
Turk J Math

(2014) 38: 1038 – 1049

c⃝ TÜBİTAK
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1. Introduction

In the context of Riemannian geometry, the tangent bundle TM of a Riemannian manifold (M, g) was classically

equipped with the Sasaki metric gS , which was introduced in 1958 by Sasaki [14]. The study of the relationship

between the geometry of a manifold (M, g) and that of its tangent bundle TM equipped with the Sasaki

metric gS has shown some kinds of rigidity (see [7, 9]). Other (classes of) metrics defined by the various kinds

of classical lifts of the metric g from M to TM were defined in [19], and then geometers obtained interesting

results related to these metrics involving the different aspects and concepts of differential geometry.

If (M,J, g) is an almost Hermitian manifold, its tangent bundle TM is also an almost Hermitian manifold

with almost Hermitian structure (HJ, gS), where
HJ is the horizontal lift of J [19]. In [20] (see also [21, 22]),

Zayatuev studied the almost Hermitian structure on TM given by (HJ, g̃), where the metric g̃ is defined by

g̃
(
HX,HY

)
= fg (X,Y ) ,

g̃
(
HX,V Y

)
= g̃

(
VX,HY

)
= 0,

g̃
(
VX,V Y

)
= g (X,Y )

for all vector fields X and Y on M , and f > 0, f ∈ C∞(M). For f = 1, it follows that g̃ = gS , i.e. the

metric g̃ is a generalization of gS .

For a given Riemannian metric g on a differentiable manifold M , the complete lift Cg and vertical lift
Vg of g are defined respectively as follows:

(a)

Cg
(
HX,HY

)
= 0,

Cg
(
HX,V Y

)
= Cg

(
VX,HY

)
= g (X,Y ) ,

Cg
(
VX,V Y

)
= 0,
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(b)

Vg
(
HX,HY

)
= g (X,Y ) ,

Vg
(
HX,V Y

)
= Vg

(
VX,HY

)
= 0,

Vg
(
VX,V Y

)
= 0

for all vector fields X and Y on M . Moreover, note that Cg is a pseudo-Riemannian metric on TM and
Vg is a degenerate metric on TM . As a generalization of the complete lift metric, in the present paper, we

consider a family of metrics on TM . Let (M, g) be a Riemannian manifold and f be a nonzero differentiable

function on (M, g). On TM we define a deformation of the complete lift metric by G̃f = Cg+ V(fg). We call

the metric G̃f a deformed complete lift metric. This paper can be considered as a contribution to the topic,

considering for study a special new family of metrics on the tangent bundle constructed from the base metric

and generated by a nonzero differentiable function on M . It is worth mentioning that a metric from this new

family is g -natural only if the generating function is constant. Thus, the considered family is far from being a

subfamily of the class of the so-called g-natural metrics (for g -natural metrics, see [1, 4, 8, 10, 12, 13]). The

synectic lift of g on M to TM is of the form G̃ = Cg + Va (Va-vertical lift of symmetric (0, 2)-tensor field)

and was first considered in [16] and then studied in [2, 5, 11]. The metric G̃f is a particular case of the synectic

lift metric G̃ . However, the study of the metric G̃f is remarkable in some sense. In fact, the metric G̃f has

permitted us to establish an almost complex Norden structure on the tangent bundle (see Theorem 5.1) and

the obtained results related to the metric G̃f by means of the conditions represented by relations involving

the function f and its derivative are also quite interesting (see Theorems 3.2, 3.3, 3.5, 4.2, and 5.2). Finally,

it should be noted that the properties studied in this paper have not yet been considered for the synectic lift

metric.

All manifolds, tensor fields, and connections in this paper are always assumed to be differentiable of class

C∞ . Moreover, we denote by ℑp
q(M) the set of all tensor fields of type (p, q) on M , and by ℑp

q(TM) the

corresponding set on TM .

