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doi:10.3906/mat-1310-6

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On the equivariant cohomology algebra for solenoidal actions

Ali Arslan ÖZKURT∗
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Abstract: We prove, under certain conditions, that if a solenoidal group (i.e. 1-dimensional compact connected abelian

group) acts effectively on a compact space then the fixed point set is nonempty and H∗
G(X,Q) has a presentation similar

to the presentation of H∗(X,Q) as proven by Chang in the case of a circle group.
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1. Introduction

In the cohomology theory of transformation groups (based on the Borel construction), most of the results

concern Lie group, especially abelian Lie group actions. Results for non-Lie group actions are fewer. The main

reason for this is the complexity of determining the cohomology ring of classifying space for non-Lie groups and

equivariant cohomology algebra of the space on which the non-Lie group acts. However, there is considerable

information about compact non-Lie transformation groups in [10].

It is well known that locally compact groups can be “approximated” by Lie groups. This means if G is a

locally compact group with finitely many components then G has arbitrarily small compact normal subgroup

N such that G/N is a Lie group. This was proven by Yamabe [20]; see also the work of Montgomery and

Zippin [17].

We say that G is an n-dimensional compact connected abelian group if G is the projective limit of n -

dimensional tori and write dimG = n . One can say that if G is an n-dimensional compact connected abelian

group then G has a totally disconnected closed subgroup N such that G/N ≃ Tn , an n torus. For details

see [10], 8.17–8.24. We say G is a finite-dimensional compact connected abelian group if dimG = n for some

n ∈ N . If dimG = 1, then G is called solenoid.

As a well-known example for a solenoid, let us choose a prime number p . Let set Gn be the circle group

T = {z ∈ C : |z| = 1} and define fn+1
n : Gn+1 → Gn , f

n+1
n (z) = zp for all n ∈ N and z ∈ T . The projective

limit of the projective system {Gn, f
n+1
n } is called the p -adic solenoid Tp . This projective limit would have

the p-adic integers, Zp , as a totally disconnected closed subgroup such that Tp/Zp ≃ T . Solenoids are one of

the prototypes of compact abelian groups that are connected, but not arc-wise connected.

If an n -dimensional compact connected abelian group G acts effectively on a Hausdorff space X (all

actions are assumed to be continuous), then there is an induced, almost effective action of the n torus G/N on
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the orbit space X/N and X → X/N induces a homeomorphism XG ≈ (X/N)G/N . (Here XG denotes fixed

point set of action G .)

The orbit space of the action of G/N on X/N is homeomorphic to the orbit space X/G . Moreover, the

orbit space X/N inherits global and local cohomological properties from the space X . Thus, many questions

about the cohomological properties of orbit spaces and fixed point set of actions of finite-dimensional compact

connected abelian groups are reduced to questions about torus actions by comparing actions of G on X and

G/N on X/N .

The study of such actions is motivated by a classic unresolved problem of topological transformation

groups, known as the generalized Hilbert–Smith conjecture, which states that a locally compact effective

transformation group on manifold is a Lie group. A well-known fact (see [11]) states that the Hilbert–Smith

conjecture is equivalent the following conjecture:

Conjecture 1.1 A p-adic group cannot act effectively on a connected finite dimensional manifold.

The construction of effective p -adic spaces plays an important role in the study of the Hilbert–Smith conjecture.

One way to obtain a compact space where a p -adic group acts effectively is to take the inverse limit of inverse

systems of effective T -spaces with bonding maps that satisfy certain equivariance properties. This is because,

if {Xα, f
β
α} is an inverse system of topological spaces and {Gα, φ

β
α} is an inverse system of topological groups,

where each Xα is a Gα -space and each bonding map fβ
α is φβ

α -equivariant, then lim←−Xα is a lim←−Gα -space with

the action given by

(gα)(xα) = (gαxα).

In this paper, under certain conditions, we try to determine the structure of equivariant cohomology algebra

with rational coefficients for solenoidal actions on compact spaces.

2. Preliminaries

Throughout this paper X will be a compact space and we shall use sheaf cohomology with coefficients in a field

k of characteristic 0.

We need to recall definitions on the notion of effectiveness.

Definition 2.1 (1) Let G be a topological group and X a G space. If the ineffective kernel, ∩
x∈X

Gx , is finite,

then this action is called almost effective.

(2) Let G be a compact connected Lie group and let X be a G space. The action of G on X is said to

be cohomologically effective (with coefficients in k ) if the restriction homomorphism

H∗(X, k)→ H∗(XK , k)

is not a monomorphism for any subcircle K ⊆ G .

