

Turkish Journal of Mathematics

 ${\tt http://journals.tubitak.gov.tr/math/}$

Turk J Math (2014) 38: 949 – 964 © TÜBİTAK doi:10.3906/mat-1302-13

Research Article

On a generalization of Kelly's combinatorial lemma

Aymen BEN AMIRA¹, Jamel DAMMAK¹, Hamza SI KADDOUR^{2,*}

¹Department of Mathematics, Faculty of Sciences of Sfax, Sfax, Tunisia

²ICJ, Department of Mathematics, University of Lyon, Claude Bernard University Lyon 1, Villeurbanne, France

Received: 08.02.2013	٠	Accepted: 07.05.2014	٠	Published Online: 24.10.2014	٠	Printed: 21.11.2014
----------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. A generalization in terms of a family of t-elements subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.

Key words: Set, matrix, graph, tournament, isomorphism

1. Introduction

Kelly's combinatorial lemma [24] is the assertion that the number s(F,G) of induced subgraphs of a given graph G, isomorphic to F, is determined by the deck of G, provided that |V(F)| < |V(G)|, namely $s(F,G) = \frac{1}{|V(G)| - |V(F)|} \sum_{x \in V(G)} s(F, G_{-x})$ (where G_{-x} is the graph induced by G on $V(G) \setminus \{x\}$).

In terms of a family \mathcal{F} of t-element subsets of a v-element set, it simply says that $|\mathcal{F}| = \frac{1}{v-t} \sum_{x \in V(G)} |\mathcal{F}_{-x}|$ where $\mathcal{F}_{-x} := \mathcal{F} \cap [V(G) \setminus \{x\}]^t$.

For sets U, T, we put $U(T) := \{F : T \subseteq F \in U\}$ and $U_{\uparrow K} := U \cap \mathfrak{P}(K)$ (where $\mathfrak{P}(K)$ is the set of subsets of K) so that $U_{\restriction K}(T) := \{F : T \subseteq F \subseteq K, F \in U\}$ and e(U) := |U|. Pouzet [31, 32] gave the following extension of this result.

Lemma 1.1 (M.Pouzet [31]) Let t and r be integers, V be a set of size $v \ge t+r$ elements, and U and U' be sets of t-element subsets T of V. If for every subset K of k = t+r elements of V, $e(U_{\uparrow K}) = e(U'_{\uparrow K})$, then for all finite subsets T' and K' of V, such that T' is contained in K' and K' \T' has at least t+r elements, $e(U_{\uparrow K'}(T')) = e(U'_{\uparrow K'}(T'))$.

In particular, if $|V| \ge 2t + r = t + k$, we have this particular version of the combinatorial lemma of Pouzet:

Lemma 1.2 (M.Pouzet [31]) Let v, t, and k be integers, $k \leq v$, V be a set of v elements with $t \leq min(k, v - k)$, and U and U' be sets of t-element subsets T of V. If for every k-element subset K of V, $e(U_{\uparrow K}) = e(U'_{\uparrow K})$, then U = U'.

^{*}Correspondence: sikaddour@univ-lyon1.fr

²⁰⁰⁰ AMS Mathematics Subject Classification: 05C50, 05C60.

Here we consider the case where $e(U_{\uparrow K}) \equiv e(U'_{\uparrow K})$ modulo a prime p for every k-element subset K of V; our main result, Theorem 1.3, is then a version, modulo a prime p, of the particular version of the combinatorial lemma of Pouzet.

Kelly's combinatorial lemma is a basic tool in the study of Ulam's reconstruction conjecture. Pouzet's combinatorial lemma has been used several times in reconstruction problems (see for example [1, 5, 6, 7, 11, 12]). Pouzet gave a proof of his lemma via a counting argument [32] and later by using linear algebra (related to incidence matrices) [31] (the paper was published earlier).

Let n, p be positive integers, the decomposition of $n = \sum_{i=0}^{n(p)} n_i p^i$ in the basis p is also denoted $[n_0, n_1, \ldots, n_{n(p)}]_p$ where $n_{n(p)} \neq 0$ if and only if $n \neq 0$.

Theorem 1.3 Let p be a prime number. Let v, t, and k be nonnegative integers, $k \leq v$, $k = [k_0, k_1, \ldots, k_{k(p)}]_p$, $t = [t_0, t_1, \ldots, t_{t(p)}]_p$. Let V be a set of v elements with $t \leq \min(k, v - k)$, and U and U' be sets of t-element subsets T of V. We assume that $e(U_{\restriction K}) \equiv e(U'_{\restriction K}) \mod u$ a prime p for every k-element subset K of V.

1) If $k_i = t_i$ for all i < t(p) and $k_{t(p)} \ge t_{t(p)}$, then U = U'.

2) If $t = t_{t(p)}p^{t(p)}$ and $k = \sum_{i=t(p)+1}^{k(p)} k_i p^i$, we have U = U', or one of the sets U, U' is the set of all t-element subsets of V and the other is empty, or (whenever p = 2) for all t-element subsets T of V, $T \in U$ if and only if $T \notin U'$.

We prove Theorem 1.3 in Section 3. We use Wilson's theorem (Theorem 2.2) on incidence matrices.

In a reconstruction problem of graphs up to complementation [13], Wilson's theorem yielded the following result:

Theorem 1.4 ([13]) Let k be an integer, $2 \le k \le v - 2$, $k \equiv 0 \pmod{4}$. Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). We assume that $e(G_{\uparrow K})$ has the same parity as $e(G'_{\uparrow K})$ for all k-element subsets K of V. Then G' = G or $G' = \overline{G}$.

Here we look for similar results whenever $e(G_{\uparrow K}) \equiv e(G'_{\uparrow K})$ modulo a prime p. As an illustration of Theorem 1.3, we obtain the following result.

Theorem 1.5 Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $2 \le k \le v-2$. We assume that for all k-element subsets K of V, $e(G_{\uparrow K}) \equiv e(G'_{\uparrow K})$ (mod p).

1) If $p \ge 3$, $k \ne 0, 1 \pmod{p}$, then G' = G.

2) If $p \ge 3$, $k \equiv 0 \pmod{p}$, then G' = G, or one of the graphs G, G' is the complete graph and the other is the empty graph.

3) If p = 2, $k \equiv 2 \pmod{4}$, then G' = G.

We give other illustrations of Theorem 1.3, to graphs in section 4 and to tournaments in section 5.

2. Incidence matrices

We consider the matrix $W_{t\,k}$ defined as follows: Let V be a finite set, with v elements. Given nonnegative integers t, k with $t \leq k \leq v$, let $W_{t\,k}$ be the $\binom{v}{t}$ by $\binom{v}{k}$ matrix of 0's and 1's, the rows of which are indexed

by the *t*-element subsets T of V, the columns are indexed by the *k*-element subsets K of V, and where the entry $W_{t\,k}(T,K)$ is 1 if $T \subseteq K$ and is 0 otherwise. The matrix transpose of $W_{t\,k}$ is denoted ${}^{t}W_{t\,k}$.

We say that a matrix D is a *diagonal form* for a matrix M when D is diagonal and there exist unimodular matrices (square integral matrices that have integral inverses) E and F such that D = EMF. We do not require that M and D are square; here "diagonal" just means that the (i, j) entry of D is 0 if $i \neq j$. A fundamental result, due to R.M. Wilson [36], is the following.

Theorem 2.1 (*R.M. Wilson* [36]) For $t \leq \min(k, v - k)$, W_{tk} has as a diagonal form the $\binom{v}{t} \times \binom{v}{k}$ diagonal matrix with diagonal entries

$$\begin{pmatrix} k-i\\ t-i \end{pmatrix}$$
 with multiplicity $\begin{pmatrix} v\\ i \end{pmatrix} - \begin{pmatrix} v\\ i-1 \end{pmatrix}$, $i = 0, 1, \dots, t$.

In this statement and in Theorem 2.2, $\binom{v}{-1}$ should be interpreted as zero.