2. Preliminaries

Let M be an n-dimensional Riemannian manifold with a Riemannian metric g and denote by π : TM → M

its tangent bundle with fiber the tangent spaces to M . TM is then a 2n -dimensional smooth manifold and

some local charts induced naturally from local charts on M may be used. Namely, a system of local coordinates

(U, xi) in M induces on TM a system of local coordinates (π−1 (U) , xi, xī = yi), where (xi), i = 1, ..., n is a

local coordinate system defined in the neighborhood U and (yi) is the Cartesian coordinates in each tangent

space TPM at an arbitrary point P in U with respect to the natural basis
{

∂
∂xi |P

}
. Summation over repeated

indices is always implied.

Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M . The vertical lift VX, the

horizontal lift HX , and the complete lift CX of X are then given respectively by

VX = Xi∂i, (2.1)

HX = Xi∂i − yjΓi
jkX

k∂i (2.2)

and
CX = Xi∂i + yj∂jX

i∂i (2.3)
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with respect to the induced coordinates, where ∂i =
∂

∂xi , ∂i =
∂

∂yi and Γi
jk are the coefficients of the Levi-Civita

connection ∇ of g .

The bracket operation of vertical and horizontal vector fields is given by the following formulas:
[
HX,HY

]
= H [X,Y ]− V (R(X,Y )u)[

HX,V Y
]
= V (∇XY )[

VX,V Y
]
= 0

for all X,Y ∈ ℑ1
0(M) [3], where R is the Riemannian curvature of g defined by

R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Given a (p, q)-tensor field S on M , q > 1, we then consider a tensor field γS ∈ ℑp
q−1(TM) on π−1 (U)

by

γS = (ysS
j1...jp
si2...iq

)∂j1 ⊗ ...⊗ ∂jp ⊗ dxi2 ⊗ ...⊗ dxiq

with respect to the induced coordinates (xi, yi)([19], p. 12). The tensor field γS defined on each π−1 (U)

determines global tensor field on TM . For any A ∈ ℑ1
1(M), we easily see that γA has components, with

respect to the induced coordinates (xi, yi),

(γA) = ysAi
s∂i. (2.4)

With the connection ∇ of g on M , we can introduce on each induced coordinate neighborhood π−1(U)

of TM a frame field that is very useful in our computation. The adapted frame on π−1(U) consists of the

following 2n linearly independent vector fields:

Ej = ∂j − ysΓh
sj∂h,

Ej = ∂j .

We write the adapted frame as {Eβ} =
{
Ej , Ej

}
. A direct calculation proves the following lemma.

Lemma 2.1 ([19], p. 101) The Lie brackets of the adapted frame of TM satisfy the following identities:
[Ej , Ei] = ysR m

ijs Eh

[Ej , Ei] = Γh
jiEh[

Ej , Ei

]
= 0

(2.5)

where R a
ijb denotes the components of the curvature tensor of M .

Using Eqs. (2.1), (2.2), (2.3), and (2.4), we have

HX = XjEj ,

VX = XjEj ,

CX = XjEj + ys∇sX
jEj

and

γA = ysAj
sEj

with respect to the adapted frame {Eβ} .
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3. The Levi-Civita connection of the deformed complete lift metric G̃f

In this section, we give the Levi-Civita connection ∇̃ of the tangent bundle TM with the deformed complete

lift metric G̃f and study fiber-preserving Killing vector fields on TM . The deformed complete lift metric G̃f

is defined by

G̃
(
HX,HY

)
= fg (X,Y )

G̃
(
HX,V Y

)
= G̃

(
VX,HY

)
= g (X,Y )

G̃
(
VX,V Y

)
= 0

for all X,Y ∈ ℑ1
0(M). We now give expressions of the deformed complete lift metric G̃f and its inverse G̃ −1

f

with respect to the adapted frame {Eβ} :