Remark 2.2 If G is a compact connected Lie group and X is a closed orientable manifold, then an action of

G on X is cohomologically effective if and only if it is almost effective. More generally, this holds if X is a

compact orientable cohomology manifold over Q . (See [5] , Chapter 1, Corollary 4.6, and Chapter 5, Theorem

3.2.)
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For any topological group G , by introducing a suitable topology in the (m+1)-join G(m+1) = G∗...∗G and

letting G act on it naturally, we obtain an m -universal G -bundle(G(m+1), p,G(m+1)/G,G) and a contractible

space EG = limm G(m+1) by taking the direct limit, on which G acts freely and properly. We denote the

quotient space by BG , which is called a classifying space of G [14, 15]. Thus, we have principal G -bundle

EG → BG , called the universal G -bundle. Let X be a G -space. A technique for studying G -actions is the

construction of the so-called Borel space EG×GX = (EG×X)/G associated to the G -space X . (On EG×X ,

there is the diagonal action given by g(e, x) = (ge, gx).) This leads to the following commutative diagram:

X EG × X EG

X/G XG BG
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where π1 is a fiber bundle mapping with fiber X and structure group G/K where K is the ineffective kernel of

the G action on X , π2 is a mapping such that π−1
2 (x∗) = BGx , where x∗ ∈ X/G , and x ∈ x∗ . The equivariant

graded cohomology algebra of X with coefficient k is then defined by H∗
G(X; k) = H∗(XG; k).

X is said to be totally nonhomologous to zero (TNHZ) in XG → BG with respect to H∗(−, k) if

i∗G : H∗
G(X; k)→ H∗(X, k)

is surjective.

Definition 2.3 Let X be a Poincare duality space of formal dimension fd(X) = 2n . (i.e. Hi(X, k) = 0 for

i > 2n , H2n(X, k) ∼= k , dimkH
i(X, k) <∞ , for all i , and for all 0 ≤ i ≤ 2n the cup product

Hi(X, k)×H2n−i(X, k)→ H2n(X, k) ∼= k

is a nondegenerate bilinear form.) We say that X is cohomologically symplectic (c-symplectic for short) over

k if there is a class w ∈ H2(X, k) , which is called the c-symplectic class, such that wn ̸= 0 .

Definition 2.4 Let G be a compact connected Lie group and X a c-symplectic space. If G acts on X , then

the action is said to be cohomologically Hamiltonian (c-Hamiltonian for short) if

w ∈ im{i∗G : H∗
G(X, k)→ H∗(X, k)}.

Remark 2.5 (1) A closed symplectic manifold is c-symplectic (over R) with w = [w] , the class of symplectic

form.

(2) If X is a closed symplectic manifold, G is a compact connected Lie group, G is acting on X , and

the action is symplectic, then the action is Hamiltonian if and only if it is c-Hamiltonian. Necessity follows

from Frankel’s theorem (see [9]). Sufficiency follows easily from the results and techniques of Atiyah-Bott (see

[3] , Section 4; Audin [4] , Chapter 5, Proposition 3.1.1; and McDuff and Salamon [13] , Section 5.2).

The next theorem is important for our main result.

1083
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Theorem 2.6 (Bredon et al. [7, 5.1]; Löwen [12]). If N is a totally disconnected compact group and X is

a locally compact N -space, then the orbit map π : X → X/N induces an isomorphism

H∗
c (X/N,Q) ≃ (H∗

c (X,Q))N

(H∗
c denotes sheaf cohomology with compact supports. For the details, the reader is referred to Bredon’s

monograph [6]).

Remark 2.7 Let G be a finite-dimensional compact connected abelian group acting on a compact space X . Let

N be a totally disconnected closed subgroup of G such that G/N is a torus. Since G is connected, its action

(and hence that of N ) on H∗(X,Q) is trivial (see [6, II.10.6 cf. II.11.11]) . Thus, Theorem 2.6 implies that

H∗(X,Q) ∼= H∗(X/N,Q).

3. Main result

Let L denote the category of locally compact abelian groups, whose morphisms are continuous homomorphisms.

For an object G of the category L , the group Hom(G,T ) of continuous homomorphisms from G to the circle

group T endowed with the compact-open topology is an object of L . This group is called the character group

of G and is denoted by Ĝ .

The correspondence G 7→ Ĝ defines a contravariant functor χ : L→ L . The Pontryagin duality theorem

states that

G ≃ χ(χ(G)) =
ˆ̂
G.

