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1. Introduction

Many researchers show interest in the study of functionals of probability distribution densities or functionals of

regression functions. They consider mostly functionals of the integral type. For instance, integral functionals

of a probability density function and its derivatives were studied in [9, 2, 8], whereas the same problems were

investigated for a regression function in [3, 6]. A special mention should be made of [5], a work by Goldstein and

Messer where the general type functional of a probability density function and the functional of the Nadaraya–

Watson regression function were considered. Additionally, in [5], the problem of optimality was studied for a

plug-in estimator in a functional space.

In the present paper we consider a general functional of the Gasser–Muller regression function. We are

concerned with the consistency issues and the conditions under which the central limit theorem is fulfilled. We

determine convergence orders and deal with some related problems. An analogous topic was studied in [1] for

integral functionals.

Let us consider a regression model of the form

Y (t) = a(t) + ε(t) (1)

where t ∈ [0, 1], ε( · ) is noise with Eε(t) = 0, Eε2(t) = σ2 < ∞ , Y (t) is a random function, and a(t) is an

unknown function. Suppose we have n numbers

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1,

where each tk, k = 1, 2, . . . , n , is dependent on n .

The estimator of an unknown regression function a(t) was introduced by Gasser and Muller and defined
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by the expression

ân(t) =
1

hn

n∑
i=1

si∫
si−1

W
( t− u

hn

)
du · Y (ti), (2)

where 0 = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sn = 1, ti ≤ si ≤ ti+1 , i = 1, 2, . . . , n− 1 and

max
i

|si − si−1| = O
( 1
n

)
;

{hn, n = 1, 2, . . . } is the sequence of positive numbers that monotonically tend to zero, and W (u) is the function

with probability density properties.

Gasser and Muller also defined the estimator of the k th derivative of the regression function a(k)(t) by

the formula

â (k)
n (t) =

1

hk+1
n

n∑
i=1

si∫
si−1

W (k)
( t− u

hn

)
du · Y (ti) (3)

for all k = 0, 1, . . . ,m . It was assumed that â
(0)
n (t) ≑ ân(t).

In the above-mentioned works, the consistency and asymptotic normality theorems for these estimators

were obtained by imposing certain conditions.

For some functional A , here we investigate the asymptotic properties of the expression A(ân) as n → ∞ .

2. Representation theorem

Let us introduce the notation and conditions that will be used in our argumentation.

Conditions on a:

(a1) The function a = a(t) is well defined and continuous on [0, 1] and takes its values in the interval [−k; k] ;

(a2) The function a(t) has continuous derivatives up to order m inclusive;

(a3) For any i = 0, 1, . . . ,m , a(i)(t) takes its values in [−k;k] and a(i)( · ) ∈ L1([0, 1]).

Conditions on εk :

(ε1) Random values εk = ε(tk), k = 1, 2, . . . , are independent and equally distributed;

(ε2) Eεk = 0, Eε2k = σ2 < ∞ .

Conditions on W :

(w1)
∞∫

−∞
W (t) dt = 1;

(w2) Functions W (i)(t), i = 0, 1, . . . ,m have the compact support [−τ, τ ] ,

W (i)(−τ) = W (i)(τ) = 0;
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(w3) The function W (t) has continuous derivatives up to order m , m ≥ 1;

(w4) There exists a constant CW > 0, for which

sup
t∈R

|W (i)(t)| ≤ CW < ∞, i = 0, 1, . . . ,m;

(w5) For any i = 0, 1, . . . ,m , W (i) ∈ L1([−τ, τ ]) .

Denote by an(t) the mathematical expectation ân(t):

an(t) = Eân(t) = E
1

hn

n∑
i=1

si∫
si−1

W
( t− u

hn

)
du · Y (ti) =

1

hn

n∑
i=1

si∫
si−1

W
( t− u

hn

)
du · a(ti).

Then we obtain

a(k)n (t) = Eâ (k)
n (t) =

1

hi+1
n

n∑
i=1

si∫
si−1

W (k)
( t− u

hn

)
du · a(ti).

Let Cm[0, 1] denote the space of bounded real functions that are defined and continuous on [0, 1], having

continuous derivatives of at least mth order. In this space we introduce the norm

∥f∥m =

( m∑
k=0

1∫
0

(dkf
dtk

)2
dt

) 1
2

, f ∈ Cm[0, 1].

