article in French with an abstract in English)
[17] Frankl P. Intersection theorems and mod p rank of inclusion matrices. J Combin Theory Ser A 1990; 54: 85-94.
[18] Gallai T. Transitiv orientierbare graphen. Acta Math Acad Sci Hungar 1967; 18: 25-66.
[19] Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001.
[20] Gottlieb DH. A certain class of incidence matrices. Proc Amer Math Soc 1966; 17: 1233-1237.
[21] Ille P. Indecomposable graphs. Discrete Math. 1997; 173: 71-78.
[22] Kantor W. On incidence matrices of finite projection and affine spaces. Math Zeitschrift 1972; 124: 315-318.
[23] Kelly D. Comparability graphs. In: Rival I, editor. Graphs and Orders; 1984; Banff, Alta. Drodrecht: Reidel, 1985, pp. 3-40.
[24] Kelly PJ. A congruence theorem for trees. Pacific J Math 1957; 7: 961-968.
[25] Lopez G. Deux résultats concernant la détermination d'une relation par les types d'isomorphie de ses restrictions. C R Acad Sci Paris, Sér A 1972; 274: 1525-1528. (in French)
[26] Lopez G. Sur la détermination d'une relation par les types d'isomorphie de ses restrictions. C R Acad Sci Paris, Sér A 1972; 275: 951-953. (in French)
[27] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality $2,3,4$ and ($n-1$). I. Z Math Logik Grundlag Math 1992; 38: 27-37.
[28] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality $2,3,4$ and ($n-1$). II. Z Math Logik Grundlag Math 1992; 38: 157-168.
[29] Lucas E. Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques suivant un module premier. Bull. Soc. Math. France 1878; 6: 49-54. (in French)
[30] Moon JW. Topics on tournaments. New York-Montreal: Holt, Rinehart and Winston, 1968.
[31] Pouzet M. Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations. Math Zeitschrift 1976; 150: 117-134. (in French)
[32] Pouzet M. Relations non reconstructibles par leurs restrictions. JCTB, Series B 1979; 26: 22-34. (in French)
[33] Ramsey FP. On a problem of formal logic. Proc London Math Soc 1976; S2-30: 264-286.
[34] Schmerl JH, Trotter WT. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Math 1993; 113: 191-205.
[35] Spinard P. P4-trees and substitution decomposition. Discrete Appl Math 1992; 39: 263-291.
[36] Wilson RM. A diagonal form for the incidence matrices of t-subsets vs. k-subsets. Europ J Combinatorics 1990; 11: 609-615.

[^0]: *Correspondence: sikaddour@univ-lyon1.fr
 2000 AMS Mathematics Subject Classification: 05C50, 05C60.

