http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: 103 - 111
(c) TÜBITTAK
doi:10.3906/mat-1402-76

On p-schemes with the same degrees of thin radical and thin residue

Fatemeh RAEI BARANDAGH, Amir RAHNAMAI BARGHI*

Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Received: 26.02.2014 • Accepted: 01.09.2014 • Published Online: $19.01 .2015 \quad \bullet \quad$ Printed: 13.02 .2015

Abstract

Let p and $n>1$ be a prime number and an integer, respectively. In this paper, first we show that any p-scheme whose thin radical and thin residue are equal is isomorphic to a fission of the wreath product of 2 thin schemes. In addition, we characterize association p-schemes whose thin radical and thin residue each have degree equal to p. We also characterize association p-schemes on p^{n} points whose thin radical and thin residue each have degree equal to p^{n-1}, and whose basis relations each have valency 1 or p^{n-1}. Moreover, we show that such schemes are Schurian.

Key words: Association scheme, p-scheme, thin radical, thin residue

1. Introduction

Association schemes are related to a variety of combinatorial objects (codes, designs, graphs, etc.). In [6], schemes are presented as a natural generalization of permutation groups. In this direction, p-schemes correspond to p-groups, where p is a prime number. The concept of p-schemes was given in [6] as follows: a scheme \mathcal{C} is called p-scheme if the cardinality of each basis relation of \mathcal{C} is a power of p. Recently some algebraic and combinatorial properties of p-schemes were studied in $[2,3,6,7,8]$.

In this paper we deal with association schemes and refer to them as schemes. Given a scheme \mathcal{C}, one can define its thin radical $\mathcal{O}_{\vartheta}(\mathcal{C})$ and thin residue $\mathcal{O}^{\vartheta}(\mathcal{C})$. Suppose that \mathcal{C} is a p-scheme; this implies that the thin radical $\mathcal{O}_{\vartheta}(\mathcal{C})$ of \mathcal{C} is a nontrivial p-group [6, Theorem 2.2]. Thus, the degree of its thin radical is a power of p. All p-schemes of degree p are thin, and they are unique up to isomorphism; we denote this unique p-scheme by T_{p}. Moreover, the number of isomorphism classes of p-schemes of degree p^{2} is 3 , which are $T_{p^{2}}, T_{p} \otimes T_{p}$, and $T_{p} \imath T_{p}$. Thus, any p-scheme on V with $|V| \in\left\{1, p, p^{2}\right\}$ is Schurian [2, p. 2]. In [1], non-Schurian p-schemes of degree p^{3} were constructed. In [2], p-schemes with $|V|=p^{3}$ and thin residue of degree p^{2} were studied. In [7], it was shown that any p-scheme on V is isomorphic to a fission of the wreath product of n copies of T_{p}, where $|V|=p^{n}$.

Our main results show that any p-scheme whose thin radical and thin residue are equal is isomorphic to a fission of the wreath product of 2 thin schemes. Moreover, we provide a characterization of p-schemes whose degrees of thin radical and thin residue are equal, in terms of the wreath product of thin schemes. The following theorems are the main results of this paper.

[^0]
RAEI BARANDAGH and RAHNAMAI BARGHI/Turk J Math

Theorem 1 Let \mathcal{C} be a scheme whose thin radical and thin residue are equal. \mathcal{C} is then isomorphic to a fission of the wreath product of 2 thin schemes.

Theorem 2 Let \mathcal{C} be a p-scheme of degree p^{n}. The degrees of the thin radical and the thin residue of \mathcal{C} are then equal to p if and only if \mathcal{C} is isomorphic to the wreath product of T_{p} and a thin scheme of degree p^{n-1}.

Theorem 3 Let \mathcal{C} be a p-scheme of degree p^{n}. The degrees of the thin radical and the thin residue of \mathcal{C} are then equal to p^{n-1} and the valencies of its basis relations are 1 or p^{n-1} if and only if \mathcal{C} is isomorphic to the wreath product of a thin scheme of degree p^{n-1} and T_{p}.

This paper is organized as follows. In Section 2, we present some notations and terminology on association schemes and p-schemes. In Section 3, we prove our main theorems.

2. Preliminaries

In this section, we prepare some notations and results for association schemes and p-schemes that will be used throughout the paper. We refer the reader to $[5,7,10,11]$ for more details about association schemes and p-schemes.

2.1. Association schemes

Let V be a nonempty finite set. Let $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ be a set of nonempty binary relations on V that partitions $V \times V$. The pair $\mathcal{C}=(V, \mathcal{R})$ is called an association scheme (or shortly a scheme) if it satisfies the following conditions:

1) $\Delta(V)=\{(v, v) \mid v \in V\}=R_{0}$.
2) For each $R_{i} \in \mathcal{R}, R_{i}^{\mathrm{t}}:=\left\{(u, v) \mid(v, u) \in R_{i}\right\} \in \mathcal{R}$. We denote R_{i}^{t} by $R_{i^{\prime}}$.
3) For all $R_{i}, R_{j}, R_{k} \in \mathcal{R}$ there exists an intersection number $p_{i j}^{k}$ such that $p_{i j}^{k}=\left|R_{i}(u) \cap R_{j^{\prime}}(v)\right|$ for all $(u, v) \in R_{k}$, where $R(u):=\{v \in V \mid(u, v) \in R\}$.