The closure of Cm[0, 1] in this norm is denoted by W 2
m and called the Sobolev space. This is a complete

separable Hilbert space with the scalar product

⟨f, g⟩m =
m∑

k=0

1∫
0

dkf

dtk
dkg

dtk
dt, f, g ∈ W 2

m.

Conditions on A:

(A1) The functional A : W 2
m → R is considered in the space W 2

m . It is assumed that this functional is smooth in

a strong sense. This means that there exists a bounded linear functional TA such that for any 2 elements

from W 2
m , f, g ∈ W 2

m , we have

A(f)− A(g) = TA(f − g) +O
(
∥f − g∥2m

)
.

By the Riesz theorem there is an element tA of the space W 2
m such that

TAw = ⟨tA, w⟩m.

The formulation of our problem reads as follows: Consider the Gasser–Muller scheme, where the compo-

nents of (1), (2), and (3) satisfy conditions (a1)–(a3), (ε1)–(ε3), (w1)–(w5), and (A1). Construct the estimator

of the variable A(a) using observations {(t1, Y (t1)), . . . , (tn, Y (tn))} .
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As an estimator of the expression A(a) we will use the so-called plug-in estimator A(ân). To prove the

asymptotic properties we use a simple fact: the smoothness representation of the considered functional.

Let us consider the expression A(ân). We can write the following difference:

A(ân)− A(an) = TA(ân − an) +O
(
∥ân − an∥2m

)
. (4)

We call this expression the representation and will use it to obtain the desired results. To begin with, let

us estimate the remainder:

Rn = O
(
∥ân − an∥2m

)
.

We have

∥ân − an∥2m =

1∫
0

m∑
i=0

(
â (i)
n (t)− a(i)n (t)

)2
dt.

Denote

Uk = Uk(t) =
1

hn

sk∫
sk−1

W
( t− u

hn

)
du
[
Y (tk)− a(tk)

]
, k = 1, 2, . . . , n,

where a(tk) = EY (tk). Then

n∑
k=1

Uk =
1

hn

n∑
k=1

sk∫
sk−1

W
( t− u

hn

)
du
[
Y (tk)− a(tk)

]
= ân(t)− an(t).

Therefore,

∥ân − an∥2m =
∥∥∥ n∑

k=1

Uk

∥∥∥2
m
. (5)

For each k = 1, 2, . . . , n estimate the norm ∥ · ∥m of one summand in Uk (5). We have

∥Uk∥m =

( m∑
i=0

1∫
0

∣∣∣∣ 1

hi+1
n

sk∫
sk−1

W (i)
( t− u

hn

)
du
[
Y (tk)− a(tk)

]∣∣∣∣2 dt) 1
2

=

=

( m∑
i=0

1

h2i+2
n

1∫
0

∣∣∣∣hn

t−sk−1
hn∫

t−sk
hn

W (i)
( t− u

hn

)
d
( t− u

hn

)∣∣∣∣2∣∣Y (tk)− a(tk)
∣∣2 dt) 1

2

≤

≤ 2|εk|CW

( m∑
i=0

1

h2i
n

1∫
0

∣∣∣ t− sk−1

hn
− t− sk

hn

∣∣∣2 dt) 1
2

=

= 2|εk|CW
|sk − sk−1|

√
1− h2m+2

n

hm+1
n

√
1− h2

n

≤ L
1

nhm+1
n

= Mm ∼ O
( 1

nhm+1
n

)
for sufficiently large L > 0. (6)

To estimate ∥ân−an∥2m we use McDiarmid’s inequality, which is given here for convenience (for more information

see [4]).
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McDiarmid’s inequality. Let H(t1, . . . , tk) be a real function such that for each i = 1, . . . , k and some ci ,

the supremum in t1, . . . , tk, t , of the difference:∣∣∣H(t1, . . . , ti−1, ti, ti+1, . . . , tk)−H(t1, . . . , ti−1, t, ti+1, . . . , tk)
∣∣∣ ≤ ci.

If X1, . . . , Xk are independent random variables taking values in the domain of the function H(t1, . . . , tk), then

for every ε > 0,

P
{∣∣H(X1, . . . , Xk)− EH(X1, . . . , Xk)

∣∣ > ε
}
≤ 2 exp

(
− 2ε2

k∑
i=1

c2i

)
.