G̃f =

(
fgij gij
gij 0

)
and G̃−1

f =

(
0 gjh

gjh −fgjh

)
. (3.1)

Theorem 3.1 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . The corresponding Levi-Civita connection ∇̃ then satisfies the following equations:
∇̃Ei Ej = Γh

ijEh + {ysR h
sij + 1

2 (fiδ
h
j + fjδ

h
i − gijf

h
· )}Eh,

∇̃Ei Ej = Γh
ijEh,

∇̃Ei
Ej = 0,

∇̃Ei
Ej = 0

with respect to the adapted frame {Eβ} . Here, Γh
ij and R h

sij are respectively the components of the Levi-Civita

connection and Riemannian curvature of g , and fi = ∂if , fh
· = gmhfm .

Proof Using ∇̃EαEβ = Γ̃γ
αβEγ and the Koszul formula

2G̃f (∇̃X̃ Ỹ , Z̃) = X̃(G̃f (Ỹ , Z̃)) + Ỹ (G̃f (Z̃, X̃))− Z̃(G̃f (X̃, Ỹ ))− G̃f (X̃, [Ỹ , Z̃])

+G̃f (Ỹ , [Z̃, X̃]) + G̃f (Z̃, [X̃, Ỹ ])

for all X̃, Ỹ , Z̃ ∈ ℑ1
0(TM), one can verify the Koszul formula for pairs X̃ = Ei, Ei and Ỹ = Ej , Ej and Z̃ =

Ek, Ek . In calculations, the formulas in Eqs. (2.5) and (3.1) and the first Bianchi identity for R should be

applied. We omit standard calculations. 2

If we denote the horizontal and vertical projections by H and V , respectively, we can then say the following:

i) The vertical distribution V TM is totally geodesic in TTM if H∇̃Ei
Ej = 0,

ii) The horizontal distribution HTM is totally geodesic in TTM if V∇̃EiEj = 0.

Hence, in view of Theorem 3.1, we can say the following result.

Theorem 3.2 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . Then:

i) The vertical distribution V TM is totally geodesic in TTM.

ii) The horizontal distribution HTM is totally geodesic in TTM if and only if (M, g) is locally flat and

f = C (const.) .
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Proof i) From the last relation in Theorem 3.1, we get H∇̃Ei
Ej = 0. Thus, V TM is totally geodesic.

ii) From the first relation in Theorem 3.1, we have

V∇̃EiEj = {ysR h
sij +

1

2
(fiδ

h
j + fjδ

h
i − gijf

h
· )}Eh. (3.2)

Let V∇̃EiEj = 0, i.e. the horizontal distribution HTM be totally geodesic, and then by Eq. (3.2) we get

ysR h
sij +

1

2
(fiδ

h
j + fjδ

h
i − gijf

h
· ) = 0. (3.3)

Operating ∂k to Eq. (3.3), we obtain R h
kij = 0, i.e. (M, g) is locally flat. In this case, Eq. (3.3) reduces to

fiδ
h
j + fjδ

h
i − gijf

h
· = 0,

from which, contracting i and h , it follows that ∂jf = fj = 0. Since this is true for any j, we can say f = C

(const.).

Conversely, if (M, g) is locally flat and f = C (const.), then by Eq. (3.2), V∇̃Ei
Ej = 0, i.e. HTM is

totally geodesic. 2

The Levi-Civita connection C∇ of the complete lift metric Cg is given by
C∇Ei Ej = Γh

ijEh + ysR h
sij Eh,

C∇Ei Ej = Γh
ijEh,

C∇Ei
Ej = 0,

C∇Ei
Ej = 0

with respect to the adapted frame {Eβ} . On comparing the Levi-Civita connections of the complete lift metric

Cg and the deformed complete lift metric G̃f , we have the result below.

Theorem 3.3 Let (M, g) be a Riemannian manifold and TM be its tangent bundle. The Levi-Civita con-

nections of the complete lift metric Cg and the deformed complete lift metric G̃f coincide if and only if

f = C(const.) .