The elements of V and \mathcal{R} are called points and basis relations of \mathcal{C}, respectively.
The numbers $|V|$ and $|\mathcal{R}|$ are called the degree and the rank of \mathcal{C} and are denoted by $\operatorname{deg}(\mathcal{C})$ and $\operatorname{rk}(\mathcal{C})$, respectively. We define the valency of R_{i} as $d\left(R_{i}\right)=p_{i i^{\prime}}^{0}$. We can described each R_{i} by its $\{0,1\}$-adjacency matrix A_{i} defined by $\left(A_{i}\right)_{u v}=1$ if $(u, v) \in R_{i}$, and 0 otherwise. We denote \mathcal{R}^{\cup} as the set of all unions of the elements of \mathcal{R}.

Let G be a transitive permutation group acting on a set V; then G acts on $V \times V$ by the componentwise action. An orbit of this action is called an orbital. The set of orbitals of G is denoted by $\operatorname{Orb}(G)$. It is well known that $\operatorname{Orb}(G)$ forms an association scheme on V, denoted by $\operatorname{Inv}(G)$. A given scheme \mathcal{C} is said to be Schurian if $\mathcal{C}=\operatorname{Inv}(G)$ for some permutation group G.

For a given scheme $\mathcal{C}=(V, \mathcal{R})$, an equivalence of \mathcal{C} is an equivalence relation E on V such that E is a union of some basis relations of \mathcal{C}. Denote by $\mathcal{E}(\mathcal{C})$ the set of all equivalences of \mathcal{C}. For each $E \in \mathcal{E}(\mathcal{C})$ denote by $d(E)$ the degree of E, which is defined as the sum of the valencies of all basis relations of \mathcal{C} that lie in E.

RAEI BARANDAGH and RAHNAMAI BARGHI/Turk J Math

Let E be an equivalence of the scheme \mathcal{C}. Denote by V / E the set of equivalence classes modulo E. For any $X, Y \in V / E$ and $R \in \mathcal{R}$ define

$$
R_{X, Y}=R \cap(X \times Y), \quad R_{X}=R_{X, X}
$$

Moreover, we define

$$
\begin{aligned}
\mathcal{R}_{X} & =\left\{R_{X} \mid R_{X} \neq \emptyset\right\} \\
R_{V / E}:=\{(X, Y) & \left.\in(V / E) \times(V / E) \mid R_{X, Y} \neq \emptyset\right\} \\
\mathcal{R}_{X / E} & :=\left\{R_{V / E} \mid R \in \mathcal{R}\right\}
\end{aligned}
$$

It is well known that

$$
\mathcal{C}_{V / E}=\left(V / E, \mathcal{R}_{V / E}\right)
$$

is a scheme and is called the factor scheme of \mathcal{C} modulo E. It is also clear that $\mathcal{C}_{X}=\left(X, \mathcal{R}_{X}\right)$ is a scheme and is called the restriction of \mathcal{C} with respect to X.

Let $\mathcal{C}=(V, \mathcal{R})$ be an association scheme, and $E \in \mathcal{E}(\mathcal{C})$. According to [9, Definition 2.2] we make an order on the elements of V as follows: consider an ordering on the elements of V / E and also suppose that for each $X \in V / E$ we have an ordering on X. First, we order the classes of the equivalence E on the elements of V using the ordering of V / E. Then, in each class $X \in V / E$ and for any $u, v \in V$ such that $u, v \in X$, we order u and v exactly in the same way as in X; in this case, we say that the elements of V are ordered according to the equivalence E.

Let $\mathcal{C}=(V, \mathcal{R})$ be a scheme. The set

$$
\mathcal{O}_{\vartheta}(\mathcal{C})=\{R \in \mathcal{R}: d(R)=1\}
$$

is called the thin radical of \mathcal{C}. We say that \mathcal{C} is a thin scheme if $\mathcal{O}_{\vartheta}(\mathcal{C})=\mathcal{R}$. It is well known that any thin scheme is Schurian.

The thin residue of \mathcal{C} is the smallest equivalence of \mathcal{C} containing basis relations R_{k} such that $p_{i i^{\prime}}^{k} \neq 0$ for some $R_{i} \in \mathcal{R}$, and denoted by $\mathcal{O}^{\vartheta}(\mathcal{C})$. From [11, Lemma 4.2.7], we know that the thin residue of \mathcal{C} is the uniquely defined smallest equivalence of \mathcal{C} having a thin quotient scheme.