We use McDiarmid’s inequality for the functions

H(U1, . . . , Um) =
∥∥∥ n∑

k=1

Uk

∥∥∥
m
.

As ck we take ck ≡ 2Mm, k = 1, . . . , n . For any δ > 0 we obtain

P

{∣∣∣∣∥∥∥ n∑
k=1

Uk

∥∥∥
m
− E

∥∥∥ n∑
k=1

Uk

∥∥∥
m

∣∣∣∣ ≥ δ

}
≤ 2 exp

{
− δ2nh2m+2

n

2L2

}
.

We substitute here

δ =
2L

√
log n

√
nhm+1

n

and, by the Borel–Cantelli lemma, write

∥∥∥ n∑
k=1

Uk

∥∥∥
m

= E
∥∥∥ n∑

k=1

Uk

∥∥∥
m
+O

( √
log n

√
nhm+1

n

)
. (7)

After applying Jensen’s inequality,

E
∥∥∥ n∑

k=1

Uk

∥∥∥2
m

≤ 2
n∑

k=1

E∥Uk∥2m = 2
n∑

k=1

m∑
i=0

1∫
0

E

∣∣∣∣ 1

hi+1
n

sk∫
sk−1

W (i)
( t− u

hn

)
du
[
Y (tk)− a(tk)

]∣∣∣∣2 dt ≤

≤ 2C2
W

n∑
k=1

m∑
i=0

1∫
0

1

h2i+2
n

∣∣∣∣
sk∫

sk−1

du

∣∣∣∣2E[Y (tk)− a(tk)
]2
d t =

= 2C2
Wσ2 (1− h2m+2

n )

(1− h2
n)h

2m+2
n

n∑
k=1

(sk − sk−1)
2 ≤ K · 1

nh2m+2
n

, (8)

from (6), (7), and (8) we conclude that

Rn = O
( log n

nh2m+2
n

)
.

Thus the following statement is true.
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Theorem 1 Assume that the conditions (a1)–(a3), (ε1)–(ε3) , (w1)–(w5), and (A1) are fulfilled. Then a

representation formula holds with the remainder of order

Rn = O
( log n

nh2m+2
n

)
.

3. Consistency

In this section of the paper we use Theorem 1 to prove the strict consistency of the estimator A(ân).

Theorem 2 Let the conditions of Theorem 1 be fulfilled. If the positive sequence hn , n = 1, 2, . . . , 0 < hn < 1 ,

is chosen so that
log n

nh2m+2
n

−→ 0, (9)

then with probability 1 we have

A(ân) −→ A(a)

as n → ∞ .

Proof By Theorem 1 and formula (4)

A(ân)− A(an) = TA(ân − an) +Rn, (10)

where Rn = O(∥ân − an∥2m) = o(1) a.e. and

TA(ân − an) =
⟨
tA, ân − an

⟩
m
.

According to conditions (a1)–(a3),{(
t, an(t), a

′
n(t), . . . , a

(m)
n

)
: t ∈ [0, 1]

}
⊂ [0, 1]× [−k; k]m+1

.

Keeping this in mind and by condition (A1), we can write

∣∣TA(ân − an)
∣∣ ≤ ∥TA∥

m∑
i=0

1∫
0

1

hi+1
n

n∑
k=1

sk∫
sk−1

∣∣∣W (i)
( t− u

hn

)∣∣∣ du ·
[
Y (tk)− a(tk)

]
dt ≤

≤ 2CW ∥TA∥
m∑
i=0

1∫
0

1

hi+1
n

n∑
k=1

|εk| |sk − sk−1| dt ∼ (by (w4)) ∼ M
1

nhm+1
n

(for some M). (11)

Let us apply McDiarmid’s inequality for

Y =
n∑

k=1

Xk, (12)

where

Xk =
m∑
i=0

1∫
0

1

hi+1
n

sk∫
sk−1

∣∣∣W (i)
( t− u

hn

)∣∣∣ du ·
[
Y (tk)− a(tk)

]
dt.
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Analogously to (11), it can be shown that Xk takes its values in the interval [−M 1
n2hm+1

n
,M 1

n2hm+1
n

] . Therefore,

n∑
i=1

c2i =
2M

n3h2m+2
n

.

