Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: 1071 - 1080
(c) TÜBITTAK
doi:10.3906/mat-1311-24

On 4-dimensional almost para-complex pure-Walker manifolds

Murat İŞCAN ${ }^{1, *}$, Hilmi SARSILMAZ ${ }^{1}$, Sibel TURANLI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Atatürk University, Erzurum, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey

Received: 12.11.2013 • Accepted: 16.07.2014 • Published Online: 24.10.2014 • Printed: 21.11.2014

Abstract

This paper is concerned with almost para-complex structures on Walker 4-manifolds. For these structures, we study some problems of Kähler manifolds. We also give an example of a flat almost para-complex manifold, which consists of a nonintegrable almost para-complex structure on Walker 4-manifolds.

Key words: Almost para-complex structure, pure metric, neutral metric, Walker metric, Kähler structure

1. Introduction

Let $M_{2 n}$ be a semi-Riemannian smooth manifold with the metric g, which is necessarily of neutral signature (n, n), and let $\Im_{s}^{r}\left(M_{2 n}\right)$ be the tensor field of $M_{2 n}$, i.e. the field of all tensors of type (r, s) in $M_{2 n}$.

An almost para-complex structure on $M_{2 n}$ is an affinor field φ on $M_{2 n}: \varphi^{2}=I$, and the 2 eigenbundles $T^{+} M_{2 n}$ and $T^{-} M_{2 n}$ corresponding to the two eigenvalues +1 and -1 have the same rank. The pair $\left(M_{2 n}, \varphi\right)$ is called an almost para-complex manifold.

Let $\left(M_{2 n}, \varphi\right)$ be an almost para-complex manifold with almost para-complex structure φ. If the Nijenhuis tensor of such a affinor field φ defined by

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+[X, Y]
$$

is equivalent to the vanish, for any vector fields X, Y on $M_{2 n}$, then the almost para-complex structure φ is integrable and it is said to be a para-complex structure.

1.1. Pure metrics

A pure metric with respect to the almost para-complex structure is a semi-Riemannian metric g such that

$$
\begin{equation*}
g(\varphi X, \varphi Y)=g(X, Y) \tag{1}
\end{equation*}
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{2 n}\right)$. For an almost para-complex manifold $\left(M_{2 n}, \varphi\right)$ with pure metric g, the triple $\left(M_{2 n}, \varphi, g\right)$ is called an almost para-complex manifold with pure metric g or almost para-complex pure metric manifold. If φ is integrable, then we say that $\left(M_{2 n}, \varphi, g\right)$ is a para-complex pure metric manifold. A similar geometry is generated if φ is an almost complex structure and acts as an antiisometry on the metric. Such metrics are known as B-metrics, Norden metrics, and anti-Hermitian metrics (see [1,2,4-10,16,17]).

[^0]
1.2. Holomorphic para-complex pure metric manifolds

Let the triple $\left(M_{2 n}, \varphi, g\right)$ be an almost para-complex manifolds with pure metric. A Tachibana operator applied to the pure metric g is given by [23]

$$
\begin{equation*}
\left(\Phi_{\varphi} g\right)(X, Y, Z)=g\left(\left(\nabla_{Y} \varphi\right) Z, X\right)+g\left(\left(\nabla_{Z} \varphi\right) X, Y\right)-g\left(\left(\nabla_{X} \varphi\right) Y, Z\right) \tag{2}
\end{equation*}
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{2 n}\right)$. It is clear that a Tachibana operator Φ_{φ} is an operator from $\Im_{2}^{0}\left(M_{2 n}\right)$ to $\Im_{3}^{0}\left(M_{2 n}\right)$.
For an almost para-complex pure metric manifold $\left(M_{2 n}, \varphi, g\right)$, if $\left(\Phi_{\varphi} g\right)(X, Y, Z)=0$ for any $X, Y, Z \in$ $\Im_{0}^{1}\left(M_{2 n}\right)$, then a pure metric g is called a holomorphic. If the triple $\left(M_{2 n}, \varphi, g\right)$ is an almost para-complex pure metric manifold with holomorphic pure metric g, we say that $\left(M_{2 n}, \varphi, g\right)$ is a holomorphic para-complex pure metric manifold.

Now we give a theorem that we shall use later, which was proven in [17].