If there exists a bijection between the point sets of 2 schemes that induces a bijection between their sets of basis relations, then these 2 schemes are isomorphic.

For 2 schemes $\mathcal{C}=(V, \mathcal{R})$ and $\mathcal{C}^{\prime}=\left(V, \mathcal{R}^{\prime}\right)$, we define $\mathcal{C} \leq \mathcal{C}^{\prime}$ if and only if $\mathcal{R}^{\cup} \subseteq\left(\mathcal{R}^{\prime}\right)^{\cup}$. Then \mathcal{C} is a fusion of \mathcal{C}^{\prime} and \mathcal{C}^{\prime} is a fission of \mathcal{C}.

Given 2 schemes $\mathcal{C}_{1}=\left(V_{1}, \mathcal{R}_{1}\right)$ and $\mathcal{C}_{2}=\left(V_{2}, \mathcal{R}_{2}\right)$, we put

$$
\mathcal{R}_{1} \imath \mathcal{R}_{2}=\left\{\Delta\left(V_{2}\right) \otimes R: R \in \mathcal{R}_{1}\right\} \cup\left\{S \otimes V_{1} \times V_{1}: S \in \mathcal{R}_{2} \backslash\left\{\Delta\left(V_{2}\right)\right\}\right\}
$$

Define the wreath product of \mathcal{C}_{1} and \mathcal{C}_{2}, denoted \mathcal{C}_{1} 乙 \mathcal{C}_{2}, as the scheme on $V_{1} \times V_{2}$ with the set of basis relations $\mathcal{R}_{1} \backslash \mathcal{R}_{2}$. Moreover, by considering $A_{0}, A_{1}, \ldots, A_{d}$ and $B_{0}, B_{1}, \ldots, B_{e}$ as the adjacency matrices of basis relations of \mathcal{R}_{1} and \mathcal{R}_{2}, respectively, the elements of $V_{1} \times V_{2}$ can be ordered such that the adjacency matrices of $\mathcal{C}_{1} \prec \mathcal{C}_{2}$ are given by

$$
\begin{gathered}
C_{0}=B_{0} \otimes A_{0}, C_{1}=B_{0} \otimes A_{1}, \ldots, C_{d}=B_{0} \otimes A_{d} \\
C_{d+1}=B_{1} \otimes J_{\left|V_{1}\right|}, \ldots, C_{d+e}=B_{e} \otimes J_{\left|V_{1}\right|}
\end{gathered}
$$

RAEI BARANDAGH and RAHNAMAI BARGHI/Turk J Math

where J_{n} is the $n \times n$ matrix whose entries are all equal to 1 . It is well known that \mathcal{C}_{1} 久 \mathcal{C}_{2} is Schurian if and only if \mathcal{C}_{1} and \mathcal{C}_{2} are Schurian. Clearly, the degree of the wreath product of 2 schemes is equal to the product of their degrees.

A scheme \mathcal{C} is called a p-scheme if the cardinality of each basis relation of \mathcal{C} is a power of p, where p is a prime number. This implies that the degree of any p-scheme is a power of p, and so $\mathcal{O}_{\vartheta}(\mathcal{C})$ is a nontrivial p-group with respect to products of basis relations. Therefore, the order of the thin radical of \mathcal{C} is a power of p. In [8], it was shown that the class of p-schemes is closed with respect to taking quotients and restrictions.

3. Main theorems

In this section, we study the relationship between the degree of the thin residue of a scheme and the valency of its basis relations. Then we prove Theorems 1, 2, and 3 .

Lemma 1 Let \mathcal{C} be an association scheme. Then, for each basis relation R of the scheme \mathcal{C}, we have $d(R) \leq d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)$.
Proof Let $\mathcal{C}=(V, \mathcal{R})$ and $R \in \mathcal{R}$. From [11, Lemma 4.2.7], the scheme $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme. Thus, $d\left(R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}\right)=1$. It follows that for each $X \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$ there exists exactly one block $Y \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, such that $R \cap(X \times Y) \neq \emptyset$. It follows that

$$
d(R) \leq|Y|=d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)
$$

as desired.