Denote $rank_{\mathbb{Q}}W_{t\,k}$ the rank of $W_{t\,k}$ over the field \mathbb{Q} of rational numbers, resp. $rank_pW_{t\,k}$ the rank of $W_{t\,k}$ over the *p*-element field \mathbb{F}_p ; similarly denote $Ker_{\mathbb{Q}}W_{t\,k}$, $Ker_pW_{t\,k}$ the corresponding kernels. Clearly from Theorem 2.1, $rank_{\mathbb{Q}}W_{t\,k} = \binom{v}{t}$. This yields Theorem 2.3 below due to D.H. Gottlieb [20] and independently W. Kantor [22]. On the other hand, from Theorem 2.1 follows $rank_pW_{t\,k}$, as given by Theorem 2.2.

Theorem 2.2 (R.M. Wilson [36]) For $t \leq \min(k, v - k)$, the rank of W_{tk} modulo a prime p is

$$\sum \binom{v}{i} - \binom{v}{i-1}$$

where the sum is extended over those indices $i, 0 \le i \le t$, such that p does not divide the binomial coefficient $\binom{k-i}{t-i}$.

This yields Theorem 2.3 below due to D.H. Gottlieb [20], and independently W. Kantor [22]. A simpler proof of Theorem 2.2 was obtained by P. Frankl [17]. Applications of Wilson's theorem and its version modulo p have been considered by various authors, notably Chung and Graham [10] and Dammak et al. [13].

Theorem 2.3 (D.H. Gottlieb [20], W. Kantor [22]) For $t \leq \min(k, v - k)$, W_{tk} has full row rank over the field \mathbb{Q} of rational numbers.

It is clear that $t \leq \min(k, v - k)$ implies $\binom{v}{t} \leq \binom{v}{k}$. Thus, from Theorem 2.3, we have the following result:

Corollary 2.4 (W. Kantor [22]) For $t \leq \min(k, v - k)$, $\operatorname{rank}_{\mathbb{Q}} W_{t\,k} = \begin{pmatrix} v \\ t \end{pmatrix}$ and thus $\operatorname{Ker}_{\mathbb{Q}}({}^{t}W_{t\,k}) = \{0\}$.

If k := v - t then, up to a relabelling, $W_{t k}$ is the adjacency matrix $A_{t,v}$ of the Kneser graph KG(t, v)[19], a graph whose vertices are the t-element subsets of V, 2 subsets forming an edge if they are disjoint. The eigenvalues of Kneser graphs are computed in [19] (Theorem 9.4.3, page 200), and thus an equivalent form of Theorem 2.3 is:

Theorem 2.5 $A_{t,v}$ is nonsingular for $t \leq \frac{v}{2}$.

We characterize values of t and k so that $\dim Ker_p({}^tW_{t\,k}) \in \{0,1\}$ and give a basis of $Ker_p({}^tW_{t\,k})$ that appears in the following result.

Theorem 2.6 Let p be a prime number. Let v, t, and k be nonnegative integers, $k \leq v$, $k = [k_0, k_1, \ldots, k_{k(p)}]_p$, $t = [t_0, t_1, \ldots, t_{t(p)}]_p$, $t \leq \min(k, v - k)$. We have:

1) $k_j = t_j$ for all j < t(p) and $k_{t(p)} \ge t_{t(p)}$ if and only if $Ker_p({}^tW_{t\,k}) = \{0\}$.

2) $t = t_{t(p)}p^{t(p)}$ and $k = \sum_{i=t(p)+1}^{k(p)} k_i p^i$ if and only if $\dim Ker_p({}^tW_{t\,k}) = 1$ and $\{(1, 1, \dots, 1)\}$ is a basis of $Ker_p({}^tW_{t\,k})$.

The proof of Theorem 2.6 uses Lucas's theorem. The notation $a \mid b$ (resp. $a \nmid b$) means a divides b (resp. a does not divide b).

Theorem 2.7 (Lucas's theorem [29]) Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_0, t_1, \ldots, t_{t(p)}]_p$ and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$. Then

$$\binom{k}{t} = \prod_{i=0}^{t(p)} \binom{k_i}{t_i} \pmod{p}, \text{ where } \binom{k_i}{t_i} = 0 \text{ if } t_i > k_i.$$

For an elementary proof of Theorem 2.7, see Fine [15]. As a consequence of Theorem 2.7, we have the following result, which is very useful in this paper.

Corollary 2.8 Let p be a prime number, t, k be positive integers, $t \leq k$, $t = [t_0, t_1, \ldots, t_{t(p)}]_p$ and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$. Then

$$p|\binom{k}{t}$$
 if and only if there is $i \in \{0, 1, \dots, t(p)\}$ such that $t_i > k_i$.

Proof of Theorem 2.6. 1) We prove that under the stated conditions $\binom{k-i}{t-i} \neq 0 \pmod{p}$ for every $i \in \{0, \ldots, t\}$. From Theorem 2.1 it follows that $Ker_p(^tW_{t\,k}) = \{0\}$. Let $i \in \{0, \ldots, t\}$ then $i = [i_0, i_1, \ldots, i_{t(p)}]$ with $i_{t(p)} \leq t_{t(p)}$. Since $k_j = t_j$ for all j < t(p), then $(t-i)_j = (k-i)_j$ for all j < t(p). As $k_{t(p)} \geq t_{t(p)} \geq i_{t(p)}$ then $(k-i)_{t(p)} \geq (t-i)_{t(p)}$; thus, by Corollary 2.8, $p \nmid \binom{k-i}{t-i}$ for all $i \in \{0, 1, \ldots, t\}$. Now from Theorem 2.2, $rank_p W_{tk} = \sum_{i=0}^t \binom{v}{i} - \binom{v}{i-1} = \binom{v}{t}$. Then $Ker_p(^tW_{t\,k}) = \{0\}$.

Now we prove the converse implication. From Theorem 2.1, $Ker_p({}^tW_{t\,k}) = \{0\}$ implies $p \nmid \binom{k-i}{t-i}$ for all $i \in \{0, 1, \ldots, t\}$, in particular $p \nmid \binom{k}{t}$. Then by Corollary 2.8, $k_j \ge t_j$ for all $j \le t(p)$. We will prove that $k_j = t_j$ for all $j \le t(p) - 1$. By contradiction, let s be the least integer in $\{0, 1, \ldots, t(p) - 1\}$, such that $k_s > t_s$. We have $(t - (t_s + 1)p^s)_s = p - 1$, $(k - (t_s + 1)p^s)_s = k_s - t_s - 1$ and $p - 1 > k_s - t_s - 1$. From Corollary 2.8, $p \mid \binom{k-(t_s+1)p^s}{t-(t_s+1)p^s}$, which is impossible.

2) Set n := t(p). We begin by the direct implication. Since $0 = k_n < t_n$ then, by Corollary 2.8, $p | \binom{k}{t}$. We will prove $p \nmid \binom{k-i}{t-i}$ for all $i = [i_0, i_1, \ldots, i_n] \in \{1, 2, \ldots, t\}$.

Since $k_j = t_j = 0$ for all j < n, then $(t - i)_j = (k - i)_j$ for all j < n. From $t_n \ge i_n$, we have $(t-i)_n \in \{t_n - i_n, t_n - i_n - 1\}$. Note that $(k-i)_n \in \{p - i_n - 1, p - i_n\}$ and $p - i_n - 1 \ge t_n - i_n$; thus $(k-i)_n \ge (t-i)_n$.

Therefore, for all $j \leq n$, $(k-i)_j \geq (t-i)_j$. Then, by Corollary 2.8, $p \nmid \binom{k-i}{t-i}$ for all $i \in \{1, 2, \dots, t\}$. Now from Theorem 2.2, $rank_p \ W_{tk} = \sum_{i=1}^t \binom{v}{i} - \binom{v}{i-1} = \binom{v}{t} - 1$, and thus $\dim Ker_p(^tW_{tk}) = 1$. Now $(1, 1, \dots, 1)W_{tk} = (\binom{k}{t}, \binom{k}{t}, \dots, \binom{k}{t})$. Since $p \mid \binom{k}{t}$, then $(1, 1, \dots, 1)W_{tk} \equiv 0 \pmod{p}$. Then $\{(1, 1, \dots, 1)\}$ is a basis of $Ker_p(^tW_{tk})$.