Proof The Levi-Civita connections of the complete lift metric Cg and the deformed complete lift metric G̃f

coincide if and only if fiδ
h
j +fjδ

h
i −gijf

h
· = 0, from which f = C (const.) (see (ii) in proof of Theorem 3.1). 2

Next, we study fiber-preserving Killing vector fields on TM with respect to the deformed complete lift metric

G̃f . Let X̃ have the components (V h, V h) with respect to the adapted frame {Eβ} ; then X̃ is fiber-preserving

if and only if V h depends only on the variables (xh). First, we state following lemma.

Lemma 3.4 The Lie derivative of the deformed complete lift metric G̃f with respect to the fiber-preserving

vector field X̃ = V hEh + V hEh is in the following form:

LX̃G̃f = {LV (fgij)− gim(ybV cR m
jcb − V bΓm

bj − (EjV
m))

−gmj(y
bV cR m

icb − V bΓm
bi − (EiV

m))}dxidxj

+2{LV gij − gim∇jV
m − gim(EjV

m)}dxiδyj
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where LV gij and ∇iV
m denote the components of the Lie derivative LV g and the covariant derivative of V ,

respectively.

Proof The proof is similar to that in [17], so we omit it. 2

Theorem 3.5 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . A vector field X̃ on TM is a fiber-preserving Killing vector field with respect to G̃f

if and only if

X̃ = CV + VB + γA,

where B = (Bh), V = (V h) ∈ ℑ1
0(M) and A = (Ah

i ) ∈ ℑ1
1(M) such that

(i) A = (Am
s ) = −gim(LV gis) ,

(ii) LV Γ
m
ij = 0 , i.e. V is an infinitesimal affine transformation on M ,

(iii) (V m∂mf)gij + fLV gij + LBgij = 0.

Proof A vector field X̃ is a Killing vector field on TM with respect to G̃f if and only if LX̃G̃f = 0. By

virtue of Lemma 3.4, we say that X̃ = V hEh + V hEh is a fiber-preserving Killing vector field on TM with

respect to G̃f if and only if the following relations hold:

LV (fgij)− gim(ybV cR m
jcb − V bΓm

bj − (EjV
m)) (3.4)

−gmj(y
bV cR m

icb − V bΓm
bi − (EiV

m)) = 0

and

LV gij − gim∇jV
m − gim(EjV

m) = 0. (3.5)

From Eq. (3.5), since (EjV
m) depends only on the variables (xh), we can put

V h = ysAh
s +Bh, (3.6)

where Ah
s and Bh are certain functions that depend only on the variables (xh) and also respectively are the

components of a (1, 1)-tensor field A and a vector field B on M . Hence, the fiber-preserving Killing vector

field X̃ on TM can be expressed in the following form:

X̃ = V hEh + V hEh = V hEh + {ysAh
s +Bh}Eh.

Substituting Eq. (3.6) into Eqs. (3.4) and (3.5), we obtain

LV (fgij) + gim∇jB
m + gjm∇iB

m = 0, (3.7)

V c(Rcjsi +Rcisj) + gim∇jA
m
s + gjm∇iA

m
s = 0, (3.8)

LV gij − gim∇jV
m − gimAm

j = 0. (3.9)
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GEZER and ÖZKAN/Turk J Math

From Eq. (3.9), we have

Am
s = ∇sV

m − gim(LV gis).

Substituting the above equation into Eq. (3.8), we get

0 = V c(Rcjsi +Rcisj) +∇j(gim∇sV
m − LV gis) +∇i(gjm∇sV

m − LV gsj)

= V c(Rcjsi +Rcisj) + gim∇j∇sV
m −∇jLV gis + gjm∇i∇sV

m −∇iLV gsj

= V c(Rcjsi +Rcisj) + gim(LV Γ
m
js − V cR m

cjs )− (LV Γ
m
ij gms + LV Γ

m
jsgim)

+gjm(LV Γ
m
is − V cR m

cis )− (LV Γ
m
ij gms + LV Γ

m
isgjm)

= −2(LV Γ
m
ij )gms,

from which it follows that LV Γ
m
ij = 0, i.e. V is an infinitesimal affine transformation on M .