Lemma 2 Let \mathcal{C} be a scheme that is isomorphic to the wreath product of 2 nontrivial thin schemes, \mathcal{C}_{1} and \mathcal{C}_{2}. We then have $\mathcal{O}^{\vartheta}(\mathcal{C})=\mathcal{O}_{\vartheta}(\mathcal{C})$. Moreover,

$$
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=\operatorname{deg}\left(\mathcal{C}_{1}\right)
$$

Proof Let $\mathcal{C}_{1}=\left(V_{1}, \mathcal{R}_{1}\right)$ and $\mathcal{C}_{2}=\left(V_{2}, \mathcal{R}_{2}\right)$ be 2 nontrivial thin schemes. Let \mathcal{C} be the wreath product of \mathcal{C}_{1} and \mathcal{C}_{2}. The basis relations of \mathcal{C} are then

$$
\mathcal{R}:=\left\{\Delta\left(V_{2}\right) \otimes R: R \in \mathcal{R}_{1}\right\} \cup\left\{S \otimes V_{1} \times V_{1}: S \in \mathcal{R}_{2} \backslash\left\{\Delta\left(V_{2}\right)\right\}\right\}
$$

Let $R \in \mathcal{R}_{1}$. Then

$$
\begin{equation*}
d\left(\Delta\left(V_{2}\right) \otimes R\right)=d(R) \tag{1}
\end{equation*}
$$

On the other hand, for each $S \in \mathcal{R}_{2} \backslash\left\{\Delta\left(V_{2}\right)\right\}$, we have

$$
\begin{equation*}
d\left(S \otimes\left(V_{1} \times V_{1}\right)\right)=\operatorname{deg}\left(\mathcal{C}_{1}\right) d(S) \tag{2}
\end{equation*}
$$

Now, since \mathcal{C}_{1} is a nontrivial thin scheme, all basis relations of \mathcal{C}_{1} are of degree 1 , and we also have $\operatorname{deg}\left(\mathcal{C}_{1}\right)>1$. Thus, from (1) and (2) we conclude that

$$
\mathcal{O}_{\vartheta}(\mathcal{C})=\left\{\Delta\left(V_{2}\right) \otimes R: \quad R \in \mathcal{R}_{1}\right\}
$$

It follows that $d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=\operatorname{deg}\left(\mathcal{C}_{1}\right)$.

To complete the proof of the lemma, it is enough to show that

$$
\begin{equation*}
\mathcal{O}^{\vartheta}(\mathcal{C})=\left\{\Delta\left(V_{2}\right) \otimes R: \quad R \in \mathcal{R}_{1}\right\} \tag{3}
\end{equation*}
$$

Let $R \in \mathcal{R}_{1}$. Then, for each $S \in \mathcal{R}_{2}$, we have

$$
\Delta\left(V_{2}\right) \otimes R \in \widehat{S}^{t} \widehat{S}
$$

where $\widehat{S}=S \otimes\left(V_{1} \times V_{1}\right)$. From the definition of $\mathcal{O}^{\vartheta}(\mathcal{C})$ we get

$$
\begin{equation*}
\Delta\left(V_{2}\right) \otimes R \in \mathcal{O}^{\vartheta}(\mathcal{C}) \tag{4}
\end{equation*}
$$

On the other hand, since \mathcal{C}_{2} is a nontrivial scheme, we have $\operatorname{deg}\left(\mathcal{C}_{2}\right)>1$. Let $S \in \mathcal{R}_{2} \backslash\left\{\Delta\left(V_{2}\right)\right\}$. Then we have

$$
\begin{equation*}
S \otimes\left(V_{1} \times V_{1}\right) \notin \mathcal{O}^{\vartheta}(\mathcal{C}) \tag{5}
\end{equation*}
$$

Otherwise, $S \in \mathcal{O}^{\vartheta}\left(\mathcal{C}_{2}\right)$. Since \mathcal{C}_{2} is a thin scheme, it follows that $\mathcal{O}^{\vartheta}\left(\mathcal{C}_{2}\right)=\left\{\Delta\left(V_{2}\right)\right\}$. Thus, $S=\left\{\Delta\left(V_{2}\right)\right\}$, which is a contradiction. Therefore, from (4) and (5) we get (3), as desired.

For a given scheme \mathcal{C}, it is not necessary to have the equality $\mathcal{O}^{\vartheta}(\mathcal{C})=\mathcal{O}_{\vartheta}(\mathcal{C})$ even if $d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=$ $d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)$. Considering this condition, we show that \mathcal{C} is isomorphic to a fission of the wreath product of 2 thin schemes.

To prove the main theorems, we need the following remarks:
Remark 1 Since each thin scheme is Schurian, using the corresponding permutation group, one can choose an ordering in the set of points of this scheme.

Remark 2 Let \mathcal{C} be a scheme on V and $E \in \mathcal{E}(\mathcal{C})$. If the scheme \mathcal{C}_{X} is a thin scheme for $X \in V / E$, then from separability of thin schemes (see [4, Theorem 2.1] and [9, p. 1908]), for any $X, Y \in V / E$ the schemes \mathcal{C}_{X} and \mathcal{C}_{Y} are isomorphic.

Remark 3 Given a bijection φ from a set V to a set W, and a binary relation R on the set V, we will let R^{φ} denote the induced binary relation on the set W.