Theorem 1 An almost para-complex pure metric manifold is a holomorphic para-complex pure metric manifold if and only if the almost para-complex structure is parallel with respect to the Levi-Civita connection ∇ of g, i.e. the condition $\Phi_{\varphi} g=0$ is equivalent to $\nabla \varphi=0$.

Let $\left(M_{2 n}, \varphi, g\right)$ be an almost para-complex pure metric manifold. If $\nabla \varphi=0$, where ∇ is the LeviCivita connection of pure metric g, then the triple $\left(M_{2 n}, \varphi, g\right)$ is called a Kähler para-complex pure metric manifold. Therefore, from Theorem 1, the condition of being a holomorphic para-complex pure metric manifold of a manifold coincides with the condition of being a Kähler para-complex pure metric manifold of a manifold. From this, we can say that a holomorphic para-complex pure metric manifold is a Kähler para-complex pure metric manifold. In this paper, we shall use the term 'Kähler para-complex pure metric manifold' instead of 'holomorphic para-complex pure metric manifold'.

2. A pure metric on a neutral 4-manifold

In the present paper, we shall focus our attention on 4-dimensional almost para-complex pure metric manifolds of neutral signature $(++--)$. For the next step, it is appropriate to state a neutral metric g and the almost para-complex structure φ in terms of an orthonormal frame $\left\{e_{i}\right\}(i=1, \ldots, 4)$ of vertors, and its dual frame $\left\{e^{j}\right\}(j=1, \ldots, 4)$ of 1 -forms. Actually, the metric g can be given by

$$
g=\left(g\left(e_{i}, e_{j}\right)\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3}\\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

The almost para-complex structure φ can be written as

$$
\varphi=\left(\varphi_{i}^{j}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{4}\\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Furthermore, a simple form of pure metric g, which is pure with respect to φ in (4), can be written as

$$
g=\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{5}\\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

3. Pure-Walker metrics

In this section, using (4) and (5), we study some properties of para-complex pure metric manifolds on a Walker 4-manifold.

3.1. Walker metrics

A triple $\left(M_{4}, g, D\right)$ is said to be a 4-dimensional Walker manifold such that D is a 2-dimensional null plane and parallel distribution with respect to a neutral metric g. For such metrics a canonical form was obtained by Walker [22], showing the existence of suitable coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ where the metric is expressed as

$$
g=\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{6}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & c \\
0 & 1 & c & b
\end{array}\right)
$$

where a, b, and c are some functions of the coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$. The metric (6) is the most generic form of Walker metrics on the 4 -dimensional Walker manifolds. Hereafter, we show by $\partial_{i}=\partial / \partial x^{i} \quad(i=1,2,3,4)$ the coordinate tangent vectors and we use subscript for partial derivatives, i.e. $h_{i}=\frac{\partial h}{\partial x^{i}}$, for any function h depending on $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$. Such Walker metrics have been intensively investigated, e.g., $[11,14,15,18,19]$.

In the present paper, we analyze a restricted form, as in $[1,11,14]$, rather than the generic metric (6). The restricted Walker metric is the metric (6) with $c=0$, i.e.

$$
g=\left(g_{i j}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{7}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & 0 \\
0 & 1 & 0 & b
\end{array}\right)
$$

3.2. Almost para-complex pure-Walker manifolds

Let $\left(M_{4}, g\right)$ be a Walker 4-manifold with the Walker metric g, which is given in (7). If $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and $\left\{\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}\right\}$ are 2 orthonormal frames, the matrix $A=\left(A_{j}^{i}\right)$ of change of coordinates satisfies

$$
\begin{equation*}
g=A^{T} g^{\prime} A \tag{8}
\end{equation*}
$$

where the matrix A^{T} is the transpose matrix of the matrix A. In particular, $\operatorname{det}(A)=\mp 1$.
Substituting (3) and (7) into (8), one of the matrices A, which we will apply in the present analysis, is

$$
A=\left(A_{j}^{i}\right)=\left(\begin{array}{cccc}
\frac{1}{2}(1-a) & 0 & -\frac{1}{2}(1+a) & 0 \tag{9}\\
0 & \frac{1}{2}(1-b) & 0 & -\frac{1}{2}(1+b) \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