Now we prove the converse implication. Since $\{(1, 1, \dots, 1)\}$ is a basis of $Ker_p({}^tW_{t\,k})$ and $(1, 1, \dots, 1)W_{t\,k}$ = $\binom{k}{t}, \binom{k}{t}, \dots, \binom{k}{t}$, then $p \mid \binom{k}{t}$. Since $dim \ Ker_p({}^tW_{t\,k}) = 1$, then from Theorem 2.2, $p \nmid \binom{k-i}{t-i}$ for all $i \in \{1, 2, \dots, t\}$.

First, let us prove that $t = t_n p^n$. Note that $t_n \neq 0$ since $t \neq 0$. Since $p | \binom{k}{t}$ then, from Corollary 2.8, there is an integer $j \in \{0, 1, ..., n\}$ such that $t_j > k_j$. Let $A := \{j < n : t_j \neq 0\}$. By contradiction, assume $A \neq \emptyset$.

Case 1. There is $j \in A$ such that $t_j > k_j$. We have $(t - p^n)_j = t_j$, $(k - p^n)_j = k_j$. Then from Corollary 2.8, we have $p \mid {\binom{k-p^n}{t-p^n}}$, which is impossible.

Case 2. For all $j \in A$, $t_j \leq k_j$. Then $t_n > k_n$. We have $(t - p^j)_n = t_n$, $(k - p^j)_n = k_n$. Then, from Corollary 2.8, we have $p \mid \binom{k-p^j}{t-p^j}$, which is impossible.

From the above 2 cases, we deduce $t = t_n p^n$.

Secondly, since $p|\binom{k}{t}$, then by Corollary 2.8, $t_n > k_n$. Let us show that $k_n = 0$. By contradiction, if $k_n \neq 0$ then $(t-p^n)_n = t_n - 1 > k_n - 1 = (k-p^n)_n$. From Corollary 2.8, $p \mid \binom{k-p^n}{t-p^n}$, which is impossible. Let $s \in \{0, 1, \ldots, n-1\}$; let us show that $k_s = 0$. By contradiction, if $k_s \neq 0$ then $(t-p^s)_s = p-1$, $(k-p^s)_s = k_s - 1$, thus $(t-p^s)_s > (k-p^s)_s$ and so, from Corollary 2.8, $p \mid \binom{k-p^s}{t-p^s}$, which is impossible. \Box

3. Proof of Theorem 1.3.

Let $T_1, T_2, \dots, T_{\binom{v}{t}}$ be an enumeration of the *t*-element subsets of *V*, let $K_1, K_2, \dots, K_{\binom{v}{k}}$ be an enumeration of the *k*-element subsets of *V*, and let W_{tk} be the matrix of the *t*-element subsets versus the *k*-element subsets.

Let w_U be the row matrix $(u_1, u_2, \cdots, u_{\binom{v}{i}})$ where $u_i = 1$ if $T_i \in U$, 0 otherwise. We have

$$w_U W_{t k} = (|\{T_i \in U : T_i \subseteq K_1\}|, \cdots, |\{T_i \in U : T_i \subseteq K_{\binom{v}{k}}\}|).$$

$$w_{U'}W_{t\,k} = (|\{T_i \in U' : T_i \subseteq K_1\}|, \cdots, |\{T_i \in U' : T_i \subseteq K_{\binom{v}{k}}\}|)$$

Since for all $j \in \{1, ..., {v \choose k}\}, e(U_{\restriction K_j}) \equiv e(U'_{\restriction K_j}) \pmod{p}$, then $(w_U - w_{U'})W_{tk} = 0 \pmod{p}$, and so $w_U - w_{U'} \in Ker_p({}^tW_{tk}).$

1) Assume $k_i = t_i$ for all i < t(p) and $k_{t(p)} \ge t_{t(p)}$. From 1) of Theorem 2.6, $w_U - w_{U'} = 0$, which gives U = U'.

2) Assume $t = t_{t(p)}p^{t(p)}$ and $k = \sum_{i=t(p)+1}^{k(p)} k_i p^i$. From 2) of Theorem 2.6, there is an integer $\lambda \in [0, p-1]$ such that $w_U - w_{U'} = \lambda(1, 1, \dots, 1)$. It is clear that $\lambda \in \{0, 1, -1\}$. If $\lambda = 0$ then U = U'. If $\lambda = 1$ and $p \ge 3$ then $U = \{T_1, T_2, \dots, T_{\binom{v}{t}}\}, U' = \emptyset$. If $\lambda = 1$ and p = 2 then $U = \{T_1, T_2, \dots, T_{\binom{v}{t}}\}, U' = \emptyset$, or $T \in U$ if

and only if $T \notin U'$. If $\lambda = -1$ and $p \ge 3$ then $U = \emptyset$, $U' = \{T_1, T_2, \cdots, T_{\binom{v}{t}}\}$. If $\lambda = -1$ and p = 2 then $U' = \{T_1, T_2, \cdots, T_{\binom{v}{t}}\}$, $U = \emptyset$, or $T \in U$ if and only if $T \notin U'$.

4. Illustrations to graphs

Our notations and terminology follow [2]. A digraph G = (V, E) or G = (V(G), E(G)) is formed by a finite set V of vertices and a set E of ordered pairs of distinct vertices, called *arcs* of G. The order (or cardinal) of G is the number of its vertices. If K is a subset of V, the restriction of G to K, also called the *induced* subdigraph of G on K, is the digraph $G_{\uparrow K} := (K, K^2 \cap E)$. If $K = V \setminus \{x\}$, we denote this digraph by G_{-x} . Let G = (V, E) and G' = (V', E') be 2 digraphs. A one-to-one correspondence f from V onto V' is an isomorphism from G onto G' provided that for $x, y \in V$, $(x, y) \in E$ if and only if $(f(x), f(y)) \in E'$. The digraphs G and G' are then said to be isomorphic, which is denoted by $G \simeq G'$ if there is an isomorphism from one of them onto the other. A subset I of V is an interval [16, 21, 34] (or an autonomous subset [23] or a clan [14], or an homogeneous subset [18] or a module [35]) of G provided that for all $a, b \in I$ and $x \in V \setminus I$, $(a, x) \in E(G)$ if and only if $(b, x) \in E(G)$, and the same for (x, a) and (x, b). For example \emptyset , $\{x\}$ where $x \in V$, and V are intervals of G, called trivial intervals. A digraph is then said to be indecomposable [34] (or primitive [14]) if all its intervals are trivial; otherwise it is said to be decomposable.

We say that G is a graph (resp. tournament) when for all distinct vertices x, y of V, $(x, y) \in E$ if and only if $(y, x) \in E$ (resp. $(x, y) \in E$ if and only if $(y, x) \notin E$); we say that $\{x, y\}$ is an edge of the graph G if $(x, y) \in E$, thus E is identified with a subset of $[V]^2$, the set of pairs $\{x, y\}$ of distinct elements of V.

Let G = (V, E) be a graph, the *complement* of G is the graph $\overline{G} := (V, [V]^2 \setminus E)$. We denote by e(G) := |E(G)| the number of edges of G. The *degree* of a vertex x of G, denoted $d_G(x)$, is the number of edges that contain x. A 3-element subset T of V such that all pairs belong to E(G) is a *triangle* of G. Let T(G) be the set of *triangles* of G and let t(G) := |T(G)|. A 3-element subset of V that is a triangle of G or of \overline{G} is a 3-homogeneous subset of G. We set $H^{(3)}(G) := T(G) \cup T(\overline{G})$, the set of 3-homogeneous subsets of G, and $h^{(3)}(G) := |H^{(3)}(G)|$.

Another proof of Theorem 1.4 using Theorem 1.3. Here p = 2, $t = 2 = [0,1]_p$, and $k = [0,0,k_2,...]_p$. From 2) of Theorem 1.3, U = U', or one of the sets U, U' is the set of all 2-element subsets of V and the other is empty, or for all 2-element subsets T of V, $T \in U$ if and only if $T \notin U'$. Thus G' = G or $G' = \overline{G}$. **Proof of Theorem 1.5.** We may suppose V finite. We set U := E(G), U' := E(G'). For all $K \subseteq V$ with |K| = k, we have: $\{\{x, y\} \subseteq K : \{x, y\} \in U\} = E(G_{\uparrow K})$ and $\{\{x, y\} \subseteq K : \{x, y\} \in U'\} = E(G'_{\uparrow K})$. Since $e(G_{\uparrow K}) \equiv e(G'_{\uparrow K}) \pmod{p}$, then $|\{\{x, y\} \subseteq K : \{x, y\} \in U\}| \equiv |\{\{x, y\} \subseteq K : \{x, y\} \in U'\}| \pmod{p}$.

