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Abstract: The porous medium equation arises in different applications to model diffusive phenomena. In this paper,

we obtain several gradient estimates for some porous medium type equations on smooth metric measure space with N-

Bakry-Emery Ricci tensor bounded from below. In particular, we improve and generalize some current gradient estimates

for the porous medium equations.
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1. Introduction

A smooth metric measure space is a triple, (Mn, g, e−fdv), where Mn is a complete n -dimensional Riemannian

manifold with metric g , f is a smooth real-valued function on Mn , and dv is the Riemannian volume density.

Smooth metric measure spaces carry a natural analog of the Laplace-Beltrami operator △ , the f -Laplacian,

which is also called drifting Laplacian or Witten-Laplacian, defined for a function u by △fu = △u−g(∇f,∇u) =

△u − ⟨∇f,∇u⟩ . The N-Bakry-Emery Ricci tensor is defined by RicNf = Ric + Hessf − 1
N df ⊗ df . A natural

question about smooth metric measure space is which of the results about the Ricci tensor and the Laplace-

Beltrami operator can be extended to the N-Bakry-Emery Ricci tensor and the f -Laplacian. For example, in

[15], Yang discussed the gradient estimates for the following parabolic equation,

∂

∂t
u = △u+ au log u+ bu,

on Riemannian manifolds. In [8], Huang and Ma considered the gradient estimates for the following parabolic

equation,

∂

∂t
u = △fu+ au log u+ bu,

on smooth metric measure spaces. Inspired by the discussions of the gradient estimate of the harmonic function

and positive solutions to linear heat flow on Riemannian manifolds, the authors in [1–3] discussed the gradient

estimates of the f -harmonic function and positive solutions to linear heat flow on smooth metric measure spaces.
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Motivated by the study of eigenvalue estimates for the Laplace-Beltrami operator on Riemannian manifolds,

the authors in [4,5,11,12,14] studied the eigenvalue estimates for drifting Laplacians on smooth metric measure
spaces.

In [10], Lu et al. obtained some gradient estimates for the following porous medium equation on

Riemannian manifolds with Ricci curvature bounded from below:

ut = △um, (1.1)

where m > 1. In [6], Huang and Li improved the results in [10]. In [7], Huang and Li studied the following

porous medium type equation,

ut = △fu
m, (1.2)

on smooth metric measure space. Under the assumption that the N -dimensional Bakry-Emery Ricci curvature

is bounded from below, Huang and Li obtained some gradient estimates that generalized the results in [6] and

[10].

Inspired by [6] and [7], we make further discussions of gradient estimates for positive solutions of equation

(1.2). For this purpose, we let

v =
m

m− 1
um−1, a =

(n+N)(m− 1)

(n+N)(m− 1) + 2
, b =

n+N

(n+N)(m− 1) + 2
. (1.3)

Theorem 1.1 Let (Mn, g, e−fdv) be a smooth metric measure space. Suppose that u is a positive solution to

(1.2). If RicNf (Bp(2R)) ≥ −K and K ≥ 0 , then on the ball Bp(R) we have

|∇v|2

v
− α(t)

vt
v

≤ 1

1 + a(α− 1)
{CHaα2

R2
(

bm2α2

2(α− 1)(1− a)
+ 3 +

√
KR) +

aα2

t
}, (1.4)

where C is a constant depending only on n and

H = sup
Bp(2R)×[0,T ]

(m− 1)v, α(t) = e2HKt.

Corollary 1.2 Let (Mn, g, e−fdv) be a smooth metric measure space with RicNf ≥ −K and K ≥ 0 . Suppose

that (Mn, g) is a complete noncompact Riemannian manifold and u is a positive solution to (1.2), then

|∇v|2

v
− α(t)

vt
v

≤ 1

1 + a(α− 1)

aα2(t)

t
, (1.5)

where α(t) = e2SKt , S = supMn×[0,T ](m− 1)v .

Theorem 1.3 Let (Mn, g, e−fdv) be a smooth metric measure space. Suppose that u is a positive solution to

(1.2). If RicNf (Bp(2R)) ≥ −K and K ≥ 0 , then on the ball Bp(R) we have

|∇v|2

v
− α(t)

vt
v

− φ(t) ≤ CHaα2(t)

R2
[(3 +

√
KR) +

bm2α2(t)

tanh(HKt)
], (1.6)
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where C is a constant depending only on n , α(t) = 1 + 2
3SKt , S = supMn×[0,T ](m− 1)v , and

H = sup
Bp(2R)×[0,T ]

(m− 1)v, φ(t) =
a

t
+ aSK +

a

3
(SK)2t+

λ

t2
, λ ≥ 0.