IŞCAN et al./Turk J Math

Furthermore, for affinors, the matrix $A=\left(A_{j}^{i}\right)$ of change of coordinates satisfies

$$
\begin{equation*}
\varphi=A^{-1} \varphi^{\prime} A \tag{10}
\end{equation*}
$$

where the matrix A^{-1} is the inverse matrix of the matrix A.
The inverse of the matrix (9), A^{-1}, is given by

$$
A^{-1}=\left(\begin{array}{cccc}
1 & 0 & \frac{1}{2}(1+a) & 0 \tag{11}\\
0 & 1 & 0 & \frac{1}{2}(1+b) \\
-1 & 0 & \frac{1}{2}(1-a) & 0 \\
0 & -1 & 0 & \frac{1}{2}(1-b)
\end{array}\right)
$$

Substituting (5) and (9) into (8), the pure-Walker metric g^{\prime} is written as

$$
g^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{12}\\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & \frac{1}{2}(a-b) \\
1 & 0 & \frac{1}{2}(a-b) & 0
\end{array}\right)
$$

with respect to the natural frame $\left\{\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}\right\}$.
Similarly, substituting (4), (9), and (11) into (10), the almost para-complex structure φ^{\prime} is obtained as

$$
\varphi^{\prime}=\left(\begin{array}{cccc}
0 & -a & 0 & \frac{1}{2}(1-a b) \tag{13}\\
-b & 0 & \frac{1}{2}(1-a b) & 0 \\
0 & 2 & 0 & b \\
2 & 0 & a & 0
\end{array}\right)
$$

with respect to the natural frame $\left\{\partial_{1}, \partial_{2}, \partial_{3}, \partial_{4}\right\}$. Thus, the triple $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is an almost para-complex pure-Walker manifold.

3.3. Para-complex pure-Walker manifolds (φ^{\prime}-integrability)

The almost para-complex structure φ^{\prime} is integrable iff the torsion of φ^{\prime} (Nijenhuis tensor) vanishes, i.e. the components

$$
\begin{equation*}
\left(N_{\varphi^{\prime}}\right)_{j k}^{i}=\varphi_{j}^{\prime m} \partial_{m} \varphi_{k}^{\prime i}-\varphi_{k}^{\prime m} \partial_{m} \varphi_{j}^{\prime i}-\varphi_{m}^{\prime}{ }^{i} \partial_{j} \varphi_{k}^{\prime m}+\varphi_{m}^{\prime}{ }^{i} \partial_{k} \varphi_{j}^{\prime m} \tag{14}
\end{equation*}
$$

all vanish [12, p. 124].
From (13) and (14), we get the following integrability condition:
Theorem 2 An almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a para-complex pure-Walker manifold (φ^{\prime}-integrability) if and only if

$$
\begin{equation*}
a_{1}=b_{2}=0, \quad b a_{2}-2 a_{4}=0, \quad a b_{1}-2 b_{3}=0 \tag{15}
\end{equation*}
$$

From this theorem, we easily see that if $a=b$ or $a=-b$, then φ^{\prime} is integrable.

4. Kähler para-complex pure-Walker manifolds

In this part, we study some problems of Kähler manifolds on the almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$.

İŞCAN et al./Turk J Math

4.1. Kähler pure-Walker metrics

Let $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ be an almost para-complex pure-Walker manifold. If

$$
\begin{equation*}
\left(\Phi_{\phi^{\prime}} g^{\prime}\right)_{k i j}=\varphi_{k}^{\prime m} \partial_{m} g_{i j}^{\prime}-\varphi_{i}^{\prime m} \partial_{k} g_{m j}^{\prime}+g_{m j}^{\prime}\left(\partial_{i} \varphi_{k}^{\prime m}-\partial_{k} \varphi_{i}^{\prime m}\right)+g_{i m}^{\prime} \partial_{j} \varphi_{k}^{\prime m}=0 \tag{16}
\end{equation*}
$$

then on account of Theorem $1, \varphi^{\prime}$ is integrable and the triple $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is called a Kähler para-complex pure-Walker manifold.