Proof of Theorem 1

Let \mathcal{C} be a scheme on V with the set of basis relations \mathcal{R}. By assumption, suppose that $\mathcal{O}^{\vartheta}(\mathcal{C})=\mathcal{O}_{\vartheta}(\mathcal{C})$. If the thin radical and the thin residue are both trivial, then the scheme itself must be trivial, and the proof is complete. Thus, we assume that $\left|\mathcal{O}_{\vartheta}(\mathcal{C})\right|>1$.

Clearly, $\mathcal{O}^{\vartheta}(\mathcal{C})$ is an equivalence of \mathcal{C}; thus, for each $X \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, the scheme \mathcal{C}_{X} is a thin scheme of degree $|X|$. Moreover, the scheme $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme of degree $|V| /|X|$. Let $V / \mathcal{O}^{\vartheta}(\mathcal{C})=\left\{X_{1}, \ldots, X_{|V| /|X|}\right\}$ be the set of points of the scheme $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$. Thus, by Remark 1, we have an ordering on $V / \mathcal{O}^{\vartheta}(\mathcal{C})$; also, for each $X_{i} \in V / \mathcal{O}^{\vartheta}(\mathcal{C}), 1 \leq i \leq|V| /|X|$, we have an ordering on X_{i}. On the other hand, by Remark 2, for $X_{i}, X_{j} \in V / \mathcal{O}^{\vartheta}(\mathcal{C}), 1 \leq i, j \leq|V| /|X|$, the schemes $\mathcal{C}_{X_{i}}$ and $\mathcal{C}_{X_{j}}$ are isomorphic, and so there is a bijection between the elements of X_{i} and X_{j}. Therefore, we can assume the corresponding order of X_{1} for each X_{i}, $1 \leq i \leq|V| /|X|$.

Now, suppose that the elements of the set V are ordered according to the equivalence $\mathcal{O}^{\vartheta}(\mathcal{C})$. Thus, we have a bijection, φ, from V to the Cartesian product of the sets X_{1} and $V / \mathcal{O}^{\vartheta}(\mathcal{C})$.

We claim that \mathcal{C} is isomorphic to a fission of the wreath product of $\mathcal{C}_{X_{1}}$ and $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$. Suppose that $\mathcal{C}_{X_{1}} \prec \mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}=\left(X_{1} \times V / \mathcal{O}^{\vartheta}(\mathcal{C}), \mathcal{S}\right)$. It is sufficient to show that φ induces a bijection such that each element of \mathcal{S} corresponds to a union of some elements of \mathcal{R}.

Let $S \in \mathcal{S}$ and $d(S)=1$. Then, since $\left|X_{1}\right|>1$, it follows from the definition of the wreath product that $S \cap\left(X_{1} \times X_{1}\right) \neq \emptyset$. Thus, there is a relation $R \in \mathcal{R}$ such that

$$
\begin{equation*}
S=R^{\varphi} \tag{6}
\end{equation*}
$$

Now let $S \in \mathcal{S}$ and $d(S) \neq 1$. We show that S corresponds to a union of some basis relations of \mathcal{R}. Let \sim be the equivalence relation on \mathcal{R} induced by the canonical map to $\mathcal{R}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$. For each $R \in \mathcal{R}$, define $\hat{R}:=R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})} \in \mathcal{R}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$. Then \hat{R} corresponds to a permutation $g_{\hat{R}}$ on the set $V / \mathcal{O}^{\vartheta}(\mathcal{C})$ as follows:

$$
X_{i}^{g_{\hat{R}}}=X_{j} \Longleftrightarrow R_{X_{i}, X_{j}} \neq \emptyset
$$

Thus, for each $R, T \in \mathcal{R}$, we have $R \sim T$ if and only if $\hat{R}=\hat{T}$. Let $[R]$ be the equivalence class of R. Then $T \in[R]$ if and only if $g_{\hat{T}}=g_{\hat{R}}$. Suppose that $\left[R_{0}\right]$ contains the diagonal relation. Let $X_{i}, X_{j} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, considering $\left[R_{k}\right]$ such that $R_{k} \cap\left(X_{i} \times X_{j}\right) \neq \emptyset$. For each $(x, y) \in X_{i} \times X_{j}$, there exists a basis relation $R \in \mathcal{R}$ such that $(x, y) \in R$, so $X_{i}^{g_{\hat{R}}}=X_{j}$. Therefore, $R \in\left[R_{k}\right]$. This shows that $X_{i} \times X_{j} \subseteq \bigcup_{R \in\left[R_{k}\right]} R^{\varphi}$. It then follows that the union of relations R such that $R \in\left[R_{k}\right]$ corresponds to the union of $X_{i} \times X_{j}$ such that $X_{i}^{g_{\hat{R}}}=X_{j}$. This implies that

$$
\begin{equation*}
\bigcup_{R \in\left[R_{k}\right]} R^{\varphi}=P_{g_{R_{k}}} \otimes J_{\left|X_{1}\right|}, \tag{7}
\end{equation*}
$$

where $P_{g_{R_{k}}}$ is a permutation matrix corresponding to $g_{\hat{R_{k}}}$.
From Eq. (7) we conclude that for each $S \in \mathcal{S}$ there exists an equivalence class $\left[R_{k}\right]$ such that

$$
\begin{equation*}
S=\bigcup_{R \in\left[R_{k}\right]} R^{\varphi} \tag{8}
\end{equation*}
$$

This completes the proof of the theorem.