Furthermore, we take

t =
2
√
M log n

n3/2 hm+1
n

.

Then we obtain

P

{∣∣TA(ân − an)
∣∣ > 2

√
M log n

n3/2hm+1
n

,

}
≤ 2 exp

{
− 2 log n

}
by means of which, using the Borelli–Cantelli lemma, we can conclude that

TA(ân − an) = O
( √

log n

n3/2hm+1
n

)
.

It is obvious that, for condition (9),
√
logn

n3/2hm+1
n

, too, tends to zero. Thus we conclude that

TA(ân − an) −→ 0 as n → ∞.

By formula (6) from [10] we can write

Ea(k)n (t) =

τ∫
−τ

W (u)a(k)(t− uhn) du+O
( 1

nhk
n

)
.

Hence, we make the following conclusions:

(i) for condition (9), 1
nhk

n
, too, tends to zero for any k = 0, 1, . . . ,m ;

(ii) Ea
(k)
n (t) → a(k)(t) as n → ∞ .

Summarizing the above discussion, we ascertain that

A(an) −→ A(a)

as n → ∞ .

Since A(ân)− A(an) = o(1), we conclude that

A(ân)− A(a) −→ 0 a.e.

The theorem is proved. 2
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4. Central limit theorem

Using our representation theorem we can obtain the limit distribution property for a smooth functional A of

ân(t) in the space W 2
m .

Consider the difference

A(ân)− A(an) = TA(ân − an) +O
(
∥ân − an∥2m

)
(13)

where, for any hn > 0, TA(ân − an) is the sum of independent random variables

TA(ân − an) = ⟨tA, ân − an⟩m =
m∑

k=0

1∫
0

t
(k)
A (t)

(
â (k)
n (t)− a(k)n (t)

)
dt. (14)

The remainder Rn has the form

Rn = O
(
∥ân − an∥2m

)
.

It is clear that
ETA(ân − an) = 0 and ERn → 0 as n → ∞. (15)

Moreover,

E
(
TA(ân − an)

)2
= σ2

m∑
k=0

( 1∫
0

t
(k)
A (t) dt

)2

and VarRn → 0 as n → ∞. (16)

Using appropriate conditions, we have to prove that the value

√
n (A(ân)− A(an))

is asymptotically normal and calculate the limiting variance. By the conditions of the theorem with formulas

(8), (12), and (13), for this we must show the asymptotic normality of the value
√
nTA(ân − an). As seen from

(11), for this it suffices to study this property for the variables

dk = Y (tk)

m∑
i=0

1

hi+1
n

1∫
0

sk∫
sk−1

W (i)
( t− u

hn

)
t
(k)
A (t) dt du.

It is easy to see that

Edk = a(tk)
m∑
i=0

1

hi+1
n

1∫
0

sk∫
sk−1

W (i)
( t− u

hn

)
t
(k)
A (t) dt du.

Thus, we consider the sequence of independent random variables

fk(n) = α(n, k)
(
Y (tk)− a(tk)

)
= α(n, k)εk,

where

α(n, k) =
m∑
i=0

1

hi+1
n

1∫
0

sk∫
sk−1

W (i)
( t− u

hn

)
t
(k)
A (t) dt du.
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Let us consider the sum

TA(ân − an) =
n∑

k=1

α(n, k)εk.

Let Fk,n be a probability distribution function of a random variable α(n, k)εk , and Fε be a distribution function

of a random variable εk . Lindeberg’s condition has the form ∀ δ > 0, lim
n→∞

Ln(δ) = 0, where

Ln(δ) =

=
(
σ2

n∑
k=1

α2(n, k)
)−1 n∑

j=1

∫
x2J

(
|x| ≥ δσ

( n∑
k=1

α2(n, k)
) 1

2

)
dFk,n(x),

where J(A) is the indicator function of the set A .

We easily conclude that

Ln(δ) ≤
1

σ2
max
1≤j≤n

∫
x2J

(
|x| ≥ δσv(n, j)

)
dFε,

where

v(n, j) =
|α(n, j)|( n∑

j=1

α2(n, j)
)1/2 .

