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Abstract: Let p and n > 1 be a prime number and an integer, respectively. In this paper, first we show that any

p -scheme whose thin radical and thin residue are equal is isomorphic to a fission of the wreath product of 2 thin schemes.

In addition, we characterize association p -schemes whose thin radical and thin residue each have degree equal to p .

We also characterize association p -schemes on pn points whose thin radical and thin residue each have degree equal to

pn−1 , and whose basis relations each have valency 1 or pn−1 . Moreover, we show that such schemes are Schurian.

Key words: Association scheme, p -scheme, thin radical, thin residue

1. Introduction

Association schemes are related to a variety of combinatorial objects (codes, designs, graphs, etc.). In [6],

schemes are presented as a natural generalization of permutation groups. In this direction, p -schemes correspond

to p -groups, where p is a prime number. The concept of p -schemes was given in [6] as follows: a scheme C
is called p-scheme if the cardinality of each basis relation of C is a power of p . Recently some algebraic and

combinatorial properties of p -schemes were studied in [2, 3, 6, 7, 8].

In this paper we deal with association schemes and refer to them as schemes. Given a scheme C , one can
define its thin radical Oϑ(C) and thin residue Oϑ(C). Suppose that C is a p -scheme; this implies that the thin

radical Oϑ(C) of C is a nontrivial p -group [6, Theorem 2.2]. Thus, the degree of its thin radical is a power of p .

All p -schemes of degree p are thin, and they are unique up to isomorphism; we denote this unique p -scheme by

Tp . Moreover, the number of isomorphism classes of p -schemes of degree p2 is 3, which are Tp2 , Tp ⊗ Tp , and

Tp ≀ Tp . Thus, any p-scheme on V with |V | ∈ {1, p, p2} is Schurian [2, p. 2]. In [1], non-Schurian p -schemes

of degree p3 were constructed. In [2], p -schemes with |V | = p3 and thin residue of degree p2 were studied. In

[7], it was shown that any p -scheme on V is isomorphic to a fission of the wreath product of n copies of Tp ,

where |V | = pn .

Our main results show that any p -scheme whose thin radical and thin residue are equal is isomorphic to

a fission of the wreath product of 2 thin schemes. Moreover, we provide a characterization of p -schemes whose

degrees of thin radical and thin residue are equal, in terms of the wreath product of thin schemes. The following

theorems are the main results of this paper.
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Theorem 1 Let C be a scheme whose thin radical and thin residue are equal. C is then isomorphic to a fission

of the wreath product of 2 thin schemes.

Theorem 2 Let C be a p-scheme of degree pn . The degrees of the thin radical and the thin residue of C are

then equal to p if and only if C is isomorphic to the wreath product of Tp and a thin scheme of degree pn−1 .

Theorem 3 Let C be a p-scheme of degree pn . The degrees of the thin radical and the thin residue of C are

then equal to pn−1 and the valencies of its basis relations are 1 or pn−1 if and only if C is isomorphic to the

wreath product of a thin scheme of degree pn−1 and Tp .

This paper is organized as follows. In Section 2, we present some notations and terminology on association

schemes and p -schemes. In Section 3, we prove our main theorems.

2. Preliminaries

In this section, we prepare some notations and results for association schemes and p -schemes that will be used

throughout the paper. We refer the reader to [5, 7, 10, 11] for more details about association schemes and

p -schemes.

2.1. Association schemes

Let V be a nonempty finite set. Let R = {R0, R1, . . . , Rd} be a set of nonempty binary relations on V that

partitions V × V . The pair C = (V,R) is called an association scheme (or shortly a scheme) if it satisfies the

following conditions:

1) ∆(V ) = {(v, v) | v ∈ V } = R0 .

2) For each Ri ∈ R , Rt
i := {(u, v) | (v, u) ∈ Ri} ∈ R . We denote Rt

i by Ri′ .

3) For all Ri, Rj , Rk ∈ R there exists an intersection number pkij such that pkij = |Ri(u) ∩ Rj′(v)| for all

(u, v) ∈ Rk , where R(u) := {v ∈ V | (u, v) ∈ R} .