1) $p \ge 3$, $t := 2 = [2]_p$ and $k_0 \ge 2$. From 1) of Theorem 1.3, U = U'; thus G = G'.

2) $p \ge 3$, $t := 2 = [2]_p$ and $k_0 = 0$. From 2) of Theorem 1.3, we have U = U' or one of U, U' is the set of all 2-element subsets of V and the other is empty. Then G = G' or one of the graphs G, G' is the complete graph and the other is the empty graph.

3) $p = 2, t = 2 = [0,1]_p$, and $k = [0,1,k_2,...]_p$. From 1) of Theorem 1.3, we have U = U'; thus G = G'.

The following result concerns graphs G and G' such that $h^{(3)}(G_{\uparrow K}) \equiv h^{(3)}(G'_{\uparrow K})$ modulo a prime p, for all k-element subsets K of V.

Theorem 4.1 Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $3 \le k \le v - 3$.

1) If $h^{(3)}(G_{\uparrow K}) = h^{(3)}(G'_{\uparrow K})$ for all k-element subsets K of V then G and G' have the same 3-element homogeneous subsets.

2) Assume $p \ge 5$. If $k \not\equiv 1, 2 \pmod{p}$ and $h^{(3)}(G_{\restriction K}) \equiv h^{(3)}(G'_{\restriction K}) \pmod{p}$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous subsets.

3) If $(p = 2 \text{ and } k \equiv 3 \pmod{4})$ or $(p = 3 \text{ and } 3 \mid k)$, and $h^{(3)}(G_{\uparrow K}) \equiv h^{(3)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous subsets.

Proof We may suppose V finite.

We have $H^{(3)}(G) = \{\{a, b, c\} : G_{\upharpoonright \{a, b, c\}} \text{ is a 3-element homogeneous subset}\}.$

We set $U := H^{(3)}(G)$ and $U' := H^{(3)}(G')$. For all $K \subseteq V$ with |K| = k, we have: $\{T \subseteq K : T \in U\} = H^{(3)}_{G_{\uparrow K}}$ and $\{T \subseteq K : T \in U'\} = H^{(3)}_{G'_{\uparrow K}}$. Set t := |T| = 3.

1) Since $h^{(3)}(G_{\uparrow K}) = h^{(3)}(G'_{\uparrow K})$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}|$. From Lemma 1.2 it follows that U = U'; then G and G' have the same 3-element homogeneous subsets.

2) Since $h^{(3)}(G_{\uparrow K}) \equiv h^{(3)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

Case 1. $k_0 \ge 3$. Then $p \ge 5$, $t := 3 = [3]_p$, and $t_0 = 3 \le k_0$. From 1) of Theorem 1.3 we have U = U'; thus G and G' have the same 3-element homogeneous subsets.

Case 2. $k_0 = 0$. Then $p \ge 5$, $t := 3 = [3]_p$. By Ramsey's theorem [33], every graph with at least 6 vertices contains a 3-element homogeneous subset. Then U and U' are nonempty and so from 2) of Theorem 1.3, U = U'; thus G and G' have the same 3-element homogeneous subsets.

3) Since $h^{(3)}(G_{\uparrow K}) \equiv h^{(3)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

Case 1. p = 2 and $k \equiv 3 \pmod{4}$. Let $t := 3 = [1, 1]_p$. In this case, $k = [1, 1, k_2, \dots]_p$; then from 1) of Theorem 1.3 we have U = U'; thus G and G' have the same 3-element homogeneous subsets.

Case 2. p = 3 and $3 \mid k$. Then $k = [0, k_1, \dots, k_{k(p)}]_p$. Let $t := 3 = [0, 1]_p$.

Case 2.1. $k_1 \in \{1, 2\}$; then from 1) of Theorem 1.3 we have U = U'; thus G and G' have the same 3-element homogeneous subsets.

Case 2.2. $k_1 = 0$. By Ramsey's theorem [33], every graph with at least 6 vertices contains a 3-element homogeneous subset. Then U and U' are nonempty, and so from 2) of Theorem 1.3, U = U'; thus G and G' have the same 3-element homogeneous subsets.

Let G = (V, E) be a graph. From [34], every indecomposable graph of size 4 is isomorphic to $P_4 = (\{0, 1, 2, 3\}, \{\{0, 1\}, \{1, 2\}, \{2, 3\}\})$. Let $\mathcal{P}^{(4)}(G)$ be the set of subsets X of V such that the induced subgraph $G_{\uparrow X}$ is isomorphic to P_4 . We set $p^{(4)}(G) := |\mathcal{P}^{(4)}(G)|$. The following result concerns graphs G and G' such that $p^{(4)}(G_{\uparrow K}) \equiv p^{(4)}(G_{\uparrow K})$ modulo a prime p, for all k-element subsets K of V.

Theorem 4.2 Let G and G' be 2 graphs on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \le k \le v - 4$.

1) If $p^{(4)}(G_{\restriction K}) = p^{(4)}(G'_{\restriction K})$ for all k-element subsets K of V then G and G' have the same indecomposable sets of size 4.

2) Assume $p^{(4)}(G_{\uparrow K}) \equiv p^{(4)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V.

a) If $p \ge 5$ and $k \ne 1, 2, 3 \pmod{p}$, then G and G' have the same indecomposable sets of size 4.

b) If $(p = 2, 4 | k \text{ and } 8 \nmid k)$ or $(p = 3, 3 | k - 1 \text{ and } 9 \nmid k - 1)$, then G and G' have the same indecomposable sets of size 4.

c) If p = 2 and $8 \mid k$, then G and G' have the same indecomposable sets of size 4, or for all 4-element subsets T of V, $G_{\mid T}$ is indecomposable if and only if $G'_{\mid T}$ is decomposable.

Proof Let $U := \{T \subseteq V : |T| = 4, \ G_{\upharpoonright T} \simeq P_4\} = \mathcal{P}^{(4)}(G), \ U' := \{T \subseteq V : |T| = 4, \ G'_{\upharpoonright T} \simeq P_4\} = \mathcal{P}^{(4)}(G').$ For all $K \subseteq V$, we have $\{T \subseteq K : T \in U\} = \mathcal{P}_4(G_{\upharpoonright K})$ and $\{T \subseteq K : T \in U'\} = \mathcal{P}_4(G'_{\upharpoonright K}).$ Set t := |T| = 4.

1) Since $p^{(4)}(G_{\uparrow K}) = p^{(4)}(G'_{\uparrow K})$ then $|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}|$. From Lemma 1.2, U = U'; then G and G' have the same indecomposable sets of size 4.

2) We have $p^{(4)}(G_{\uparrow K}) \equiv p^{(4)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V; then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

a) Case 1. $k_0 \ge 4$. Then $p \ge 5$, $t = 4 = [4]_p$, and $t_0 = 4 \le k_0$. From 1) of Theorem 1.3 we have U = U'; thus G and G' have the same indecomposable sets of size 4.

Case 2. $k_0 = 0$. Let $t := 4 = [4]_p$.

A graph H is *k*-monomorphic if $G_{\uparrow X} \simeq G_{\uparrow Y}$ for all *k*-element subsets X and Y of V. If a graph of order at least 6 is 4-monomorphic then it is 2-monomorphic and hence complete or empty. Since in every graph of order 6, there is a restriction of size 4 not isomorphic to P_4 then, from 2) of Theorem 1.3, U = U'; thus G and G' have the same indecomposable sets of size 4.

b) Case 1. $p = 2, 4 \mid k, \text{ and } 8 \nmid k$. Then $t := 4 = [0, 0, 1]_p$ and $k = [0, 0, 1, k_3, \dots, k_{k(p)}]_p$. From 1) of Theorem 1.3, we have U = U'; thus G and G' have the same indecomposable sets of size 4.