From Eq. (3.7), we have

0 = LV (fgij) + gim∇jB
m + gjm∇iB

m

= (V m∂mf)gij + fLV gij + LBgij .

Conversely, if Bh, V h , and Ah
i are given so that they satisfy (i)-(iii), we easily see that

X̃ = V hEh + V hEh = V hEh + {ys(∇sV
h − gih(LV gis)) +Bh}Eh

= CV + VB + γA

is a fiber-preserving Killing vector field on (TM, G̃f ). 2

4. Some curvature properties of the deformed complete lift metric G̃f

We now turn our attention to the Riemannian curvature tensor R̃ of the tangent bundle TM equipped with the

deformed complete lift metric G̃f . The Riemannian curvature tensor of the tangent bundle with the deformed

complete lift metric G̃f is defined by

R̃
(
X̃, Ỹ

)
Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃ Z̃ − ∇̃[X̃,Ỹ ]Z̃

for all X̃, Ỹ , Z̃ ∈ ℑ1
0(TM). Using Eq. (2.5) and Theorem 3.1, standard calculations give the following

proposition.

Proposition 4.1 Let (M, g) be a Riemannian manifold and R̃ be the Riemannian curvature tensor of the

tangent bundle TM equipped with the deformed complete lift metric G̃f . Then the following formulas hold:
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R̃(Em, Ei)Ej = 0, (4.1)

R̃(Em, Ei)Ej = 0,

R̃(Em, Ei)Ej = 0,

R̃(Em, Ei)Ej = R h
mij Eh,

R̃(Em, Ei)Ej = R h
mij Eh,

R̃(Em, Ei)Ej = R h
mij Eh + [ys(∇mR h

sij −∇iR
h

smj )

+
1

2
((∇mfi −∇ifm)δhj + (∇mfj)δ

h
i − (∇ifj)δ

h
m

+gmj(∇if
h
· )− gij(∇mfh

· ))]Eh

with respect to the adapted frame {Eβ} .

Next we compare the geometries of the manifold (M, g) and its tangent bundle (TM, G̃f ).

Theorem 4.2 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . Then TM is locally flat if and only if M is locally flat and the function f satisfies

the condition

(∇mfi −∇ifm)δhj + (∇mfj)δ
h
i − (∇ifj)δ

h
m + gmj(∇if

h
· )− gij(∇mfh

· ) = 0, (4.2)

where ∇ is the Levi-Civita connection of g .

Proof It follows from Proposition 4.1 that if (M, g) is locally flat and the condition in Eq. (4.2) holds, then

(TM, G̃f ) is locally flat. Conversely, if we assume R̃ = 0, by means of the last equation in Eq. (4.1) in the

point (x, 0) we get

R h
mij Eh + 1

2 ((∇mfi −∇ifm)δhj + (∇mfj)δ
h
i − (∇ifj)δ

h
m

+gmj(∇if
h
· )− gij(∇mfh

· ))Eh = R̃(x,0)(Em, Ei)Ej = 0,

from which R h
mij = 0 and (∇mfi − ∇ifm)δhj + (∇mfj)δ

h
i − (∇ifj)δ

h
m + gmj(∇if

h
· ) − gij(∇mfh

· ) = 0. This

completes the proof. 2

Next, we calculate the Ricci tensor and the scalar curvature of (TM, G̃f ). Let R̃IJ = R̃ M
MIJ denote the Ricci

tensor of the deformed complete lift metric G̃f . It follows that, from the equations in (4.1), the components of

the Ricci tensor R̃IJ are characterized by

R̃ij = 2Rij , R̃ij = 0, (4.3)

R̃ij = 0, R̃ij = 0.