The elements of V and R are called points and basis relations of C , respectively.
The numbers |V | and |R| are called the degree and the rank of C and are denoted by deg(C) and rk(C),

respectively. We define the valency of Ri as d(Ri) = p0ii′ . We can described each Ri by its {0, 1} -adjacency
matrix Ai defined by (Ai)uv = 1 if (u, v) ∈ Ri , and 0 otherwise. We denote R∪ as the set of all unions of

the elements of R .

Let G be a transitive permutation group acting on a set V ; then G acts on V ×V by the componentwise

action. An orbit of this action is called an orbital. The set of orbitals of G is denoted by Orb(G). It is well

known that Orb(G) forms an association scheme on V , denoted by Inv(G). A given scheme C is said to be

Schurian if C = Inv(G) for some permutation group G .

For a given scheme C = (V,R), an equivalence of C is an equivalence relation E on V such that E is a

union of some basis relations of C . Denote by E(C) the set of all equivalences of C . For each E ∈ E(C) denote

by d(E) the degree of E , which is defined as the sum of the valencies of all basis relations of C that lie in E .
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Let E be an equivalence of the scheme C . Denote by V/E the set of equivalence classes modulo E . For

any X,Y ∈ V/E and R ∈ R define

RX,Y = R ∩ (X × Y ), RX = RX,X .

Moreover, we define

RX = {RX |RX ̸= ∅},

RV/E := {(X,Y ) ∈ (V/E)× (V/E) | RX,Y ̸= ∅},

RX/E := {RV/E | R ∈ R}.

It is well known that
CV/E = (V/E,RV/E)

is a scheme and is called the factor scheme of C modulo E . It is also clear that CX = (X,RX) is a scheme

and is called the restriction of C with respect to X .

Let C = (V,R) be an association scheme, and E ∈ E(C). According to [9, Definition 2.2] we make an

order on the elements of V as follows: consider an ordering on the elements of V/E and also suppose that for

each X ∈ V/E we have an ordering on X . First, we order the classes of the equivalence E on the elements of

V using the ordering of V/E . Then, in each class X ∈ V/E and for any u, v ∈ V such that u, v ∈ X , we order

u and v exactly in the same way as in X ; in this case, we say that the elements of V are ordered according to

the equivalence E .

Let C = (V,R) be a scheme. The set

Oϑ(C) = {R ∈ R : d(R) = 1}

is called the thin radical of C . We say that C is a thin scheme if Oϑ(C) = R . It is well known that any thin

scheme is Schurian.

The thin residue of C is the smallest equivalence of C containing basis relations Rk such that pkii′ ̸= 0

for some Ri ∈ R , and denoted by Oϑ(C). From [11, Lemma 4.2.7], we know that the thin residue of C is the

uniquely defined smallest equivalence of C having a thin quotient scheme.

If there exists a bijection between the point sets of 2 schemes that induces a bijection between their sets

of basis relations, then these 2 schemes are isomorphic.

For 2 schemes C = (V,R) and C′ = (V,R′), we define C ≤ C′ if and only if R∪ ⊆ (R′)∪ . Then C is a

fusion of C′ and C′ is a fission of C .
Given 2 schemes C1 = (V1,R1) and C2 = (V2,R2), we put

R1 ≀ R2 = {∆(V2)⊗R : R ∈ R1} ∪ {S ⊗ V1 × V1 : S ∈ R2 \ {∆(V2)}}.

Define the wreath product of C1 and C2 , denoted C1 ≀ C2 , as the scheme on V1 × V2 with the set of basis

relations R1 ≀ R2 . Moreover, by considering A0, A1, . . . , Ad and B0, B1, . . . , Be as the adjacency matrices of

basis relations of R1 and R2 , respectively, the elements of V1 × V2 can be ordered such that the adjacency

matrices of C1 ≀ C2 are given by

C0 = B0 ⊗A0, C1 = B0 ⊗A1, . . . , Cd = B0 ⊗Ad,

Cd+1 = B1 ⊗ J|V1|, . . . , Cd+e = Be ⊗ J|V1|,
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where Jn is the n× n matrix whose entries are all equal to 1. It is well known that C1 ≀ C2 is Schurian if and

only if C1 and C2 are Schurian. Clearly, the degree of the wreath product of 2 schemes is equal to the product

of their degrees.