This means that χ is a contravariant category equivalence. (i.e. there are natural equivalences q1 : 1 → χ2

and q2 : χ2 → 1 where 1 : L → L is identitiy functor in L). The next proposition is a well-known formal

consequence of an equivalence of categories.

Proposition 3.1 χ takes projective limits to direct limits.

Proof Let {G, fα} be the projective limit of the projective system {Gα, f
β
α} . Then χ induces morphisms

f̂α : Ĝα → Ĝ where {Ĝα, f̂
β
α} is a direct system in L satisfying f̂β f̂

β
α = f̂α whenever α ≤ β . Let H be a locally

compact abelian group and suppose hα : Ĝα → H are morphisms such that hβ f̂
β
α = hα whenever α ≤ β . We

apply χ and we see that { ˆ̂G,
ˆ̂
fα} is projective limit of the projective system { ˆ̂Gα,

ˆ̂
fβ
α} by Pontryagin’s duality

theorem. Therefore, there is a unique morphism f : Ĥ → ˆ̂
G such that

ˆ̂
fαf = ĥα for every α . Since χ is a

contravariant category equivalence, there is a morphism f0 : Ĝ → H such that f̂0 = f and f0 is the unique

morphism in Hom(Ĝ,H) such that f0f̂α = hα for every α (see [16, Prop. 10.1). Thus, {Ĝ, f̂α} is the direct

limit of the direct system {Ĝα, f̂
β
α} . 2

(∗) For the rest of this section G will be assumed to be a solenoid. X will be a compact G-space and

TNHZ in XG → BG with respect to H∗(−,Q) .

Theorem 3.2 Let N ⊆ G be a totally disconnected closed subgroup such that G/N is the circle group. If

XG = ∅ , then X/N is TNHZ in (X/N)G/N → BG/N with respect to H∗(−,Q) .
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Proof Since X → X/N induces a homeomorphism,

XG ≈ (X/N)G/N ,

we have

(X/N)G/N = ∅

where (X/N)G/N is the fixed point set of induced action of the circle group G/N on the orbit space X/N .

Thus, all isotropy subgroups, (G/N)Nx , of G/N are finite. It is obvious that any finite subgroups of the circle

group are the groups of the nth roots of unity for some n . For the isotropy subgroups, Gx of G is explicitly

discussed in ([10, Prop.10.31ff]) and we have

(G/N)Nx = NGx/N ≃ Gx/(Gx ∩N).

In particular, it follows that

Gx = lim←−N∈N (G/N)Nx

where N is a filter basis of compact normal subgroups of G such that G/N is a circle for N ∈ N and

such that
∩
N = 1. (For M ⊆ N in N , let fM

N : G/M → G/N denote the natural homomorphism given

by fM
N (gM) = gN . Then restriction of fM

N to the (G/M)Mx gives a homomorphism from (G/M)Mx into

the (G/N)Nx . This restricted homomorphism constitutes a projective system.) This implies that all isotropy

subgroups of G are projective limits of finite cyclic groups.

For the cohomology of the universal classifying space BGx with integer coefficient, since Gx is the

projective limit of a projective system of finite cyclic groups, we have

Hr(BGx ,Z) ≃


Z r = 0,

Ĝx r = 2,

0 r ̸= 0 or 2.

(See [7, remarks for Theorem 1].) By Proposition 3.1, we have that H2(BGx ,Z) = Ĝx is the direct limit of the

direct system { ˆ(G/N)Nx, f̂
M
N } . Since all (G/N)Nx are finite cyclic groups,

ˆ(G/N)Nx = (G/N)Nx for all N ∈ N .

Thus, H2(BGx ,Q) = Ĝx ⊗Z Q is the direct limit of the direct system

{ ˆ(G/N)Nx ⊗Z Q, f̂M
N ⊗ 1Q}.

It is a well-known fact that the tensor product of finite abelian groups and rationals over Z is 0. Therefore, we

have

ˆ(G/N)Nx ⊗Z Q = 0.

It follows that

H2(BGx ,Q) = 0.
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Thus, for r ≥ 1, Hr(BGx ,Q) are trivial for all x ∈ X . By the Vietoris–Begle mapping theorem (see

[19]) the orbit projection π2 : XG → X/G thus induces an isomorphism:

π∗
2 : H∗(X/G,Q) ∼= H∗

G(X,Q).

Similarly, we have

H∗(X/G,Q) ∼= H∗
G/N (X/N,Q)

by considering the orbit projection

(X/N)G/N → (X/N)/(G/N) ≈ X/G.