Since $\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{k i j}=\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{k j i}$, we need only consider $\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{k i j} \quad(i<j)$. Substituting (12) and (13) into (16), we find

$$
\begin{align*}
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{113}=-a_{1}+b_{1},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{123}=b_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{124}=b_{1},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{133}=-a a_{1}+2 b_{3}, \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{134}=-\frac{1}{2} b\left(a_{2}-b_{2}\right)-a_{4},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{144}=b b_{1},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{213}=-a_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{214}=-a_{1}, \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{224}=-a_{2}+b_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{233}=-a a_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{234}=-\frac{1}{2} a\left(a_{1}+b_{1}\right)-b_{3} \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{244}=-2 a_{4}+b b_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{311}=2 a_{1},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{312}=a_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{313}=\frac{1}{2} a\left(a_{1}+b_{1}\right) \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{314}=a_{4},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{323}=\frac{1}{2} a\left(a_{2}+b_{2}\right),\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{324}=b_{3},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{333}=a b_{3}, \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{334}=\frac{1}{4}(1-a b)\left(a_{2}-b_{2}\right)+a a_{4},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{344}=b b_{3},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{412}=-b_{1}, \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{413}=-a_{4},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{414}=-\frac{1}{2} b\left(a_{1}+b_{1}\right),\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{422}=-2 b_{2},\left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{423}=-b_{3}, \\
& \left(\Phi_{\phi^{\prime}} g^{\prime}\right)_{424}=-\frac{1}{2} b\left(a_{2}+b_{2}\right),\left(\Phi_{\phi^{\prime}} g^{\prime}\right)_{433}=-a a_{4},\left(\Phi_{\phi^{\prime}} g^{\prime}\right)_{434}=\frac{1}{4}(1-a b)\left(a_{1}-b_{1}\right)-b b_{3}, \\
& \left(\Phi_{\varphi^{\prime}} g^{\prime}\right)_{444}=-b a_{4} . \tag{17}
\end{align*}
$$

From the above equations, we have:

Theorem 3 An almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a Kähler para-complex pure-Walker manifold, i.e. $\Phi_{\varphi^{\prime}} g^{\prime}=0$, if and only if a is only dependent on x^{3} and b is only dependent on x^{4}. In fact, it holds that a and b satisfy the following PDEs:

$$
\begin{equation*}
a_{1}=a_{2}=a_{4}=b_{1}=b_{2}=b_{3}=0 \tag{18}
\end{equation*}
$$

4.2. Quasi-Kähler para-complex pure-Walker metrics

The basic class of almost para-complex manifolds with pure metrics is the class of the quasi-Kähler manifolds with pure metrics, which is the basic class with nonintegrable almost para-complex structure [5,13]. A quasiKähler manifold is an almost para-complex pure metric manifold $\left(M_{2 n}, \varphi, g\right)$ such that

$$
\begin{equation*}
\underset{X, Y, Z}{\sigma_{X}} g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)=0 \tag{19}
\end{equation*}
$$

where σ is the cyclic sum over X, Y, Z.

İŞCAN et al./Turk J Math

From (2) and (19), we get

$$
\begin{equation*}
\underset{X, Y, Z}{\sigma} g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)=\left(\Phi_{\varphi} g\right)(X, Y, Z)+2 g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)=0 \tag{20}
\end{equation*}
$$

for all vector fields X, Y, and Z on $M_{2 n}$.
Let $\left(M_{2 n}, \varphi, g\right)$ be an almost para-complex pure metric manifold. The associated pure metric of the almost para-complex pure metric manifold is defined by $G(X, Y)=(g \circ \varphi)(X, Y)$ for any $X, Y, Z \in \Im_{0}^{1}\left(M_{2 n}\right)$. We can easily see that G is a new pure metric, which is also called the twin metric of g (see [3]). Then, on account of (20), an almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a quasi-Kähler para-complex pure-Walker manifold if

$$
\begin{equation*}
\Phi_{k} g_{i j}^{\prime}+2 \nabla_{k} G_{i j}=0 \tag{21}
\end{equation*}
$$

where G is defined by $G_{i j}=\varphi_{i}^{\prime h} g_{h j}^{\prime}$.
From (12) and (13), for the twin pure metric G, we obtain

$$
G=\left(G_{i j}\right)=\left(\begin{array}{cccc}
2 & 0 & a & 0 \tag{22}\\
0 & -2 & 0 & -b \\
a & 0 & \frac{1}{2}\left(a^{2}-1\right) & 0 \\
0 & -b & 0 & -\frac{1}{2}\left(b^{2}-1\right)
\end{array}\right)
$$