Case 2. p = 3, 3 | k - 1, and $9 \nmid k - 1$. Then $t := 4 = [1, 1]_p, k = [1, k_1, ..., k_{k(p)}]_p$, and $t_1 = 1 \le k_1$. From 1) of Theorem 1.3, U = U', thus G and G' have the same indecomposable sets of size 4.

c) We have p = 2, $t := 4 = [0, 0, 1]_p$, and $k = [0, 0, 0, k_3, \dots, k_{k(p)}]_p$. Since in every graph of order 6, there is a restriction of size 4 not isomorphic to P_4 , then from 2) of Theorem 1.3, U = U', or for all 4-element subsets T of V, $T \in U$ if and only if $T \notin U'$. Thus G and G' have the same indecomposable sets of size 4, or for all 4-element subsets T of V, $G_{|T|}$ is indecomposable if and only if $G'_{|T|}$ is decomposable. \Box

In a reconstruction problem of graphs up to complementation [13], Wilson's theorem yielded the following result:

Theorem 4.3 ([13]) Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $5 \le k \le v - 2$, $k \equiv 1 \pmod{4}$. Then the following properties are equivalent:

(i) $e(G_{\uparrow K})$ has the same parity as $e(G'_{\uparrow K})$ for all k-element subsets K of V; and $G_{\uparrow K}$, $G'_{\uparrow K}$ have the same 3-homogeneous subsets;

(ii) G' = G or $G' = \overline{G}$.

Here, we just want to point out that we can obtain a similar result for $k \equiv 3 \pmod{4}$, namely Theorem 4.4, using the same proof as that of Theorem 4.3.

The boolean sum G + G' of 2 graphs G = (V, E) and G' = (V, E') is the graph U on V whose edges are pairs e of vertices such that $e \in E$ if and only if $e \notin E'$.

Theorem 4.4 Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $3 \le k \le v-2$, $k \equiv 3 \pmod{4}$. Then the following properties are equivalent:

(i) $e(G_{\uparrow K})$ has the same parity as $e(G'_{\uparrow K})$ for all k-element subsets K of V; and $G_{\uparrow K}$, $G'_{\uparrow K}$ have the same 3-homogeneous subsets;

(ii) G' = G.

Proof It is exactly the same as that of Theorem 4.3 (see ([13]). The implication $(ii) \Rightarrow (i)$ is trivial. We prove $(i) \Rightarrow (ii)$. We may suppose V finite. We set $U := G \dotplus G'$; let $T_1, T_2, \cdots, T_{\binom{v}{2}}$ be an enumeration of the 2-element subsets of V, and let $K_1, K_2, \cdots, K_{\binom{v}{k}}$ be an enumeration of the k-element subsets of V. Let w_U be the row matrix $(u_1, u_2, \cdots, u_{\binom{v}{2}})$ where $u_i = 1$ if T_i is an edge of U, 0 otherwise. We have $w_U W_{2k} = (e(U_{\restriction K_1}), e(U_{\restriction K_2}), \cdots, e(U_{\restriction K_{\binom{v}{k}}}))$. From the fact that $e(G_{\restriction K})$ has the same parity as $e(G'_{\restriction K})$ and $e(U_{\restriction K}) = e(G_{\restriction K}) + e(G'_{\restriction K}) - 2e(G_{\restriction K} \cap G'_{\restriction K})$ for all k-element subsets K, w_U belongs to $Ker_2(^tW_{tk})$. According to Theorem 2.2, $rank_2 W_{2k} = \binom{v}{2} - v + 1$. Hence dim $Ker_2(^tW_{2k}) = v - 1$.

We give a similar claim as Claim 2.8 of [13]; the proof is identical.

Claim 4.5 Let k be an integer such that $3 \le k \le v-2$, $k \equiv 3 \pmod{4}$; then $Ker_2({}^tW_{2k})$ consists of complete bipartite graphs (including the empty graph).

Proof Let us recall that a *star-graph* of v vertices consists of a vertex linked to all other vertices, those v-1 vertices forming an independent set. First we prove that each star-graph S belongs to $\mathbb{K} := Ker_2({}^tW_{2\,k})$. Let w_S be the row matrix $(s_1, s_2, \cdots, s_{\binom{v}{2}})$ where $s_i = 1$ if T_i is an edge of S, 0 otherwise. We have $w_SW_{2\,k} = (e(S_{\restriction K_1}), e(S_{\restriction K_2}), \cdots, e(S_{\restriction K_{\binom{v}{k}}}))$. For all $i \in \{1, \ldots, \binom{v}{k}\}$, $e(S_{\restriction K_i}) = k-1$ if the center of the star-graph belongs to K_i , 0 otherwise. Since k is odd, each star-graph S belongs to \mathbb{K} . The vector space (over

the 2-element field) generated by the star-graphs on V consists of all complete bipartite graphs; since $v \ge 3$, these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is v - 1 (a basis being made of star-graphs). Since dim $Ker_2({}^tW_{2\,k}) = v - 1$, then K consists of complete bipartite graphs as claimed.

A *claw* is a star-graph on 4 vertices, that is a graph made of a vertex joined to 3 other vertices, with no edges between these 3 vertices. A graph is *claw-free* if no induced subgraph is a claw.

Claim 4.6 ([13]) Let G and G' be 2 graphs on the same set and having the same 3-homogeneous subsets; then the boolean sum U := G + G' is claw-free.

From Claim 4.5, U is a complete bipartite graph and, from Claim 4.6, U is claw-free. Since $v \ge 5$, it follows that U is the empty graph. Hence G' = G as claimed.

5. Illustrations to tournaments

Let T = (V, E) be a tournament. For 2 distinct vertices x and y of T, $x \longrightarrow_T y$ (or simply $x \longrightarrow y$) means that $(x, y) \in E$. For $A \subseteq V$ and $y \in V$, $A \longrightarrow y$ means $x \longrightarrow y$ for all $x \in A$. The *degree* of a vertex x of T is $d_T(x) := |\{y \in V : x \longrightarrow y\}|$. We denote by T^* the dual of T that is $T^* = (V, E^*)$ with $(x, y) \in E^*$ if and only if $(y, x) \in E$. A transitive tournament or a total order or k-chain (denoted O_k) is a tournament of cardinality k, such that for $x, y, z \in V$, if $x \longrightarrow y$ and $y \longrightarrow z$, then $x \longrightarrow z$. If x and y are 2 distinct vertices of a total order, the notation x < y means that $x \longrightarrow y$. The tournament $C_3 := \{\{0, 1, 2\}, \{(0, 1), (1, 2), (2, 0)\}\}$ (resp. $C_4 := (\{0, 1, 2, 3\}, \{(0, 3), (0, 1), (3, 1), (1, 2), (2, 0), (2, 3)\}))$ is a 3-cycle (resp. 4-cycle) (see Figure 1). A diamond is a tournament on 4 vertices admitting only 1 interval of cardinality 3, which is a 3-cycle. Up to isomorphism, there are exactly 2 diamonds δ^+ and $\delta^- = (\delta^+)^*$, where δ^+ is the tournament defined on $\{0, 1, 2, 3\}$ by $\delta^+_{|\{0, 1, 2\}} = C_3$ and $\{0, 1, 2\} \rightarrow 3$. A tournament isomorphic to δ^+ (resp. isomorphic to δ^-) is said to be a positive diamond (resp. negative diamond) (see Figure 1). The boolean sum U := T + T' of 2 tournaments, T = (V, E) and T' = (V, E'), is the graph U on V whose edges are pairs $\{x, y\}$ of vertices such that $(x, y) \in E$ if and only if $(x, y) \notin E'$.

Theorem 5.1 Let T = (V, E) and T' = (V, E') be 2 tournaments on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $2 \le k \le v - 2$. Let G := T + T'. We assume that for all k-element subsets K of V, $e(G_{\uparrow K}) \equiv 0 \pmod{p}$. Then

- 1) T' = T if $(p \ge 3, k \ne 0, 1 \pmod{p})$ or $(p = 2, k \equiv 2 \pmod{4})$.
- 2) T' = T or $T' = T^*$ if $(p \ge 3, k \equiv 0 \pmod{p})$ or $(p = 2, k \equiv 0 \pmod{4})$.

Proof We may suppose V finite. The proof reduces to say when G is the empty graph or when G is either empty or full. We set G' := The empty graph. Then $e(G_{\uparrow K}) \equiv e(G'_{\uparrow K}) \pmod{p}$.