On the other hand,

H∗(X,Q) ∼= H∗(X/N,Q)

by Remark 2.7. From the commutative diagram,

H
∗
G

(X, Q) H
∗(X, Q)

H
∗
G/N

(X/N, Q) H
∗(X/N, Q)

........................................................................................................... ...........
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.

.

.

.

.

.

.

.

....

≅

we see that X/N is TNHZ in (X/N)G/N → BG/N with respect to H∗(−,Q). 2

With the assumptions of (∗), we have 3 corollaries.

Corollary 3.3 If 0 < dimH∗(X,Q) <∞ , then XG ̸= ∅ .

Proof Suppose XG = ∅ . Then X/N is TNHZ in (X/N)G/N → BG/N by Theorem (3.2). Since XG ≈

(X/N)G/N , we have

dimH∗(X/N,Q) = dimH∗((X/N)G/N ,Q) = 0

(see [2, Corollary 3.1.15]). Since H∗(X,Q) ∼= H∗(X/N,Q), this contradicts the assumption. 2

Next we need the notion of a rational cohomology n-manifold. A rational cohomology n -manifold is a

locally compact space whose cohomological dimension over Q is finite, and it has locally constant cohomologies

over Q such that it is equal to Q for degree n and to zero in degrees other than n . A connected rational

cohomology n -manifold over X is called orientable if H∗
c (X,Q) ∼= Q . Details can be found in the work of

Bredon (see [6], Section V.16).

Topological n -manifolds are examples of rational cohomology n -manifolds. A nonmanifold example is the

open cone over the (n−1)-manifold, which is not a sphere but has the rational cohomology of an (n−1)-sphere

(for example, a real projective space of odd dimensions).

The property of being a rational cohomology manifold passes to orbit spaces under some mild conditions.

Theorem 3.4 (See Raymond [18]) Let N be a second countable totally disconnected compact group acting

on a connected orientable rational cohomology n-manifold X . Suppose the action of N on H∗
c (X,Q) is trivial.

Then X/N is a rational cohomology n-manifold.
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The next corollary is an explicit application to compact (c -)symplectic (cohomology) manifolds without using

any geometric concepts.

Corollary 3.5 If X is a compact connected c-symplectic orientable rational cohomology manifold, then the

fixed point set is nonempty.

Proof Let N be a compact, totally disconnected subgroup of G such that G/N is a circle. X/N is a

compact connected c-symplectic rational cohomology manifold having the same dimensions as X . This follows

by Raymond’s theorem (see [18]) and Remark 2.7. Since the induced action of the circle, G/N , on the orbit

space X/N is almost effective, this action is cohomologically effective by Remark 2.2. Suppose XG = ∅ . Then
X/N is TNHZ in (X/N)G/N → BG/N by Theorem (3.2). Since TNHZ implies cohomologically Hamiltonian,

by the result of Allday (see [1], Proposition 6.7 and Remark 6.8), the fixed point set (X/N)G/N (which is home-

omorphic to XG ) is nonempty and it has at least 2 connected components, which contradicts the assumption. 2

Next we need to recall some basic facts concerning commutative graded algebras. Let k be a field and

A =
∞⊕
i=0

Ai be an N-graded k -algebra. We shall assume that A is connected: i.e. A0 = k . We shall also assume

that A is commutative in the graded sense: i.e. for any a ∈ Ai, b ∈ Aj , ba = (−1)ijab . In the category of

connected commutative N -graded k -algebras the free objects are those of the form k[xi : i ∈ I]⊗
∧
(yj : j ∈ J)

where k[xi : i ∈ I] is the polynomial ring generated by {xi : i ∈ I} where each xi, i ∈ I, is homogeneous of

positive even degree and
∧
(yj : j ∈ J) is the exterior algebra generated by {yj : j ∈ J} where each yj , j ∈ J,

is homogeneous of positive odd degree.

Definition 3.6 A connected commutative graded algebra A is said to be finitely generated if there is a homo-

geneous epimorphism of k -algebras of degree zero

π : B = k[x1, ..., xr]⊗
∧

(y1, ..., ys)→ A

where each xi (resp yj ) is homogeneous of positive even (resp. odd) degree. Then J = Kerπ is called the ideal

of relations. We shall refer to the exact sequence

0→ J → B → A→ 0

as a presentation of A .

Let G be a circle group and RG = H∗(BG,Q). It is well known that RG = Q[w] , degw = 2.

Furthermore, Q is an RG -module via the standard augmentation homomorphism RG → Q defined by w → 1.

The next theorem, proven by Chang (see [8, pp. 245246]), is one of the steps of the corollary of Theorem 2 in

[8].