A scheme C is called a p-scheme if the cardinality of each basis relation of C is a power of p , where p

is a prime number. This implies that the degree of any p-scheme is a power of p , and so Oϑ(C) is a nontrivial

p -group with respect to products of basis relations. Therefore, the order of the thin radical of C is a power of

p . In [8], it was shown that the class of p-schemes is closed with respect to taking quotients and restrictions.

3. Main theorems

In this section, we study the relationship between the degree of the thin residue of a scheme and the valency of

its basis relations. Then we prove Theorems 1, 2, and 3.

Lemma 1 Let C be an association scheme. Then, for each basis relation R of the scheme C , we have

d(R) ≤ d(Oϑ(C)) .

Proof Let C = (V,R) and R ∈ R . From [11, Lemma 4.2.7], the scheme CV/Oϑ(C) is a thin scheme. Thus,

d(RV/Oϑ(C)) = 1. It follows that for each X ∈ V/Oϑ(C) there exists exactly one block Y ∈ V/Oϑ(C), such that

R ∩ (X × Y ) ̸= ∅ . It follows that

d(R) ≤ |Y | = d(Oϑ(C)),

as desired. 2

Lemma 2 Let C be a scheme that is isomorphic to the wreath product of 2 nontrivial thin schemes, C1 and

C2 . We then have Oϑ(C) = Oϑ(C) . Moreover,

d(Oϑ(C)) = d(Oϑ(C)) = deg(C1).

Proof Let C1 = (V1,R1) and C2 = (V2,R2) be 2 nontrivial thin schemes. Let C be the wreath product of C1
and C2 . The basis relations of C are then

R := {∆(V2)⊗R : R ∈ R1} ∪ {S ⊗ V1 × V1 : S ∈ R2 \ {∆(V2)}}.

Let R ∈ R1 . Then

d(∆(V2)⊗R) = d(R). (1)

On the other hand, for each S ∈ R2 \ {∆(V2)} , we have

d(S ⊗ (V1 × V1)) = deg(C1)d(S). (2)

Now, since C1 is a nontrivial thin scheme, all basis relations of C1 are of degree 1, and we also have deg(C1) > 1.

Thus, from (1) and (2) we conclude that

Oϑ(C) = {∆(V2)⊗R : R ∈ R1}.

It follows that d(Oϑ(C)) = deg(C1).
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To complete the proof of the lemma, it is enough to show that

Oϑ(C) = {∆(V2)⊗R : R ∈ R1}. (3)

Let R ∈ R1 . Then, for each S ∈ R2 , we have

∆(V2)⊗R ∈ ŜtŜ,

where Ŝ = S ⊗ (V1 × V1). From the definition of Oϑ(C) we get

∆(V2)⊗R ∈ Oϑ(C). (4)

On the other hand, since C2 is a nontrivial scheme, we have deg(C2) > 1. Let S ∈ R2 \ {∆(V2)} . Then we

have

S ⊗ (V1 × V1) /∈ Oϑ(C). (5)

Otherwise, S ∈ Oϑ(C2). Since C2 is a thin scheme, it follows that Oϑ(C2) = {∆(V2)} . Thus, S = {∆(V2)} ,
which is a contradiction. Therefore, from (4) and (5) we get (3), as desired. 2

For a given scheme C , it is not necessary to have the equality Oϑ(C) = Oϑ(C) even if d(Oϑ(C)) =

d(Oϑ(C)). Considering this condition, we show that C is isomorphic to a fission of the wreath product of 2 thin

schemes.

To prove the main theorems, we need the following remarks:

Remark 1 Since each thin scheme is Schurian, using the corresponding permutation group, one can choose an

ordering in the set of points of this scheme.