- 1) Use respectively 1) of Theorem 1.5 and 3) of Theorem 1.5.
- 2) Use respectively 2) of Theorem 1.5 and Theorem 1.4.

Let T be a tournament; we set $C^{(3)}(T) := \{\{a, b, c\} : T_{\uparrow \{a, b, c\}} \text{ is a 3-cycle}\}$, and $c^{(3)}(T) := |C^{(3)}(T)|$. Let T = (V, E) and T' = (V, E') be 2 tournaments and let k be a nonnegative integer; T and T' are k-hypomorphic [8, 27] (resp. k-hypomorphic up to duality) if for every k-element subset K of V, the induced subtournaments $T'_{\uparrow K}$ and $T_{\uparrow K}$ are isomorphic (resp. $T'_{\uparrow K}$ is isomorphic to $T_{\uparrow K}$ or to $T^*_{\uparrow K}$). We say that T and T' are $(\leq k)$ -hypomorphic if T and T' are h-hypomorphic up to duality for every $h \leq k$. Similarly, we say that T and T' are $(\leq k)$ -hypomorphic up to duality if T and T' are h-hypomorphic up to duality for every $h \leq k$. Clearly, 2 (≤ 3) -hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3) -hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3) -hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3) -hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3) -hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3) -hypomorphic tournaments have the same diamonds.

Figure 1. Cycle C_3 , Cycle C_4 , Positive Diamond, Negative Diamond.

Theorem 5.2 Let T and T' be 2 tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $3 \le k \le v - 3$.

1) If $c^{(3)}(T_{\uparrow K}) = c^{(3)}(T'_{\uparrow K})$ for all k-element subsets K of V then T and T' are (≤ 3) -hypomorphic.

2) Assume $p \ge 5$. If $k \not\equiv 1,2 \pmod{p}$, and $c^{(3)}(T_{\restriction K}) \equiv c^{(3)}(T'_{\restriction K}) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3) -hypomorphic.

3) If $(p = 2 \text{ and } k \equiv 3 \pmod{4})$ or $(p = 3 \text{ and } 3 \mid k)$, and $c^{(3)}(G_{\uparrow K}) \equiv c^{(3)}(G'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3) -hypomorphic.

Proof Since every tournament of cardinality ≥ 4 has at least a restriction of cardinality 3 that is not a 3-cycle, then the proof is similar to that of Theorem 4.1.

Let T be a tournament; we set $D_4^+(T) := \{\{a, b, c, d\} : T_{\upharpoonright \{a, b, c, d\}} \simeq \delta^+\}, \ D_4^-(T) := \{\{a, b, c, d\} : T_{\upharpoonright \{a, b, c, d\}} \simeq \delta^-\}, \ d_4^+(T) := |D_4^+(T)|, \text{ and } d_4^-(T) := |D_4^-(T)|.$

It is well known that every subtournament of order 4 of a tournament is a diamond, a 4-chain, or a 4-cycle subtournament. We have $c^{(3)}(O_4) = 0$, $c^{(3)}(\delta^+) = c^{(3)}(\delta^-) = 1$, $c^{(3)}(C_4) = 2$, and $C_4 \simeq C_4^*$. The (≤ 4) -hypomorphy has been studied by G. Lopez and C. Rauzy [27, 28].

Theorem 5.3 Let T and T' be 2 (≤ 3)-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v - 4$.

- 1) If $d_4^+(T_{\uparrow K}) = d_4^+(T'_{\uparrow K})$ for all k-element subsets K of V then T' and T are (≤ 4) -hypomorphic.
- 2) Assume $d_4^+(T_{\uparrow K}) \equiv d_4^+(T'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V.
- a) If $p \ge 5$ and $k \not\equiv 1, 2, 3 \pmod{p}$, then T' and T are (≤ 4) -hypomorphic.
- b) If $(p = 3, 3 \mid k-1 \text{ and } 9 \nmid k-1)$ or $(p = 2, 4 \mid k \text{ and } 8 \nmid k)$, then T' and T are (≤ 4) -hypomorphic.
- c) If p = 2 and $8 \mid k$, then T' and T are (≤ 4) -hypomorphic.

 $\mathbf{Proof} \quad \text{Let } U^+ := \{S \subseteq V, \ T_{\restriction S} \simeq \delta^+\} = D_4^+(T) \,, \ U'^+ := D_4^+(T') \,, \ U^- := D_4^-(T) \,, \text{ and } \ U'^- := D_4^-(T') \,.$

Claim 5.4 If T and T' are (≤ 3) -hypomorphic and $U^+ = U'^+$, then $U^- = U'^-$; T and T' are (≤ 4) -hypomorphic.

Proof Let $S \in U^-$, $T_{\uparrow S} \simeq \delta^-$. Since T and T' are (≤ 3) -hypomorphic, then $T'_{\uparrow S} \simeq \delta^+$ or $T'_{\uparrow S} \simeq \delta^-$. We have $\{S \subseteq V, T'_{\uparrow S} \simeq \delta^+\} = \{S \subseteq V, T_{\uparrow S} \simeq \delta^+\}$; then $T'_{\uparrow S} \simeq \delta^-$, $S \in U'^-$ and $U^- = U'^-$. Therefore, for $X \subset V$, if $T_{\uparrow X}$ is a diamond then $T'_{\uparrow X} \simeq T_{\uparrow X}$.

Now we prove that T and T' are 4-hypomorphic. Let $X \subset V$ such that |X| = 4. If $T_{\uparrow X} \simeq C_4$, then $c^{(3)}(T_{\uparrow X}) = 2$. Since T and T' are (≤ 3) -hypomorphic then $c^{(3)}(T'_{\uparrow X}) = 2$; thus $T'_{\uparrow X} \simeq T_{\uparrow X} \simeq C_4$. The same, if $T_{\uparrow X} \simeq O_4$ then $T'_{\uparrow X} \simeq T_{\uparrow X} \simeq O_4$. Therefore, T' and T are (≤ 4) -hypomorphic.

From Claim 5.4, it is sufficient to prove that $U^+ = U'^+$.

For all $K \subseteq V$ with |K| = k, we have $\{S \subseteq K : S \in U^+\} = D_4^+(T_{\uparrow K})$ and $\{S \subseteq K : S \in U'^+\} = D_4^+(T'_{\uparrow K})$.

1) Since $d_4^+(T_{\uparrow K}) = d_4^+(T'_{\uparrow K})$ then $|\{S \subseteq K : S \in U^+\}| = |\{S \subseteq K : S \in U'^+\}|$. From Lemma 1.2, we have $U^+ = U'^+$.

2) We have $d_4^+(T_{\uparrow K}) \equiv d_4^+(T'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V; then $|\{S \subseteq K : S \in U^+\}| \equiv |\{S \subseteq K : S \in U'^+\}| \pmod{p}$.

a) Case 1. $k_0 \ge 4$. Then $p \ge 5$, $t := 4 = [4]_p$, $k = [k_0, \dots]_p$, and $t_0 = 4 \le k_0$. From 1) of Theorem 1.3 we have $U^+ = U'^+$.

Case 2. $k_0 = 0$. Then $p \ge 5$, $t := 4 = [4]_p$, and $k = [0, k_1, \dots]_p$. Since every tournament of cardinality ≥ 5 has at least a restriction of cardinality 4 that is not a diamond, then from 2) of Theorem 1.3, $U^+ = U'^+$.

b) Case 1. p = 3, 3 | k - 1 and $9 \nmid k - 1$. Then $t := 4 = [1, 1]_p, k = [1, k_1, \dots, k_{k(p)}]_p$ and $t_1 = 1 \le k_1$. From 1) of Theorem 1.3 we have $U^+ = U'^+$.

Case 2. $p = 2, 4 \mid k \text{ and } 8 \nmid k$. Then $t := 4 = [0, 0, 1]_p$ and $k = [0, 0, 1, k_3, \dots, k_{k(p)}]_p$.