Corollary 1.4 Let (Mn, g, e−fdv) be a smooth metric measure space with RicNf ≥ −K and K ≥ 0 . Suppose

that (Mn, g) is a complete noncompact Riemannian manifold and u is a positive solution to (1.2), then

|∇v|2

v
− α(t)

vt
v

− φ(t) ≤ 0, (1.7)

where φ(t) and α(t) are defined in Theorem 1.3.

Remark 1 Obviously, Theorem 1.1 and Corollary 1.2 in this paper are better than Theorem 1.3 and Corollary

1.4 in [6], respectively.

Remark 2 Theorem 1.3 and Corollary 1.4 in this paper are more general than Theorem 1.4 and Corollary 1.7

in [6], respectively.

2. Some lemmas

To prove Theorem 1.1 and Theorem 1.3, we need some lemmas. Suppose that u is a positive solution to (1.2).

Let v = m
m−1u

m−1 . Direct calculation shows that

vt = mum−2△fu
m = (m− 1)v△fv + |∇v|2. (2.1)

Since v ̸= 0, then (2.1) is equivalent to

vt
v

= (m− 1)△fv +
|∇v|2

v
. (2.2)

Let L = ∂t − (m− 1)v△f and F = |∇v|2
v − α vt

v − φ . We have the following.

Lemma 2.1 Suppose that u is a positive solution to (1.2). Then

L(
vt
v
) = (m− 1)

vt
v
△fv +

vt
v

|∇v|2

v
+ 2m∇v∇(

vt
v
), (2.3)

L(
|∇v|2

v
) ≤ 2(m− 1)

|∇v|2

v
△fv −

2(m− 1)

N + n
|△fv|2

−2(m− 1)RicNf (∇v,∇v) + 2m∇v∇(
|∇v|2

v
) +

|∇v|4

v2
. (2.4)

Proof Direct calculation shows that

∇(
vt
v
) =

∇vt
v

− vt∇v

v2
. (2.5)

Therefore, we get

△(
vt
v
) =

1

v
△vt −

vt
v2

△v − 2

v2
∇v∇vt +

2vt
v3

|∇v|2, (2.6)
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and

(m− 1)v⟨∇f,∇(
vt
v
)⟩ = (m− 1)⟨∇f,∇vt⟩ − (m− 1)

vt
v
⟨∇f,∇v⟩. (2.7)

By (2.2), we have

∂t(
vt
v
) = (m− 1)∂t(△fv) + ∂t(

|∇v|2

v
) = (m− 1)△fvt +

2

v
∇v∇vt −

vt
v

|∇v|2

v
. (2.8)

According to (2.4), (2.5), (2.6), (2.7), and (2.8), we conclude that

L(
vt
v
) = ∂t(

vt
v
)− (m− 1)v△f (

vt
v
) = (m− 1)

vt
v
△fv +

vt
v

|∇v|2

v
+ 2m∇v∇(

vt
v
).

On the other hand, by (2.1) we get

∂t(
|∇v|2

v
) =

2v∇v∇vt − |∇v|2vt
v2

=
2∇v

v
∇((m− 1)v△fv + |∇v|2)− |∇v|2

v2
((m− 1)v△fv + |∇v|2)

= (m− 1)
|∇v|2

v
△fv + 2(m− 1)∇v∇△fv +

2∇v

v
∇|∇v|2 − |∇v|4

v2
. (2.9)

Direct calculation shows that

△f
|∇v|2

v
= △|∇v|2

v
− ⟨∇f,∇|∇v|2

v
⟩

=
1

v
△|∇v|2 − |∇v|2

v2
△v − 2

v2
∇v∇|∇v|2 + 2

v3
|∇v|4 − 1

v
⟨∇f,∇|∇v|2⟩+ |∇v|2

v2
⟨∇f,∇v⟩

=
1

v
△f |∇v|2 − |∇v|2

v2
△fv −

2

v2
∇v∇|∇v|2 + 2

v3
|∇v|4.

=
1

v
△f |∇v|2 − |∇v|2

v2
△fv −

2∇v

v
∇(

|∇v|2

v
). (2.10)

According to (2.9) and (2.10), we obtain

L(
|∇v|2

v
) = ∂t(

|∇v|2

v
)− (m− 1)v△f

|∇v|2

v

= 2(m− 1)(
|∇v|2

v
△fv +∇v∇△fv −

1

2
△f |∇v|2) + 2m∇v∇(

|∇v|2

v
) +

|∇v|4

v2
. (2.11)

According to [9,13], we have

1

2
△f |∇v|2 ≥ 1

N + n
|△fv|2 +∇v∇△fv +RicNf (∇v,∇v). (2.12)

By (2.11) and (2.12), we conclude that (2.4) is true. 2
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Lemma 2.2 ([7]) The function F satisfies the following inequality:

L(F ) ≤ −2(m− 1)

N + n
|△fv|2 − 2(m− 1)RicNf (∇v,∇v) + 2m∇v∇F

−((m− 1)△fv)
2 + (1− α)(

vt
v
)2 − α′ vt

v
− φ′. (2.13)

Proof For the reader’s convenience, we give the details of the proof of Lemma 2.2. By (2.3) and (2.4), we

have

L(F ) = L(
|∇v|2

v
)− αL(

vt
v
)− α′ vt

v
− φ′

≤ 2(m− 1)
|∇v|2

v
△fv −

2(m− 1)

N + n
|△fv|2 − 2(m− 1)RicNf (∇v,∇v)

+2m∇v∇(
|∇v|2

v
) +

|∇v|4

v2
− α(m− 1)

vt
v
△fv − α

vt
v

|∇v|2

v

−2αm∇v∇(
vt
v
)− α′ vt

v
− φ′. (2.14)

By the definition of F , we have

2m∇v∇(
|∇v|2

v
)− 2αm∇v∇(

vt
v
) = 2m∇v∇(

|∇v|2

v
− α

vt
v
) = 2m∇v∇F. (2.15)

According to (2.2), we get

|∇v|4

v2
− α

vt
v

|∇v|2

v
= (1− α)

|∇v|2

v

vt
v

− (m− 1)
|∇v|2

v
△fv. (2.16)

Using (2.2) again, we arrive at

(m− 1)
|∇v|2

v
△fv − α(m− 1)

vt
v
△fv + (1− α)

|∇v|2

v

vt
v

=
|∇v|2

v
(
vt
v

− |∇v|2

v
)− α

vt
v
(
vt
v

− |∇v|2

v
) + (1− α)

|∇v|2

v

vt
v

= 2
|∇v|2

v

vt
v

− |∇v|4

v2
− α(

vt
v
)2

= −(α
vt
v

− |∇v|2

v
)2 + (1− α)(

vt
v
)2

= −((m− 1)△fv)
2 + (1− α)(

vt
v
)2. (2.17)

Putting (2.15), (2.16), and (2.17) into (2.14), we conclude that (2.13) is true.
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3. The proof of Theorem 1.1

Let F = |∇v|2
v − α vt

v , where α = e2HKt . We consider F in the geodesic ball Bp(2R), which is centered at p

with radius 2R . Since RicNf (Bp(2R)) ≥ −K , by (2.13) and the definition of H and a , we have

L(F ) ≤ −2

(m− 1)(N + n)
((m− 1)△fv)

2 + 2vK
|∇v|2

v
+ 2m∇v∇F

−((m− 1)△fv)
2 + (1− α)(

vt
v
)2 − α′ vt

v

≤ −1

a
((m− 1)△fv)

2 + 2HK
|∇v|2

v
+ 2m∇v∇F + (1− α)(

vt
v
)2 − α′ vt

v
.

Since L(α−1F ) = (α−1)′F + α−1L(F ) and α′ = 2HKα , then

L(α−1F ) ≤ −1

a
α−1((m− 1)△fv)

2 + 2mα−1∇v∇F + (1− α)α−1(
vt
v
)2. (3.1)

By (2.2) and the definition of F , we get

(m− 1)△fv = (α−1 − 1)
|∇v|2

v
− α−1F , α

vt
v

=
|∇v|2

v
− F. (3.2)

Putting (3.2) into (3.1), we obtain

L(α−1F ) ≤ − (1− α)2

aα3

|∇v|4

v2
− 1

aα3
F

2
+

2(1− α)

aα3

|∇v|2

v
F +

2m

α
∇v∇F

+
1− α

α3

|∇v|4

v2
+

1− α

α3
F

2 − 2(1− α)

α3

|∇v|2

v
F . (3.3)

According to (2.4) and (2.5) in [8], we can construct a cut-off function ϕ such that 0 ≤ ϕ ≤ 1, sup(ϕ) ⊂
Bp(2R), ϕ|Bp(R) = 1 and

|∇ϕ|2

ϕ
≤ C

R2
, −△fϕ ≤ C

R2
(1 +R

√
K), (3.4)

where C is a constant depending only on n . Set G = tϕα−1F . Assume that G achieves its maximum at the

point (x0, s) ∈ Bp(2R)× [0, T ] and assume G(x0, s) > 0. By the maximum principle, we have

∇G = 0, L(G) ≥ 0, ∇(α−1F̃ ) = −α−1F̃

ϕ
∇ϕ

at the point (x0, s), and

0 ≤ L(G) = sϕL(α−1F )− (m− 1)v
△fϕ

ϕ
G+ 2(m− 1)v

|∇ϕ|2

ϕ2
G+

G

s

≤ sϕ{− 1

aα3
F

2
+

2(1− α)

aα3

|∇v|2

v
F +

2m

α
∇v∇F +

1− α

α3
F

2 − 2(1− α)