Therefore, we can say that the twin pure metric G is not Walker.
Now, using a straightforward calculation, the inverse of the pure-Walker metric g^{\prime} is given by

$$
\left(g^{\prime}\right)^{-1}=\left(\begin{array}{cccc}
0 & \frac{1}{2}(a-b) & 0 & 1 \tag{23}\\
\frac{1}{2}(a-b) & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Furthermore, the Levi-Civita connection of a pure-Walker metric (12) is given by

$$
\begin{align*}
\nabla_{\partial_{1}} \partial_{3}= & \frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{1}, \nabla_{\partial_{1}} \partial_{4}=-\frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{2}, \nabla_{\partial_{2}} \partial_{3}=\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{1} \\
\nabla_{\partial_{2}} \partial_{4}= & -\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{2}, \nabla_{\partial_{3}} \partial_{1}=\frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{1}, \nabla_{\partial_{3}} \partial_{2}=\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{1} \\
\nabla_{\partial_{3}} \partial_{3}= & \frac{1}{2}\left(a_{3}-b_{3}\right) \partial_{1}, \nabla_{\partial_{4}} \partial_{1}=-\frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{2}, \nabla_{\partial_{4}} \partial_{2}=-\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{2}, \\
\nabla_{\partial_{3}} \partial_{4}= & -\frac{1}{8}(a-b)\left(a_{2}-b_{2}\right) \partial_{1}-\frac{1}{8}(a-b)\left(a_{1}-b_{1}\right) \partial_{2}+\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{3} \\
& -\frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{4} \\
& -\frac{1}{4}\left(a_{1}-b_{1}\right) \partial_{4} \\
\nabla_{\partial_{4}} \partial_{3}= & -\frac{1}{8}(a-b)\left(a_{2}-b_{2}\right) \partial_{1}-\frac{1}{8}(a-b)\left(a_{1}-b_{1}\right) \partial_{2}+\frac{1}{4}\left(a_{2}-b_{2}\right) \partial_{3} \\
& -\frac{1}{2}\left(a_{4}-b_{4}\right) \partial_{2} . \tag{24}
\end{align*}
$$

For the covariant derivative ∇G of the twin pure metric G, put $(\nabla G)_{i j k}=\nabla_{i} G_{j k}$. Then, from (22) and (24), after some calculations, we obtain

$$
\begin{align*}
& \nabla_{1} G_{13}=\frac{1}{2}\left(a_{1}+b_{1}\right), \nabla_{1} G_{24}=-\frac{1}{2}\left(a_{1}+b_{1}\right), \nabla_{1} G_{33}=\frac{1}{2} a\left(a_{1}+b_{1}\right) \\
& \nabla_{1} G_{44}=-\frac{1}{2} b\left(a_{1}+b_{1}\right), \nabla_{2} G_{24}=-\frac{1}{2}\left(a_{2}+b_{2}\right), \nabla_{2} G_{33}=\frac{1}{2} a\left(a_{2}+b_{2}\right) \\
& \nabla_{2} G_{44}=-\frac{1}{2} b\left(a_{2}+b_{2}\right), \nabla_{3} G_{11}=-a_{1}+b_{1}, \nabla_{3} G_{12}=\frac{1}{2}\left(-a_{2}+b_{2}\right) \\
& \nabla_{3} G_{13}=\frac{1}{4} a\left(-a_{1}+b_{1}\right)+b_{3}, \nabla_{3} G_{14}=-\frac{1}{4} b\left(a_{2}-b_{2}\right), \nabla_{3} G_{23}=\frac{1}{4} a\left(-a_{2}+b_{2}\right), \\
& \nabla_{3} G_{24}=\frac{1}{4} a\left(-a_{1}+b_{1}\right)-b_{3}, \nabla_{3} G_{33}=a b_{3}, \nabla_{3} G_{34}=\frac{1}{8}(1-a b)\left(a_{2}-b_{2}\right), \\
& \nabla_{3} G_{44}=\frac{1}{4}(1-a b)\left(a_{1}-b_{1}\right)-b b_{3}, \nabla_{4} G_{12}=\frac{1}{2}\left(-a_{1}+b_{1}\right) \\
& \nabla_{4} G_{13}=\frac{1}{4} b\left(-a_{2}+b_{2}\right)+a_{4}, \nabla_{4} G_{14}=\frac{1}{4} b\left(-a_{1}+b_{1}\right), \nabla_{4} G_{22}=-a_{2}+b_{2}, \\
& \nabla_{4} G_{23}=\frac{1}{4} a\left(-a_{1}+b_{1}\right), \nabla_{4} G_{24}=\frac{1}{4} b\left(-a_{2}+b_{2}\right)-a_{4}, \nabla_{4} G_{33}=\frac{1}{4}(1-a b)\left(a_{2}-b_{2}\right)+a a_{4}, \\
& \nabla_{4} G_{34}=\frac{1}{4} b\left(-a_{2}+b_{2}\right), \nabla_{4} G_{44}=-b a_{4} . \tag{25}
\end{align*}
$$