Let X̃ and Ỹ be vector fields of TM. The curvature operator R̃(X̃, Ỹ ) is a differential operator on

TM. Similarly, for vector fields X and Y of M , R(X,Y ) is a differential operator on M . Now we operate
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the curvature operator to the Ricci tensor. The tensors (R̃(X̃, Ỹ )R̃ic)(Z̃, W̃ ) and (R(X,Y )Ric)(Z,W ) have

coefficients

((R̃(X̃, Ỹ )R̃ic)(Z̃, W̃ ))αβγθ = R̃ ε
αβγR̃εθ + R̃ ε

αβθ R̃γε

and

((R(X,Y )Ric)(Z,W ))ijkl = R p
ijk Rpl +R p

ijl Rkp,

respectively. By putting α = i, β = j, γ = k, θ = l , it follows that

((R̃(X̃, Ỹ )R̃ic)(Z̃, W̃ ))ijkl = 2R p
ijk Rpl + 2R p

ijl Rkp

= 2((R(X,Y )Ric)(Z,W ))ijkl,

with all of the others being 0. Therefore, we get the following.

Theorem 4.3 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . Then (R̃(X̃, Ỹ )R̃ic)(Z̃, W̃ ) = 0 if and only if (R(X,Y )Ric)(Z,W ) = 0 .

Let S̃c denote the scalar curvature of the deformed complete lift metric G̃f . It also follows from Eqs. (3.1) and

(4.3) that the scalar curvature of the deformed complete lift metric G̃f is given by

S̃c = G̃IJ
f R̃IJ = G̃ij

f R̃ij + G̃ij
f R̃ij + G̃ij

f R̃ij + G̃ij
f R̃ij = 0.

Hence, we have the following.

Theorem 4.4 Let (M, g) be a Riemannian manifold and TM be its tangent bundle equipped with the deformed

complete lift metric G̃f . Then (TM, G̃f ) is space of constant scalar curvature 0 .

5. Kähler-Norden structures on the tangent bundle

Let (M2n, J) be an almost complex manifold with an almost complex structure J. A pseudo-Riemannian metric

g of signature (n, n) on M2n is called a Norden metric if

g(JX, JY ) = −g(X,Y )

or equivalently

g(JX, Y ) = g(X, JY )

for any X, Y ∈ ℑ1
0(M2n). Next, the triple (M2n, J, g) is called an almost complex Norden manifold. A

Kähler-Norden (anti-Kähler) manifold can be defined as a triple (M2n, J, g) that consists of a smooth manifold

M2n endowed with an almost complex structure J and a Norden metric g such that ∇J = 0, where

∇ is the Levi-Civita connection of g . It is well known that the condition ∇J = 0 is equivalent to C-

holomorphicity (analyticity) of the Norden metric g [6], i.e. ΦJg = 0, where ΦJ is the Tachibana operator

[15, 18]: (ΦJg)(X,Y, Z) = (JX)(g(Y, Z)) − X(g(JY, Z)) + g((LY J)X,Z) + g(Y, (LZ J)X). Moreover, note

that G(Y, Z) = g(JY, Z) is the twin Norden metric. Since in dimension 2 a Kähler-Norden manifold is flat, we

assume in the sequel that dim M ≥ 4.
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Let M be a manifold with an almost complex structure J and a pseudo-Riemannian metric g . The

horizontal lift HJ ∈ ℑ1
1(TM) is defined by the formulas

{
HJ(HX) = H(JX),
HJ( VX) = V(JX)

for any X ∈ ℑ1
0(M) and J ∈ ℑ1

1(M). Moreover, it is well known that if J is an almost complex structure on

M , then its horizontal lift HJ is an almost complex structure on TM [19]. Also note that the signature of the

deformed complete lift metric G̃f is (n, n). We calculate

A
(
X̃, Ỹ

)
= G̃f

(
HJX̃, Ỹ

)
− G̃f

(
X̃, HJỸ

)

for any X̃, Ỹ ∈ ℑ1
0 (TM), and we then get

A
(
HX,HY

)
= G̃f

(
HJHX,HY

)
− G̃f

(
HX,HJHY

)
= G̃f

(
H(JX),HY

)
− G̃f

(
HX,H(JY )