Proof of Theorem 2.

We first prove the necessity condition of the theorem. Let $\mathcal{C}=(V, \mathcal{R})$ be a p-scheme and $|V|=p^{n}$, such that

$$
\begin{equation*}
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=p \tag{9}
\end{equation*}
$$

By Lemma 1, for each basis relation $R \in \mathcal{R}$ we have $d(R) \leq d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=p$. Moreover, since \mathcal{C} is a p-scheme, the valency of each basis relation of \mathcal{C} is a power of p. It follows that, for each basis relation R in \mathcal{R}, we have

$$
\begin{equation*}
d(R) \in\{1, p\} \tag{10}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
\mathcal{O}^{\vartheta}(\mathcal{C})=\mathcal{O}_{\vartheta}(\mathcal{C}) \tag{11}
\end{equation*}
$$

Indeed, since $\Delta(V) \in \mathcal{O}^{\vartheta}(\mathcal{C})$ and $d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=\sum_{R \in \mathcal{O}^{\vartheta}(\mathcal{C})} d(R)$, we get

$$
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=1+\sum_{R \in \mathcal{O}^{\vartheta}(\mathcal{C}) \backslash \Delta(V)} d(R)
$$

From (9), we have

$$
1+\sum_{R \in \mathcal{O}^{\vartheta}(\mathcal{C}) \backslash \Delta(V)} d(R)=p
$$

Now from (10) it is clear that the valency of each basis relation of \mathcal{C} is equal to 1 or p. It follows that the basis relation R belongs to $\mathcal{O}^{\vartheta}(\mathcal{C})$ if and only if $d(R)=1$. Thus, Eq. (11) holds as claimed.

On the other hand, $|V|=p^{n}$ and $d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=p$ imply that $\left|V / \mathcal{O}^{\vartheta}(\mathcal{C})\right|=p^{n-1}$. Let $V / \mathcal{O}^{\vartheta}(\mathcal{C})=$ $\left\{X_{0}, X_{1}, \ldots, X_{p^{n-1}-1}\right\}$. Thus, by Remark 1, we have an ordering on $V / \mathcal{O}^{\vartheta}(\mathcal{C})$; also, for each $X_{i} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, $0 \leq i \leq p^{n-1}-1$, we have an ordering on X_{i}. On the other hand, by Remark 2 , for $X_{i}, X_{j} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, $0 \leq i, j \leq p^{n-1}-1$, the schemes $\mathcal{C}_{X_{i}}$ and $\mathcal{C}_{X_{j}}$ are isomorphic, and so there is a bijection between the elements of X_{i} and X_{j}. Therefore, we can assume the corresponding order of X_{0} for each $X_{i}, 0 \leq i \leq p^{n-1}-1$. Thus, we may assume that the elements of V are ordered according to the equivalence $\mathcal{O}^{\vartheta}(\mathcal{C})$.

Thus, we have a bijection, φ, from V to the Cartesian product of the sets X_{0} and $V / \mathcal{O}^{\vartheta}(\mathcal{C})$. Now we claim that \mathcal{C} is isomorphic to the wreath product of $\mathcal{C}_{X_{0}}$ and $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$.

Suppose that $R \in \mathcal{O}^{\vartheta}(\mathcal{C})$. From (11), the scheme $\mathcal{C}_{X_{i}}$ is a thin scheme of degree p for each $0 \leq$ $i \leq p^{n-1}-1$, and so it is isomorphic to T_{p}. Let A_{R} and $A_{R_{X_{0}}}$ be the adjacency matrices of R and $R_{X_{0}}$, respectively. Then we have $A_{R}=I_{p^{n-1}} \otimes A_{R_{X_{0}}}$. It follows that

$$
\begin{equation*}
R^{\varphi}=\Delta\left(V / \mathcal{O}^{\vartheta}(\mathcal{C})\right) \otimes R_{X_{0}} \tag{12}
\end{equation*}
$$

Now suppose that $R \notin \mathcal{O}^{\vartheta}(\mathcal{C})$. From (10) and (11) we conclude that $d(R)=p$. On the other hand, the scheme $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme. Thus, we have

$$
\begin{equation*}
d\left(R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}\right)=1 \tag{13}
\end{equation*}
$$

Moreover, since $R \notin \mathcal{O}^{\vartheta}(\mathcal{C})$, we have

$$
\begin{equation*}
R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})} \neq \Delta\left(V / \mathcal{O}^{\vartheta}(\mathcal{C})\right) \tag{14}
\end{equation*}
$$