Theorem 3.7 (See Chang [8]) Let X be a space, and suppose that H∗(X,Q) has a Q-algebra presentation

0→ J → Q[x1, ..., xg]⊗
∧

(y1, ..., yh)→ H∗(X,Q)→ 0

where x1, ..., xg are generators of positive even degree, y1, ..., yh are generators of odd degree, and the ideal of

relations J = (f1, ..., fm, e1, ..., en) , where f1, ..., fm are relations of even degree and e1, ..., en are relations of

odd degree.
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Let G be a circle group, and suppose that G is acting on X so that X is TNHZ in XG → BG with

respect to H∗(−,Q) .

Then H∗
G(X,Q) has an RG -algebra presentation as follows, and there is a commutative diagram

0 JG RG[X1, ...,Xg]⊗ (Y1, ..., Yh) H∗
G(X,Q) 0

0 J Q[x1, ..., xg]⊗ (y1, ..., yh) H∗(X,Q) 0

...................................................................................................... ...........
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i∗G

where JG = (F1, ..., Fm, E1, ..., En), φ(Xi) = xi for 1 ≤ i ≤ g, φ(Yi) = yi for 1 ≤ i ≤ h, φ(Fi) = fi for

1 ≤ i ≤ m , and φ(Ei) = ei for 1 ≤ i ≤ n .

We will prove that a similar result holds for solenoid actions on a compact space without a fixed point.

Recall that for a solenoid G , there is a totally disconnected closed subgroup N such that G/N is a circle

group. It is well known that H∗(BG/N ,Q) = Q[w] , degw = 2.

Let Bπ : BG → BG/N be the mapping induced by canonical epimorphism π : G → G/N . In the

following, let RG/N = Q[w] and RG = Q[v] , v = B∗
π(w) where B∗

π : H∗(BG/N ,Q)→ H∗(BG,Q).

Corollary 3.8 Suppose we have assumptions of (∗) and suppose that H∗(X,Q) has a Q-algebra presentation

0→ J → Q[x1, ..., xg]⊗
∧

(y1, ..., yh)→ H∗(X,Q)→ 0

where x1, ..., xg are generators of positive even degree, y1, ..., yh are generators of odd degree, and the ideal of

relations J = (f1, ..., fm, e1, ..., en) , where f1, ..., fm are relations of even degree and e1, ..., en are relations of

odd degree.

If XG = ∅ , then H∗
G(X,Q) has an RG -algebra presentation as follows and there is a commutative

diagram

0 JG RG[X̄1, ..., X̄g]⊗ (Ȳ1, ..., Ȳh) H∗
G(X,Q) 0

0 J Q[x1, ..., xg]⊗ (y1, ..., yh) H∗(X,Q) 0
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φ i∗G

where JG = (F1, ..., Fm, E1, ..., En), φ(X̄i) = xi for 1 ≤ i ≤ g, φ(Ȳi) = yi for 1 ≤ i ≤ h, φ(Fi) = fi for

1 ≤ i ≤ m , and φ(Ei) = ei for 1 ≤ i ≤ n .

Proof Since the orbit projection π : X → X/N induces an isomorphism π∗ : H∗(X/N,Q) ≃ H∗(X,Q), we

consider

0→ J → Q[x1, ..., xg]⊗
∧

(y1, ..., yh)→ H∗(X/N,Q)→ 0

as a Q -algebra presentation of H∗(X/N,Q). On the other hand, X/N is TNHZ in (X/N)G/N → BG/N

with respect to H∗(−,Q) by Theorem 3.2. It follows by Chang’s result that H∗
G/N (X/N,Q) has an RG/N -

presentation

f : RG/N [X1, ..., Xg]⊗
∧

(Y1, ..., Yh)→ H∗
G/N (X/N,Q)
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as in Theorem 3.7. Since X/N is TNHZ, it follows that

(α, π)∗ : H∗
G/N (X/N,Q)→ H∗

G(X,Q)

is surjective where α : G→ G/N, π : X → X/N .

Let (α, π)∗(Xi) = X̄i , i = 1, ..., g and (α, π)∗(Yj) = Ȳj , j = 1, ..., h . We define a homogeneous

epimorphism of Q-algebras of degree zero:

RG[X̄1, ..., X̄g]⊗
∧

(Ȳ1, ..., Ȳh)→ H∗
G(X,Q),

X̄i 7→ (α, π)∗(f(Xi)),

Ȳj 7→ (α, π)∗(f(Yj)).

It is easy to check that this epimorphism satisfies all the conditions we need. 2
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