)
= fg (JX, Y )− fg (X,JY ) ,

A
(
VX,HY

)
= G̃f

(
HJVX,HY

)
− G̃f

(
VX,HJHY

)
= G̃f

(
V(JX),HY

)
− G̃f

(
VX,H(JY )

)
= g (JX, Y )− g (X,JY ) ,

A
(
VX,V Y

)
= G̃f

(
HJVX,V Y

)
− G̃f

(
VX,HJVY

)
= G̃f

(
V(JX),V Y

)
− G̃f

(
VX, V(JY )

)
= 0.

The last equations show that G̃f is pure with respect to HJ if and only if g is pure with respect to J . Hence,

we have the following theorem.

Theorem 5.1 Let (M, g) be a pseudo-Riemannian manifold and TM be its tangent bundle equipped with the

deformed complete lift metric G̃f and the almost complex structure HJ . The triple
(
TM,HJ, G̃f

)
is an almost

complex Norden manifold if and only if the triple (M,J, g) is an almost complex Norden manifold.

Determining both the deformed complete lift metric G̃f and the almost complex structure HJ , and using the

facts VX(fg(Y, Z)) = 0 and HX(fg(Y, Z)) = X(f)g(Y, Z) + fX(g(Y, Z)), we calculate

(ΦHJG̃f )(X̃, Ỹ , Z̃) = (HJX̃)(G̃f (Ỹ , Z̃))− X̃(G̃f (
HJỸ , Z̃))

+G̃f ((LỸ
HJ)X̃, Z̃) + G̃f (Ỹ , (LZ̃

HJ)X̃)
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for all X̃, Ỹ , Z̃ ∈ ℑ1
0(TM). We then obtain the following equations:

(ΦHJG̃f )(
VX, VY,HZ) = 0,

(ΦHJG̃f )(
VX, VY, VZ) = 0,

(ΦHJG̃f )(
VX,HY, VZ) = 0,

(ΦHJG̃f )(
VX,HY,HZ) = g((∇Y J)X,Z) + g(Y, (∇ZJ)X),

(ΦHJG̃f )(
HX, VY,HZ) = (ΦJg)(X,Y, Z)− g((∇Y J)X,Z),

(ΦHJG̃f )(
HX, VY, VZ) = 0,

(ΦHJG̃f )(
HX,HY,HZ) = (JX)(f)g(Y, Z)−X(f)g(JY, Z) + f((ΦJg)(X,Y, Z))

+g(JR(Y,X)u−R(Y, JX)u,Z)

+g(Y, JR(Z,X)u−R(Z, JX)u),

(ΦHJG̃f )(
HX,HY, VZ) = (ΦJg)(X,Y, Z)− g(Y, (∇ZJ)X).

It is well known that the equation ΦJg = 0 is equivalent to ∇J = 0, and the Riemann curvature R of a

Kähler-Norden manifold is totally pure. Therefore, from the equations above, we have the following result.

Theorem 5.2 Let (M, g) be a pseudo-Riemannian manifold and TM be its tangent bundle equipped with the

deformed complete lift metric G̃f and the almost complex structure HJ . The triple
(
TM,HJ, G̃f

)
is a Kähler-

Norden manifold if and only if the triple (M,J, g) is a Kähler-Norden manifold and the function f satisfies the

condition
(JX)(f)g(Y, Z)−X(f)g(JY, Z) = 0.
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