From 1) of Theorem 1.3 we have $U^+ = U'^+$.

c) We have p = 2, $t := 4 = [0, 0, 1]_p$, $k = [0, 0, 0, k_3, \dots, k_{k(p)}]_p$. Since every tournament of cardinality ≥ 5 has at least a restriction of cardinality 4 that is not a diamond, and the fact that T and T' are 3-hypomorphic, then from 2) of Theorem 1.3, $U^+ = U'^+$; thus T' and T are (≤ 5) -hypomorphic, or for all 4-element subsets S of V, $T_{\uparrow S}$ is isomorphic to δ^+ if and only if $T'_{\uparrow S}$ is isomorphic to δ^- . \Box

In fact, in Theorem 5.3, the conclusion is that T' and T are (≤ 5) -hypomorphic; this follows from Lemma 5.5 below.

Lemma 5.5 ([5]) Let T and T' be 2 (≤ 4)-hypomorphic tournaments on at least 5 vertices. Then, T and T' are (≤ 5)-hypomorphic.

Comment. Let T and T' be 2 (\leq 3)-hypomorphic tournaments on the same set V of v vertices. Let U (respectively U') be the set of positive diamonds of T (respectively of T'). Then 2) of Theorem 1.3 with $U \neq U'$ cannot occur. Indeed, from 2) of Theorem 1.3, it follows that if $U \neq U'$ then for every 4-element subset X of V, $T_{\uparrow X}$ is a positive diamond if and only if $T'_{\uparrow X}$ is not a positive diamond. This implies that for every 4-element subset Y of V such that $T'_{\uparrow Y}$ is not a diamond, $T_{\uparrow Y}$ is a positive diamond. Since there are such Y (a 5-element tournament has 0 or 2 diamonds, see H. Bouchaala [4]), this contradicts the 3-hypomorphy.

Let *m* be an integer, $m \ge 1$, $S = (\{0, 1, ..., m-1\}, A)$ be a digraph and for i < m a digraph $G_i = (V_i, A_i)$ such that the V_i 's are nonempty and pairwise disjoint. The *lexicographic sum over* S of the G_i 's or simply the S-sum of the G_i 's is the digraph denoted by $S(G_0, G_1, ..., G_{m-1})$ and defined on the union of the V_i 's as follows: given $x \in V_i$ and $y \in V_j$, where $i, j \in \{0, 1, ..., m-1\}, (x, y)$ is an arc of $S(G_0, G_1, ..., G_{m-1})$ if either i = j and $(x, y) \in A_i$ or $i \neq j$ and $(i, j) \in A$: this digraph replaces each vertex i of S by G_i . We say that the vertex i of S is dilated by G_i .

We define, for each integer $h \ge 0$, the tournament T_{2h+1} (see Figure 2) on $\{0, \ldots, 2h\}$ as follows. For $i, j \in \{0, \ldots, 2h\}$, $i \longrightarrow j$ if there exists $k \in \{1, \ldots, h\}$ such that j = i + k modulo 2h + 1. A tournament T is said to be an element of $D(T_{2h+1})$ if T is obtained by dilating each vertex of T_{2h+1} by a finite chain p_i , and then $T = T_{2h+1}(p_0, p_1, \ldots, p_{2h})$. We recall that T_{2h+1} is indecomposable and $D(T_{2h+1})$ is the class of finite tournaments without a diamond [27]; this class was obtained previously by Moon [30].

We define the tournament $\beta_6^+ := T_3(p_0, p_1, p_2)$ with $p_0 = (0 < 1 < 2)$, $p_1 = (3 < 4)$, and $|p_2| = 1$ (see Figure 3). We set $\beta_6^- := (\beta_6^+)^*$.

Figure 2. Circular tournament T_{2h+1} .

Figure 3. β_6^+ .

For a tournament T = (V, E), we set $B_6^+(T) := \{S \subseteq V : T_{\uparrow S} \simeq \beta_6^+\}, \ B_6^-(T) := \{S \subseteq V : T_{\uparrow S} \simeq \beta_6^-\}, \ b_6^+(T) := |B_6^+(T)|, \text{ and } b_6^-(T) := |B_6^-(T)|.$

Two tournaments T and T' on the same vertex set V are *hereditarily isomorphic* if for all $X \subseteq V$, $T_{\uparrow X}$ and $T'_{\uparrow X}$ are isomorphic [3].

Let G = (V, E) and G' = (V, E') be 2 (≤ 2)-hypomorphic digraphs. Denote $D_{G,G'}$ the binary relation on V such that: for $x \in V$, $xD_{G,G'}x$; and for $x \neq y \in V$, $xD_{G,G'}y$ if there exists a sequence $x_0 = x, ..., x_n = y$ of elements of V satisfying $(x_i, x_{i+1}) \in E$ if and only if $(x_i, x_{i+1}) \notin E'$, for all $i, 0 \leq i \leq n-1$. The relation $D_{G,G'}$ is an equivalence relation called *the difference relation*; its classes are called *difference classes*.

Using difference classes, G. Lopez [25, 26] showed that if T and T' are (≤ 6) -hypomorphic then T and T' are isomorphic. One may deduce the next corollary.

Corollary 5.6 ([25, 26]) Let T and T' be 2 tournaments. We have the following properties:

1) If T and T' are (≤ 6) -hypomorphic then T and T' are hereditarily isomorphic.

2) If for each equivalence class C of $D_{T,T'}$, C is an interval of T and T', and $T'_{\uparrow C}$, $T_{\uparrow C}$ are (≤ 6) -hypomorphic, then T and T' are hereditarily isomorphic.

Lemma 5.7 [27] Given 2 (≤ 4)-hypomorphic tournaments T and T', and C an equivalence class of $D_{T,T'}$, then:

1) C is an interval of T' and T.

2) Every 3-cycle in $T_{\uparrow C}$ is reversed in $T'_{\uparrow C}$.

3) There exists an integer $h \ge 0$ such that $T_{\uparrow C} = T_{2h+1}(p_0, p_1, \ldots, p_{2h})$ and $T'_{\uparrow C} = T^*_{2h+1}(p'_0, p'_1, \ldots, p'_{2h})$ with p_i , p'_i as chains on the same basis, for all $i \in \{0, 1, \ldots, 2h\}$.

Theorem 5.8 Let T and T' be $2 (\leq 4)$ -hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$ be an integer, $6 \leq k \leq v - 6$.

1) If $b_6^+(T_{\restriction K}) = b_6^+(T'_{\restriction K})$ for all k-element subsets K of V then T' and T are (≤ 6) -hypomorphic and thus hereditarily isomorphic.

2) Assume $b_6^+(T_{\uparrow K}) \equiv b_6^+(T'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V.

a) If $p \ge 7$, and $k_0 \ge 6$ or $k_0 = 0$, then T' and T are (≤ 6) -hypomorphic and thus hereditarily isomorphic.

b) If $(p = 5, k_0 = 1, and k_1 \neq 0)$ or $(p = 3, k_0 = 0, and k_1 = 2)$ or $(p = 3, and k_0 = k_1 = 0)$ or $(p = 2, k_0 = 0, and k_1 = k_2 = 1)$, then T' and T are (≤ 6) -hypomorphic and thus hereditarily isomorphic.

Proof From Lemma 5.5, *T* and *T'* are (\leq 5)-hypomorphic. Let $U^+ := \{S \subseteq V, T_{\uparrow S} \simeq \beta_6^+\} = B_6^+(T), U'^+ := B_6^+(T'), U^- := \{S \subseteq V, T_{\uparrow S} \simeq \beta_6^-\} = B_6^-(T), U'^- := B_6^-(T').$

Every tournament of cardinality ≥ 7 has at least a restriction of cardinality 6 that is neither isomorphic to β_6^+ nor to β_6^- . Then, for all cases, similarly to the proof of Theorem 5.3, we have $U^+ = U'^+$.

Let C be an equivalence class of $D_{T,T'}$, $S \in U^-$, $T_{\uparrow S} \simeq \beta_6^-$. Since T and T' are (≤ 3) -hypomorphic, then $T'_{\uparrow S} \simeq \beta_6^+$ or $T'_{\uparrow S} \simeq \beta_6^-$. We have $\{S \subseteq V, T'_{\uparrow S} \simeq \beta_6^+\} = \{S \subseteq V, T_{\uparrow S} \simeq \beta_6^+\}$; then $T'_{\uparrow S} \simeq \beta_6^-$, $S \in U'^-$, and $U^- = U'^-$. Let $X \subseteq C$ such that |X| = 6; if $T_X \simeq \beta_6^+$ then, from 2) of Lemma 5.7, $T'_X \simeq \beta_6^-$, which is impossible, and so T_C and T'_C do not have a restriction of cardinality 6 isomorphic to β_6^+ and β_6^- . From Lemma 5.9 below, $T_{\uparrow C}$ and $T'_{\uparrow C}$ are (≤ 6) -hypomorphic.