It remains to show that max
1≤j≤n

v(n, j) → 0 as n → ∞ . We have

max
1≤j≤n

|α(n, j)| ≤ CW |tA∥m|sj − sj−1|
n∑

i=1

1

hm+1
n

= O
( 1

nhm+1
n

)
.

On the other hand,

α(n, k) =
m∑
i=0

1

hi+1
n

1∫
0

t+uhn∫
t−uhn

W (i)(x)t
(k)
A (x+ uhn) dx du =

= 2
m∑
i=0

1

hi
n

1∫
0

W (i)(x̃)t
(k)
A (x̃+ uhn)u du ∼ (for some x̃)

O
( 1

hm
n

)
.

Therefore,
n∑

k=1

α2(n, k) ∼ O
( n

h2m
n

)
and

v(n, j) ∼ hm
n

n
√
nhm+1

n

=
1

n3/2hn
→ 0 as n → ∞.

Thus, Lindeberg’s condition is fulfilled and we can state that the following theorem is valid.
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Theorem 3 Let the conditions of Theorem 1 be fulfilled. Then, if hn → 0 and nhm+1
n → ∞ as n → ∞ , we

have
√
n
(
A(ân)− A(an)

) d−→ N(0, r2),

where

r2 = σ2
m∑

k=0

( 1∫
0

t
(k)
A (t) dt

)2

.

5. Three examples

(a) Let the functional Aa =
1∫
0

[a′
2
(t) + a2(t)] dt be considered in W 2

1 [0, 1]. Then

(TAa)(g) =

1∫
0

2a′(s)g′(s) ds+

1∫
0

2a(s)g(s) ds.

If hn → 0 and logn
nh4

n
→ 0 as n → 0, the consistency theorem is fulfilled. When nb2n → ∞ as n → 0, we

have
√
n
[
A(ân)− A(a)

] d−→ N(0, r2),

where

r2 = 4a2

{[ 1∫
0

a(t) dt

]2
+
[
a(1)− a(0)

]2}
.

(b) Consider the integral functional

I(a) =

∞∫
−∞

φ
(
t, a(t), a′(t), . . . , a(m)(t)

)
dt

in W 2
m[0, 1].

Assume that the following conditions are fulfilled:

(φ1) The function φ : Rm+2 → R is continuous, bounded, and integrable and has bounded continuous

derivatives up to the second order, inclusive, in some open convex domain A , which contains the domain

R× [−k; k]m+1 .

(φ2) All first and second derivatives of the function φ are uniformly bounded in the domain A by a constant

Cφ > 0.

According to conditions (φ1) and (φ2), for the function φ we have

sup
{
|φ(ij)|(s, s0, s1, . . . , sm) : (s, s0, s1, . . . , sm) ∈ A

}
≤ Cφ
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for each i, j = 0, 1, . . . ,m .

Then if hn → 0 and
√
nh2m+2

n → ∞ as n → ∞ , we have

√
n (A(ân)− A(a))

d−→ N(0, r2),

where

r2 = σ2
m∑
i=0

( 1∫
0

φ(i)

(
t, a(t), a′(t), . . . , a(m)(t)

)
dt

)2

.

(c) Consider the functional

Af = (f (m)(t0))
2
.

Assume that the conditions (a1)–(a3), (ε1), (ε2), (w1)–(w5), (φ1), and (φ2) are fulfilled. If hn → 0

and logn

nh2m+2
n

→ 0 as n → 0, the consistency theorem is fulfilled. When nhm+1
n → ∞ as n → 0, we have that

the central limit theorem is true.

6. Iterated logarithm law

Applying the well-known iterated logarithm law from Kuelbs’ paper [7], we ascertain that the following theorem

is valid.

Theorem 4 If the sequence hn is chosen so that

Rn = o
(√ log log n

n

)
,

then

lim sup
n→∞

±
√
n (A(ân)− A(an))√

2 log log n
= r,

where

r2 = σ2
m∑

k=0

( 1∫
0

t
(k)
A (t) dt

)2

.

Indeed, as is easily seen,

lim sup
n→∞

±
√
n [I(ân)− I(an)]√

2 log log n
= lim sup

n→∞
±
√
n
[
α(n, k)Y (tk)− α(n, k)a(tk)

]
√
2 log log n

= r.
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