Remark 2 Let C be a scheme on V and E ∈ E(C) . If the scheme CX is a thin scheme for X ∈ V/E , then

from separability of thin schemes (see [4, Theorem 2.1] and [9, p. 1908]), for any X,Y ∈ V/E the schemes CX
and CY are isomorphic.

Remark 3 Given a bijection φ from a set V to a set W , and a binary relation R on the set V , we will let

Rφ denote the induced binary relation on the set W .

Proof of Theorem 1

Let C be a scheme on V with the set of basis relations R . By assumption, suppose that Oϑ(C) = Oϑ(C). If

the thin radical and the thin residue are both trivial, then the scheme itself must be trivial, and the proof is

complete. Thus, we assume that |Oϑ(C)| > 1.

Clearly, Oϑ(C) is an equivalence of C ; thus, for each X ∈ V/Oϑ(C), the scheme CX is a thin scheme of de-

gree |X| . Moreover, the scheme CV/Oϑ(C) is a thin scheme of degree |V |/|X| . Let V/Oϑ(C) = {X1, . . . , X|V |/|X|}

be the set of points of the scheme CV/Oϑ(C) . Thus, by Remark 1, we have an ordering on V/Oϑ(C); also, for

each Xi ∈ V/Oϑ(C), 1 ≤ i ≤ |V |/|X| , we have an ordering on Xi . On the other hand, by Remark 2, for

Xi, Xj ∈ V/Oϑ(C), 1 ≤ i, j ≤ |V |/|X| , the schemes CXi and CXj are isomorphic, and so there is a bijection

between the elements of Xi and Xj . Therefore, we can assume the corresponding order of X1 for each Xi ,

1 ≤ i ≤ |V |/|X| .
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Now, suppose that the elements of the set V are ordered according to the equivalence Oϑ(C). Thus, we
have a bijection, φ , from V to the Cartesian product of the sets X1 and V/Oϑ(C).

We claim that C is isomorphic to a fission of the wreath product of CX1 and CV/Oϑ(C) . Suppose that

CX1 ≀ CV/Oϑ(C) = (X1 × V/Oϑ(C),S). It is sufficient to show that φ induces a bijection such that each element

of S corresponds to a union of some elements of R .

Let S ∈ S and d(S) = 1. Then, since |X1| > 1, it follows from the definition of the wreath product that

S ∩ (X1 ×X1) ̸= ∅ . Thus, there is a relation R ∈ R such that

S = Rφ. (6)

Now let S ∈ S and d(S) ̸= 1. We show that S corresponds to a union of some basis relations of R .

Let ∼ be the equivalence relation on R induced by the canonical map to RV/Oϑ(C) . For each R ∈ R , define

R̂ := RV/Oϑ(C) ∈ RV/Oϑ(C) . Then R̂ corresponds to a permutation gR̂ on the set V/Oϑ(C) as follows:

X
gR̂
i = Xj ⇐⇒ RXi,Xj ̸= ∅.

Thus, for each R, T ∈ R , we have R ∼ T if and only if R̂ = T̂ . Let [R] be the equivalence class of R . Then

T ∈ [R] if and only if gT̂ = gR̂ . Suppose that [R0] contains the diagonal relation. Let Xi, Xj ∈ V/Oϑ(C),
considering [Rk] such that Rk ∩ (Xi ×Xj) ̸= ∅ . For each (x, y) ∈ Xi ×Xj , there exists a basis relation R ∈ R

such that (x, y) ∈ R , so X
gR̂
i = Xj . Therefore, R ∈ [Rk] . This shows that Xi × Xj ⊆

∪
R∈[Rk]

Rφ . It

then follows that the union of relations R such that R ∈ [Rk] corresponds to the union of Xi ×Xj such that

X
gR̂
i = Xj . This implies that ∪

R∈[Rk]

Rφ = PgR̂k
⊗ J|X1|, (7)

where PgR̂k
is a permutation matrix corresponding to gR̂k

.

From Eq. (7) we conclude that for each S ∈ S there exists an equivalence class [Rk] such that

S =
∪

R∈[Rk]

Rφ. (8)

This completes the proof of the theorem. 2

Proof of Theorem 2.