Lemma 5.9 ([3]) Let T and T' be 2 (\leq 5)-hypomorphic tournaments defined on a vertex set V such that for all $X \subseteq V$, if $T_{\uparrow X}$ is isomorphic to β_6^+ or to β_6^- , then $T'_{\uparrow X}$ is isomorphic to $T_{\uparrow X}$. Then T and T' are (\leq 6)-hypomorphic.

From 1) of Lemma 5.7, C is an interval of T' and T. Then, from 2) of Corollary 5.6, T and T' are hereditarily isomorphic.

From Theorem 5.2, Theorem 5.3, and Theorem 5.8, we deduce the following result.

Corollary 5.10 Let T and T' be 2 tournaments on the same set V of v vertices. Let p be a prime number and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$ be an integer, $6 \le k \le v - 6$.

1) If $c^{(3)}(T_{\uparrow K}) = c^{(3)}(T'_{\uparrow K})$, $d^+_4(T_{\uparrow K}) = d^+_4(T'_{\uparrow K})$, and $b^+_6(T_{\uparrow K}) = b^+_6(T'_{\uparrow K})$ for all k-element subsets K of V then T' and T are hereditarily isomorphic.

2) Assume $c^{(3)}(T_{\uparrow K}) \equiv c^{(3)}(T'_{\uparrow K}), d_4^+(T_{\uparrow K}) \equiv d_4^+(T'_{\uparrow K}), and b_6^+(T_{\uparrow K}) \equiv b_6^+(T'_{\uparrow K}) \pmod{p}$ for all k-element subsets K of V.

If $p \ge 7$, and $k_0 \ge 6$ or $k_0 = 0$, then T' and T are hereditarily isomorphic.

References

- Achour M, Boudabbous Y, Boussairi A. Les paires de tournois {-3}-hypomorphes [Pairs of {-3}-hypomorphic tournaments]. C R Math Acad Sci Paris 2012; 350: 433-437.
- [2] Bondy JA. Basic graph theory: paths and circuits, Handbook of combinatorics, Vol. 1, Ed. Graham RL, Grötschel M and Lovász L. North-Holland, 1995, pp. 3–110.
- [3] Bouaziz M, Boudabbous Y, El Amri N. Hereditary hemimorphy of $\{-k\}$ -hemimorphic tournaments for $k \ge 5$. J Korean Math Soc 2011; 48: 599–626.

BEN AMIRA et al./Turk J Math

- [4] Bouchaala H. Sur la répartition des diamants dans un tournoi [Distribution of diamonds in a tournament]. C R Math Acad Sci Paris 2004; 338: 109–112. (article in French with an abstract in English)
- [5] Boudabbous Y. Isomorphie héréditaire et {-4}-hypomorphie pour les tournois [Hereditary isomorphy and {-4}hypomorphy for tournaments]. C R Math Acad Sci Paris 2009; 347: 841–844. (article in French with an abstract in English)
- [6] Boudabbous Y, Dammak J. Sur la (-k)-demi-reconstructibilité des tournois finis [On the (-k)-half-reconstructibility of finite tournaments]. C R Acad Sci Paris Sér I Math 1998; 326: 1037–1040. (article in French with an abstract in English)
- [7] Boudabbous Y, Lopez G. Procédé de construction des relations binaires non (≤ 3)-reconstructibles [A construction process for non-(≤ 3)-reconstructible binary relations]. C R Acad Sci Paris Sér I Math 1999; 329: 845–848. (article in French with an abstract in English)
- [8] Boudabbous Y, Lopez G. The minimal non- $(\leq k)$ -reconstructible relations. Discrete Math 2005; 291: 19–40.
- [9] Boussaïri A, Ille P, Lopez G, Thomassé S. Hypomorphie et inversion locale entre graphes [Hypomorphy and local inversion between graphs]. C. R. Acad Sci Paris Sér I Math. 1993; 317: 125–128. (article in French with an abstract in English)
- [10] Chung FRK, Graham RL. Cohomological aspects of hypergraphs. Trans Amer Math Soc 1992; 334: 365–388.
- [11] Dammak J. La (-5)-demi-reconstructibilité des relations binaires connexes finies [The (-5)-half-reconstructibility of finite connected binary relations]. Proyecciones 2003; 22: 181–199. (article in French with an abstract in English)
- [12] Dammak J. Le seuil de reconstructibilité par le haut modulo la dualité des relations binaires finies [Threshold of top-down reconstruction of finite binary relations modulo duality]. Proyecciones 2003; 22: 209–236. (article in French with an abstract in English)
- [13] Dammak J, Lopez G, Pouzet M, Si Kaddour H. Hypomorphy of graphs up to complementation. JCTB, Series B 2009; 99: 84–96.
- [14] Ehrenfeucht A, Rozenberg G. Primitivity is hereditary for 2-structures. Theoret Comput Sc 1990; 70: 343–358.
- [15] Fine NJ. Binomial coefficients modulo a prime. American Mathematical Monthly 1947; 54: 589–592.
- [16] Fraïssé R. L'intervalle en théorie des relations; ses généralisations; filtre intervallaire et clôture d'une relation [The interval in relation theory; its generalizations; interval filter and closure of a relation]. In: Pouzet M, Richard D, editors. Orders: Description and Roles; 1982; L'Arbresle, France. Amsterdam: North-Holland, 1984, pp. 313–341. (article in French with an abstract in English)
- [17] Frankl P. Intersection theorems and mod p rank of inclusion matrices. J Combin Theory Ser A 1990; 54: 85–94.
- [18] Gallai T. Transitiv orientierbare graphen. Acta Math Acad Sci Hungar 1967; 18: 25-66.
- [19] Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001.
- [20] Gottlieb DH. A certain class of incidence matrices. Proc Amer Math Soc 1966; 17: 1233–1237.
- [21] Ille P. Indecomposable graphs. Discrete Math. 1997; 173: 71–78.
- [22] Kantor W. On incidence matrices of finite projection and affine spaces. Math Zeitschrift 1972; 124: 315–318.
- [23] Kelly D. Comparability graphs. In: Rival I, editor. Graphs and Orders; 1984; Banff, Alta. Drodrecht: Reidel, 1985, pp. 3–40.
- [24] Kelly PJ. A congruence theorem for trees. Pacific J Math 1957; 7: 961–968.
- [25] Lopez G. Deux résultats concernant la détermination d'une relation par les types d'isomorphie de ses restrictions. C R Acad Sci Paris, Sér A 1972; 274: 1525–1528. (in French)
- [26] Lopez G. Sur la détermination d'une relation par les types d'isomorphie de ses restrictions. C R Acad Sci Paris, Sér A 1972; 275: 951–953. (in French)

- [27] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n-1). I. Z Math Logik Grundlag Math 1992; 38: 27–37.
- [28] Lopez G, Rauzy C. Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n-1). II. Z Math Logik Grundlag Math 1992; 38: 157–168.
- [29] Lucas E. Sur les congruences des nombres eulériens et les coefficients différentiels des fonctions trigonométriques suivant un module premier. Bull. Soc. Math. France 1878; 6: 49–54. (in French)
- [30] Moon JW. Topics on tournaments. New York-Montreal: Holt, Rinehart and Winston, 1968.
- [31] Pouzet M. Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations. Math Zeitschrift 1976; 150: 117–134. (in French)
- [32] Pouzet M. Relations non reconstructibles par leurs restrictions. JCTB, Series B 1979; 26: 22–34. (in French)
- [33] Ramsey FP. On a problem of formal logic. Proc London Math Soc 1976; S2-30: 264–286.
- [34] Schmerl JH, Trotter WT. Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Math 1993; 113: 191–205.
- [35] Spinard P. P4-trees and substitution decomposition. Discrete Appl Math 1992; 39: 263–291.
- [36] Wilson RM. A diagonal form for the incidence matrices of t-subsets vs. k-subsets. Europ J Combinatorics 1990; 11: 609–615.