From (17), (21), and (25), we get:
Theorem 4 An almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a quasi-Kähler para-complex pureWalker manifold, i.e. $\Phi_{k} g_{i j}^{\prime}+2 \nabla_{k} G_{i j}=0$, if and only if

$$
\begin{equation*}
a_{1}=a_{2}=a_{4}=b_{1}=b_{2}=b_{3}=0 \tag{26}
\end{equation*}
$$

4.3. Isotropic-Kähler structures on almost para-complex pure-Walker 4-manifolds

Let $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ be an almost para-complex pure-Walker manifold. If $\nabla \varphi^{\prime}=0$, then $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ becomes a Kähler para-complex pure-Walker manifold. If $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a Kähler para-complex pure-Walker manifold, then $\left\|\nabla \varphi^{\prime}\right\|^{2}$ vanishes. However, the inverse position is not always being true. That is, in general, the vanishing of the square norm $\left\|\nabla \varphi^{\prime}\right\|^{2}$ does not always imply the Kähler condition $\nabla \varphi^{\prime}=0$.

An almost para-complex pure metric manifold satisfying the condition $\left\|\nabla \varphi^{\prime}\right\|^{2}=0\left(\nabla \varphi^{\prime} \neq 0\right)$ is called an isotropic-Kähler manifold. Here, the square norm $\left\|\nabla \varphi^{\prime}\right\|^{2}$ of $\nabla \varphi^{\prime}$ is defined by

$$
\begin{equation*}
\left\|\nabla \varphi^{\prime}\right\|^{2}=g^{\prime i j} g^{\prime k l} g_{m s}^{\prime} \nabla_{i} \varphi_{k}^{\prime m} \nabla_{j} \varphi_{l}^{\prime s} \tag{27}
\end{equation*}
$$

Now, with long but straightforward calculations, we find the following condition:
Theorem 5 An almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a isotropic-Kähler para-complex pure-Walker manifold, i.e. $\left\|\nabla \varphi^{\prime}\right\|^{2}=0$, if and only if

$$
\begin{equation*}
a_{1}+b_{1}=0, \quad a_{2}+b_{2}=0 \tag{28}
\end{equation*}
$$

4.4. Nearly-Kähler structures on almost para-complex pure-Walker 4-manifolds

Let $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ be an almost para-complex pure-Walker manifold. If

$$
\begin{equation*}
\left(\nabla_{X} \varphi^{\prime}\right) Y+\left(\nabla_{Y} \varphi^{\prime}\right) X=0, \quad\left(\nabla_{i}{\varphi_{j}^{\prime k}}^{k}+\nabla_{j} \varphi_{i}^{\prime k}=0\right) \tag{29}
\end{equation*}
$$

for all vector fields X, Y, and Z on $M_{2 n}$, then the triple $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is called a nearly-Kähler manifold with pure metric [20,24].

Therefore, from (29), we have:

Theorem 6 A triple $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ is a nearly-Kähler para-complex pure-Walker manifold if and only if

$$
\begin{equation*}
a_{1}=a_{2}=a_{4}=b_{1}=b_{2}=b_{3}=0 \tag{30}
\end{equation*}
$$

5. On flat nonintegrable almost para-complex pure-Walker manifold

In this section, we give an example of a 4-dimensional flat almost para-complex pure-Walker manifold whose almost para-complex structure is not integrable. Examples of 4-dimensional almost Hermitian manifolds whose almost complex structures are not integrable are given in [21]. Additionally, examples of flat almost Norden manifolds with nonintegrable almost complex structures are given in [1].