α3

|∇v|2

v
F}
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−(m− 1)v
△fϕ

ϕ
G+ 2(m− 1)v

|∇ϕ|2

ϕ2
G+

G

s

= − 1

aαsϕ
G2 +

2(1− α)

aα2

|∇v|2

v
G− 2m∇v

∇ϕ

ϕ
G+

1− α

αsϕ
G2 − 2(1− α)

α2

|∇v|2

v
G

−(m− 1)v
△fϕ

ϕ
G+ 2(m− 1)v

|∇ϕ|2

ϕ2
G+

G

s

≤ −1 + a(α− 1)

aαsϕ
G2 +

2(1− α)

aα2

|∇v|2

v
G− 2(1− α)

α2

|∇v|2

v
G

+2
mH

1
2

(m− 1)
1
2

|∇ϕ|
ϕ

|∇v|
v

1
2

G−H
△fϕ

ϕ
G+ 2H

|∇ϕ|2

ϕ2
G+

G

s
. (3.5)

Multiplying both sides of (3.5) by aαsϕ
(1+a(α−1))G , we get

G(x, T ) ≤ G(x0, s) ≤
1

1 + a(α− 1)
{2(1− α)(1− a)

aα
sϕ

|∇v|2

v

+2
mH

1
2

(m− 1)
1
2

asϕ|∇ϕ| |∇v|
v

1
2

−Hasα△fϕ+ 2Hasα
|∇ϕ|2

ϕ
+ aαϕ}. (3.6)

By (3.4), (3.5), and the inequality 2xy ≤ x2 + y2 , similar to the proof of Theorem 1.2 in [6] we have

F (x, T ) ≤ 1

1 + a(α− 1)
{( bm2Haα4

2(α− 1)(1− a)
+ 3Haα2)

C

R2
+Haα2

√
K

C

R
+

aα2

T
}.

Since T is arbitrary, we obtain

F (x, T ) ≤ 1

1 + a(α− 1)
{CHaα2

R2
(

bm2α2

2(α− 1)(1− a)
+ 3 +

√
KR) +

aα2

T
}.

Thus, the proof of Theorem 1.1 is complete. Letting R → ∞ in (1.4), we get (1.5). Therefore, we conclude

that Corollary 1.2 is true. 2

4. The proof of Theorem 1.3

We find that φ(t) = a
t + aSK + a

3 (SK)2t+ λ
t2 and α(t) = 1 + 2

3SKt satisfy the following equations:{
− 2

tφ+ a( 1t +HK)2 − φ′ = 0,
2( 1t +HK)− α′ = 2α

t .
(4.1)

On the other hand, by (2.2) and the definition of F , φ(t), and α(t) we get

(m− 1)△fv + a(
1

t
+HK) = − 1

α
{F + φ+ (α− 1)

|∇v|2

v
− aα(

1

t
+HK)}

= − 1

α
{F + (α− 1)

|∇v|2

v
− (

2a

3
HK +

a

3
(HK)2t− λ

t2
)}.
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Therefore, similar to (5.4) in [6] and some discussions in Section 2 and Section 3, we have

L(F ) ≤ − 1

aα2
{F + (α− 1)

|∇v|2

v
− (

2a

3
HK +

a

3
(HK)2t− λ

t2
)}2 − 2

t
F + 2m∇v∇F.

Construct a cut-off function ϕ as that in Section 3. Define G = β(t)ϕF . Assume that G achieves its maximum

at the point (x0, s) ∈ Bp(2R)× [0, T ] and assume G(x0, s) > 0. Similar to (5.6) in [6], we conclude that

G(x0, s) ≤
αβ

s
ϕ{2

3
(2HKs+ (HK)2s2 − λ

s
) + sα2(

β′

β
− 2

s
)}

+aα2βH{−△fϕ+ 2
|∇ϕ|2

ϕ
+

bm2α2

2(α− 1)

|∇ϕ|2

ϕ
}. (4.2)

Let β(t) = tanh(HKt), similar to [6] we have

2

3
(2HKs+ (HK)2s2 − λ

s
) + sα2(

β′

β
− 2

s
) ≤ 0. (4.3)

By (3.4), (4.2), and (4.3), we get

G(x0, s) ≤ {Maα2(T )(3
C

R2
+

C
√
K

R
) +

CMabm2α4(T )

R2
}.

Thus, similar to the discussions of (5.7) in [6], we affirm that Theorem 1.3 holds. Letting R → ∞ in (1.6), we

get (1.7). Therefore, we conclude that Corollary 1.4 is true.
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