We first prove the necessity condition of the theorem. Let C = (V,R) be a p -scheme and |V | = pn , such that

d(Oϑ(C)) = d(Oϑ(C)) = p. (9)

By Lemma 1, for each basis relation R ∈ R we have d(R) ≤ d(Oϑ(C)) = p . Moreover, since C is a p -scheme,

the valency of each basis relation of C is a power of p . It follows that, for each basis relation R in R , we have

d(R) ∈ {1, p}. (10)

Now we claim that

Oϑ(C) = Oϑ(C). (11)
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Indeed, since ∆(V ) ∈ Oϑ(C) and d(Oϑ(C)) =
∑

R∈Oϑ(C) d(R), we get

d(Oϑ(C)) = 1 +
∑

R∈Oϑ(C)\∆(V )

d(R).

From (9), we have

1 +
∑

R∈Oϑ(C)\∆(V )

d(R) = p.

Now from (10) it is clear that the valency of each basis relation of C is equal to 1 or p . It follows that the basis

relation R belongs to Oϑ(C) if and only if d(R) = 1. Thus, Eq. (11) holds as claimed.

On the other hand, |V | = pn and d(Oϑ(C)) = p imply that |V/Oϑ(C)| = pn−1 . Let V/Oϑ(C) =

{X0, X1, . . . , Xpn−1−1} . Thus, by Remark 1, we have an ordering on V/Oϑ(C); also, for each Xi ∈ V/Oϑ(C),

0 ≤ i ≤ pn−1 − 1, we have an ordering on Xi . On the other hand, by Remark 2, for Xi, Xj ∈ V/Oϑ(C),
0 ≤ i, j ≤ pn−1 − 1, the schemes CXi and CXj are isomorphic, and so there is a bijection between the elements

of Xi and Xj . Therefore, we can assume the corresponding order of X0 for each Xi , 0 ≤ i ≤ pn−1 − 1. Thus,

we may assume that the elements of V are ordered according to the equivalence Oϑ(C).

Thus, we have a bijection, φ , from V to the Cartesian product of the sets X0 and V/Oϑ(C). Now we

claim that C is isomorphic to the wreath product of CX0 and CV/Oϑ(C) .

Suppose that R ∈ Oϑ(C). From (11), the scheme CXi is a thin scheme of degree p for each 0 ≤
i ≤ pn−1 − 1, and so it is isomorphic to Tp . Let AR and ARX0

be the adjacency matrices of R and RX0 ,

respectively. Then we have AR = Ipn−1 ⊗ARX0
. It follows that

Rφ = ∆(V/Oϑ(C))⊗RX0 . (12)

Now suppose that R /∈ Oϑ(C). From (10) and (11) we conclude that d(R) = p . On the other hand, the

scheme CV/Oϑ(C) is a thin scheme. Thus, we have

d(RV/Oϑ(C)) = 1. (13)

Moreover, since R /∈ Oϑ(C), we have

RV/Oϑ(C) ̸= ∆(V/Oϑ(C)). (14)

Let Xi ∈ V/Oϑ(C). From (13), there exists exactly one element Xj ∈ V/Oϑ(C), such that

R ∩ (Xi ×Xj) ̸= ∅. (15)

It is a well-known fact that all classes of an equivalence relation of an association scheme have the same size;

thus, we get |Xi| = |Xj | = d(Oϑ(C)). From (9) we have

|Xi| = |Xj | = p. (16)

On the other hand, since d(R) = p , from (15) and (16) we conclude that

Xi ×Xj ⊆ R. (17)
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Moreover, from (14) we have Xi ̸= Xj . Let AR and AR be the adjacency matrices of R and RV/Oϑ(C) ,

respectively. Then, from (17) and by the above ordering on V , we obtain AR = AR ⊗ Jp . Thus, we have

Rφ = RV/Oϑ(C) ⊗ (X0 ×X0). (18)

Therefore, from (12) and (18) we conclude that C is isomorphic to the wreath product of CX0
and

CV/Oϑ(C) . On the other hand, CX0
is isomorphic to Tp and the scheme CV/Oϑ(C) is a thin scheme on pn−1

points. Thus,

C ∼= Tp ≀ CV/Oϑ(C).