Let $X_{i} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$. From (13), there exists exactly one element $X_{j} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, such that

$$
\begin{equation*}
R \cap\left(X_{i} \times X_{j}\right) \neq \emptyset \tag{15}
\end{equation*}
$$

It is a well-known fact that all classes of an equivalence relation of an association scheme have the same size; thus, we get $\left|X_{i}\right|=\left|X_{j}\right|=d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right.$). From (9) we have

$$
\begin{equation*}
\left|X_{i}\right|=\left|X_{j}\right|=p \tag{16}
\end{equation*}
$$

On the other hand, since $d(R)=p$, from (15) and (16) we conclude that

$$
\begin{equation*}
X_{i} \times X_{j} \subseteq R \tag{17}
\end{equation*}
$$

RAEI BARANDAGH and RAHNAMAI BARGHI/Turk J Math

Moreover, from (14) we have $X_{i} \neq X_{j}$. Let A_{R} and $\overline{A_{R}}$ be the adjacency matrices of R and $R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$, respectively. Then, from (17) and by the above ordering on V, we obtain $A_{R}=\overline{A_{R}} \otimes J_{p}$. Thus, we have

$$
\begin{equation*}
R^{\varphi}=R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})} \otimes\left(X_{0} \times X_{0}\right) \tag{18}
\end{equation*}
$$

Therefore, from (12) and (18) we conclude that \mathcal{C} is isomorphic to the wreath product of $\mathcal{C}_{X_{0}}$ and $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$. On the other hand, $\mathcal{C}_{X_{0}}$ is isomorphic to T_{p} and the scheme $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme on p^{n-1} points. Thus,

$$
\mathcal{C} \cong T_{p}\left\langle\mathcal{C}_{V / \mathcal{O}^{v}(\mathcal{C})}\right.
$$

Conversely, let $T_{p}=\left(V_{1}, \mathcal{R}_{1}\right)$ and $\mathcal{C}^{\prime}=\left(V_{2}, \mathcal{R}_{2}\right)$ be a thin scheme of degree p^{n-1}. Let \mathcal{C} be the wreath product of T_{p} and \mathcal{C}^{\prime}. From Lemma 2, we have

$$
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=\operatorname{deg}\left(T_{p}\right)
$$

Since T_{p} is a thin p-scheme on p points, we have $\operatorname{deg}\left(T_{p}\right)=p$, and the proof is complete.

Since each thin scheme is Schurian and the wreath product of 2 Schurian schemes is Schurian, the following corollary is a direct consequence of Theorem 2:

Corollary 1 Any p-scheme whose degrees of thin radical and thin residue are equal to p is Schurian.

Proof of Theorem 3.

We first assume that $\mathcal{C}=(V, \mathcal{R})$ is a p-scheme and $|V|=p^{n}$, and that

$$
\begin{equation*}
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=p^{n-1} \tag{19}
\end{equation*}
$$

and for each $R \in \mathcal{R}$ we have $d(R) \in\left\{1, p^{n-1}\right\}$. Since $\Delta(V) \in \mathcal{O}^{\vartheta}(\mathcal{C})$ and $d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=\sum_{R \in \mathcal{O}^{\vartheta}(\mathcal{C})} d(R)$, it is easy to check that $R \in \mathcal{O}^{\vartheta}(\mathcal{C})$ if and only if $d(R)=1$. Hence,

$$
\begin{equation*}
\mathcal{O}^{\vartheta}(\mathcal{C})=\mathcal{O}_{\vartheta}(\mathcal{C}) \tag{20}
\end{equation*}
$$

By the same argument as the proof of Theorem 2, we have a bijection, φ, from V to the Cartesian product of the sets X_{0} and $V / \mathcal{O}^{\vartheta}(\mathcal{C})$, where $V / \mathcal{O}^{\vartheta}(\mathcal{C})=\left\{X_{0}, X_{1}, \ldots, X_{p-1}\right\}$.

From (20), it follows that $R \notin \mathcal{O}^{\vartheta}(\mathcal{C})$ if and only if $d(R)=p^{n-1}$. For such a basis relation R, the valency of $R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is equal to 1 , because $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme. Moreover, from (20) the relation $R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a nondiagonal basis relation. Thus, for each $X_{i} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$ there exists exactly one element $X_{j} \in V / \mathcal{O}^{\vartheta}(\mathcal{C})$, $i \neq j$, such that $R \cap\left(X_{i} \times X_{j}\right) \neq \emptyset$. Since $\left|X_{i}\right|=\left|X_{j}\right|=p^{n-1}$ and $d(R)=p^{n-1}$, we conclude that $X_{i} \times X_{j} \subseteq R$. Thus, we have

$$
\begin{equation*}
R^{\varphi}=R_{V / \mathcal{O}^{\vartheta}(\mathcal{C})} \otimes\left(X_{0} \times X_{0}\right) \tag{21}
\end{equation*}
$$