Let $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ be an almost para-complex pure-Walker manifold with pure-Walker metric g^{\prime} in (12) and almost para-complex structure φ^{\prime} in (13). We see that g^{\prime} depends on the difference $a-b$. If we put

$$
\begin{equation*}
a\left(x^{1}, x^{2}, x^{3}, x^{4}\right)-b\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=\alpha\left(x^{1}, x^{2}, x^{3}, x^{4}\right) \tag{31}
\end{equation*}
$$

then the nonzero components $R_{i j k l}^{\prime}$ of the Riemannian curvature tensor R^{\prime} with respect to pure-Walker metric g^{\prime} are given by

$$
\begin{align*}
R_{1314}^{\prime} & =-\frac{1}{2} \alpha_{11}, R_{1324}^{\prime}=R_{1423}^{\prime}=-\frac{1}{2} \alpha_{12}, R_{1334}^{\prime}=-\frac{1}{2} \alpha_{13}+\frac{1}{4} \alpha_{1} \alpha_{2} \\
R_{1434}^{\prime} & =\frac{1}{2} \alpha_{14}-\frac{1}{4}\left(\alpha_{1}\right)^{2}, R_{2324}^{\prime}=-\frac{1}{2} \alpha_{22}, R_{2334}^{\prime}=-\frac{1}{2} \alpha_{23}+\frac{1}{4}\left(\alpha_{2}\right)^{2} \\
R_{2434}^{\prime} & =\frac{1}{2} \alpha_{24}-\frac{1}{4} \alpha_{1} \alpha_{2}, R_{3434}^{\prime}=\alpha_{34}-\frac{1}{2} \alpha \alpha_{1} \alpha_{2} \tag{32}
\end{align*}
$$

For seeking a flat metric, we suppose that

$$
\begin{equation*}
a\left(x^{1}, x^{2}, x^{3}, x^{4}\right)-b\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=2 \alpha\left(x^{3}, x^{4}\right) \tag{33}
\end{equation*}
$$

In this case, the nonzero component of the curvature tensor R^{\prime} is

$$
\begin{equation*}
R_{3434}^{\prime}=\alpha_{34} \tag{34}
\end{equation*}
$$

We see that the pure-Walker metric g^{\prime} is still not flat. If $\alpha\left(x^{3}, x^{4}\right)=\beta\left(x^{3}\right)+\gamma\left(x^{4}\right)$, then the pure-Walker metric g^{\prime} is flat.

Corollary 1 The pure-Walker metric

$$
g^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{35}\\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & \frac{1}{2}\left(\alpha\left(x^{3}\right)+\beta\left(x^{4}\right)\right) \\
1 & 0 & \frac{1}{2}\left(\alpha\left(x^{3}\right)+\beta\left(x^{4}\right)\right) & 0
\end{array}\right)
$$

is flat.
From (15), for almost para-complex structure φ^{\prime}, we have:
Corollary 2 If a and b satisfy

$$
\begin{equation*}
a\left(x^{1}, x^{2}, x^{3}, x^{4}\right)-b\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=2\left(\beta\left(x^{3}\right)+\gamma\left(x^{4}\right)\right) \tag{36}
\end{equation*}
$$

then φ^{\prime} is not integrable in general. Moreover, φ^{\prime} is integrable if and only if $a_{1}=a_{2}=a_{4}=0, \quad a_{3}-2 \beta_{3}=0$.
Therefore, we have:
Theorem 7 Let $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ be an almost para-complex pure-Walker manifold endowed with the metric g^{\prime} as in (35) and an almost para-complex structure φ^{\prime} as in (13). If $a\left(x^{1}, x^{2}, x^{3}, x^{4}\right)-b\left(x^{1}, x^{2}, x^{3}, x^{4}\right)=$ $2\left(\beta\left(x^{3}\right)+\gamma\left(x^{4}\right)\right)$ as in (36), then the almost para-complex pure-Walker manifold $\left(M_{4}, \varphi^{\prime}, g^{\prime}\right)$ admits a flat pure-Walker metric g^{\prime} and nonintegrable almost para-complex structure φ^{\prime}.