Conversely, let Tp = (V1,R1) and C′ = (V2,R2) be a thin scheme of degree pn−1 . Let C be the wreath

product of Tp and C′ . From Lemma 2, we have

d(Oϑ(C)) = d(Oϑ(C)) = deg(Tp).

Since Tp is a thin p -scheme on p points, we have deg(Tp) = p , and the proof is complete. 2

Since each thin scheme is Schurian and the wreath product of 2 Schurian schemes is Schurian, the following

corollary is a direct consequence of Theorem 2:

Corollary 1 Any p-scheme whose degrees of thin radical and thin residue are equal to p is Schurian.

Proof of Theorem 3.

We first assume that C = (V,R) is a p -scheme and |V | = pn , and that

d(Oϑ(C)) = d(Oϑ(C)) = pn−1, (19)

and for each R ∈ R we have d(R) ∈ {1, pn−1} . Since ∆(V ) ∈ Oϑ(C) and d(Oϑ(C)) =
∑

R∈Oϑ(C) d(R), it is

easy to check that R ∈ Oϑ(C) if and only if d(R) = 1. Hence,

Oϑ(C) = Oϑ(C). (20)

By the same argument as the proof of Theorem 2, we have a bijection, φ , from V to the Cartesian product of

the sets X0 and V/Oϑ(C), where V/Oϑ(C) = {X0, X1, . . . , Xp−1} .

From (20), it follows that R /∈ Oϑ(C) if and only if d(R) = pn−1 . For such a basis relation R , the valency

of RV/Oϑ(C) is equal to 1, because CV/Oϑ(C) is a thin scheme. Moreover, from (20) the relation RV/Oϑ(C) is

a nondiagonal basis relation. Thus, for each Xi ∈ V/Oϑ(C) there exists exactly one element Xj ∈ V/Oϑ(C),
i ̸= j , such that R∩(Xi×Xj) ̸= ∅. Since |Xi| = |Xj | = pn−1 and d(R) = pn−1 , we conclude that Xi×Xj ⊆ R.

Thus, we have

Rφ = RV/Oϑ(C) ⊗ (X0 ×X0). (21)

Now suppose R ∈ Oϑ(C). From (20), the scheme CXi is a thin scheme for each 0 ≤ i ≤ p− 1. Moreover,

for each i and j the scheme CXi is isomorphic to CXj . It follows that

Rφ = ∆(V/Oϑ(C))⊗RX0 . (22)
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Therefore, from (21) and (22) we conclude that

C ∼= CX0 ≀ CV/Oϑ(C),

where CX0 is a thin scheme on pn−1 points and CV/Oϑ(C) is a thin scheme on p points. Since any thin scheme

of degree p is uniquely isomorphic to Tp :

C ∼= CX0 ≀ Tp.

Conversely, let C′ = (V1,R1) be a thin scheme of degree pn−1 and Tp = (V2,R2). Define C = C′ ≀ Tp .

From Lemma 2, we have

d(Oϑ(C)) = d(Oϑ(C)) = deg(C′) = pn−1.

Now let R be a basis relation of C . Then, from (1) and (2) in the proof of Lemma 2, we have d(R) = 1 or

d(R) = deg(C′) = pn−1 . This completes the proof of the theorem. 2

The following corollary is a direct consequence of Theorem 3:

Corollary 2 Any p-scheme of degree pn whose degrees of thin radical and thin residue are equal to pn−1 and

the valency of each basis relation is either 1 or pn−1 is Schurian.

Note that if C is a p -scheme of degree pn whose degrees of thin radical and thin residue are equal to

pi , 1 < i < n− 1, then C is not necessarily Schurian. For example, consider the scheme of degree 16, No. 173

in Hanaki’s classification of association schemes (http://math.shinshu-u.ac.jp/ hanaki/as/). The degree of the

thin radical and the thin residue of this 2-scheme is 4, but it is not Schurian. One can study some conditions

on basis relations of such p -schemes to ensure that these be Schurian.
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