Now suppose $R \in \mathcal{O}^{\vartheta}(\mathcal{C})$. From (20), the scheme $\mathcal{C}_{X_{i}}$ is a thin scheme for each $0 \leq i \leq p-1$. Moreover, for each i and j the scheme $\mathcal{C}_{X_{i}}$ is isomorphic to $\mathcal{C}_{X_{j}}$. It follows that

$$
\begin{equation*}
R^{\varphi}=\Delta\left(V / \mathcal{O}^{\vartheta}(\mathcal{C})\right) \otimes R_{X_{0}} \tag{22}
\end{equation*}
$$

RAEI BARANDAGH and RAHNAMAI BARGHI/Turk J Math

Therefore, from (21) and (22) we conclude that

$$
\mathcal{C} \cong \mathcal{C}_{X_{0}} \prec \mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}
$$

where $\mathcal{C}_{X_{0}}$ is a thin scheme on p^{n-1} points and $\mathcal{C}_{V / \mathcal{O}^{\vartheta}(\mathcal{C})}$ is a thin scheme on p points. Since any thin scheme of degree p is uniquely isomorphic to T_{p} :

$$
\mathcal{C} \cong \mathcal{C}_{X_{0}} \succ T_{p}
$$

Conversely, let $\mathcal{C}^{\prime}=\left(V_{1}, \mathcal{R}_{1}\right)$ be a thin scheme of degree p^{n-1} and $T_{p}=\left(V_{2}, \mathcal{R}_{2}\right)$. Define $\mathcal{C}=\mathcal{C}^{\prime}$ 亿 T_{p}. From Lemma 2, we have

$$
d\left(\mathcal{O}^{\vartheta}(\mathcal{C})\right)=d\left(\mathcal{O}_{\vartheta}(\mathcal{C})\right)=\operatorname{deg}\left(\mathcal{C}^{\prime}\right)=p^{n-1}
$$

Now let R be a basis relation of \mathcal{C}. Then, from (1) and (2) in the proof of Lemma 2 , we have $d(R)=1$ or $d(R)=\operatorname{deg}\left(\mathcal{C}^{\prime}\right)=p^{n-1}$. This completes the proof of the theorem.

The following corollary is a direct consequence of Theorem 3:
Corollary 2 Any p-scheme of degree p^{n} whose degrees of thin radical and thin residue are equal to p^{n-1} and the valency of each basis relation is either 1 or p^{n-1} is Schurian.

Note that if \mathcal{C} is a p-scheme of degree p^{n} whose degrees of thin radical and thin residue are equal to $p^{i}, 1<i<n-1$, then \mathcal{C} is not necessarily Schurian. For example, consider the scheme of degree 16 , No. 173 in Hanaki's classification of association schemes (http://math.shinshu-u.ac.jp/ hanaki/as/). The degree of the thin radical and the thin residue of this 2 -scheme is 4 , but it is not Schurian. One can study some conditions on basis relations of such p-schemes to ensure that these be Schurian.

Acknowledgment

The authors are very grateful to the anonymous referee for useful comments and valuable suggestions.

References

[1] Bang S, Hirasaka M. Construction of association schemes from difference sets. Europ J Combin 2005; 26: 59-74.
[2] Cho JR, Hirasaka M, Kim K. On p-schemes of order p^{3}. J Algebra 2012; 369: 369-380.
[3] Kim K. Characterization of p-schemes of prime cube order. J Algebra 2011; 331: 1-10.
[4] Muzychuk M, Ponomarenko IN. On pseudocyclic association schemes. Ars Math Contemp 2012; 5: 1-25.
[5] Ponomarenko IN. Cellular Algebras and Graph Isomorphism Problem. Research report No. 8592-CS. Bonn, Germany: University of Bonn, 1993.
[6] Ponomarenko IN, Rahnamai-Barghi A. On the structure of p-schemes. J Math Sci 2007; 147: 7227-7233.
[7] Raei-Barandagh F, Rahnamai-Barghi A. On the rank of p-schemes. Electron J Combin 2013; 20: \#P30.
[8] Rahnamai-Barghi A, Ponomarenko IN. The basic digraphs of p-schemes. Graphs Combin 2009; 25: 265-271.
[9] Xu B. Characterizations of wreath products of one-class association schemes. J Combinatorial Theory Ser A 2011; 118: 1907-1914.
[10] Xu B. Some structure theory of table algebras and applications to association schemes. J Algebra 2011; 325: 97-131.
[11] Zieschang PH. Theory of Association Schemes. Berlin, Germany: Springer, 2005.

[^0]: *Correspondence: rahnama@kntu.ac.ir
 2010 AMS Mathematics Subject Classification: 05E30, 20F25.