Acknowledgment

The authors would like to thank the referees for their helpful comments.

References

[1] Bonome A, Castro R, Hervella LM, Matsushita Y. Construction of Norden structures on neutral 4-manifolds. JP J Geom Topol 2005; 5: 121-140.
[2] Bonome A, Castro R, Hervella LM, Matsushita Y. Flat almost Norden metrics with nonintegrable almost complex structures in dimension four. JP J Geom Topol 2005; 5: 141-153.
[3] Borowiec A, Ferraris M, Francaviglia M, Volovich I. Almost complex and almost-product Einstein manifolds from a variational principle. J Math Phys 1999; 40: 3446-3464.
[4] Gadea PM, Grifone J, Munoz Masque J. Manifolds modelled over free modules over the double numbers. Acta Math Hungar 2003; 100: 187-203.
[5] Ganchev GT, Borisov AV. Note on the almost complex manifolds with a Norden metric. CR Acad Bulgarie Sci 1986; 39: 31-34.
[6] Gribachev KI, Mekerov DG, Djelepov GD. Generalized B-manifolds. Compt Rend Acad Bulg Sci 1985; 38: 299-302.
[7] Gribachev KI, Djelepov GD, Mekerov DG. On some subclasses of generalized B-manifolds. Compt Rend Acad Bulg Sci 1985; 38: 437-440.
[8] Gribachev KI, Mekerov DG, Djelepov GD. On the geometry of almost B-manifolds. Compt Rend Acad Bulg Sci 1985; 38: 563-566.
[9] Iscan M, Salimov AA. On Kähler-Norden manifolds. Proc Indian Acad Sci Math Sci 2009; 119: 71-80.
[10] Iscan M, Magden A. On B-manifolds defined by algebra of plural numbers. The Arabian Journal for Science and Engineering 2010; 35: 57-63.
[11] Iscan M. On Norden structures on neutral 4-manifolds with almost paracomplex structures. International Journal of Geometric Methods in Modern Physics 2010; 10: 1350052.

İ̧CAN et al./Turk J Math

[12] Kobayashi S, Nomizu K. Foundations of Differential Geometry, Vol. 2. New York, NY, USA: John Wiley, 1969.
[13] Manev M, Mekerov D. On Lie groups as quasi-Kähler manifolds with Killing Norden metric. Adv Geom 2008; 8: 343-352.
[14] Matsushita Y. Four-dimensional Walker metrics and symplectic structure. J Geom Phys 2004; 52: 89-99.
[15] Matsushita Y. Walker 4-manifolds with proper almost complex structure. J Geom Phys 2005; 55: 385-398.
[16] Mekerov DG. On some classes of almost B-manifolds. Compt Rend Acad Bulg Sci 1985; 38: 559-561.
[17] Salimov AA, Iscan M, Etayo F. Paraholomorphic B-manifold and its properties. Topol Appl 2007; 154: 925-933.
[18] Salimov AA, Iscan M. Some properties of Norden Walker metrics. Kodai Math J 2010; 33: 283-293.
[19] Salimov AA, Iscan M, Akbulut K. Notes on para-Norden-Walker 4-manifolds. International Journal of Geometric Methods in Modern Physics 2010; 7: 1331-1347.
[20] Schäfer L. Conical Ricci-flat nearly para-Kähler manifolds. Ann Glob Anal Geom 2014; 45: 11-24.
[21] Tricerri F, Vanhecke L. Flat almost Hermitian manifolds which are not K ähler manifolds. Tensor (NS) 1977; 31: 249-254.
[22] Walker AG. Canonical form for a Rimannian space with a parallel field of null planes. Quart J Math Oxford 1950; 1: 69-79.
[23] Yano K, Ako M. On certain operators associated with tensor fields. Kodai Math Sem Rep 1968; 20: 414-436.
[24] Yano K, Kon M. Structure on Manifolds. Singapore: World Scientific, 1984.

[^0]: *Correspondence: miscan@atauni.edu.tr
 2010 AMS Mathematics Subject Classification: 53C50, 53B30.

