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Abstract: Let p and n > 1 be a prime number and an integer, respectively. In this paper, first we show that any
p-scheme whose thin radical and thin residue are equal is isomorphic to a fission of the wreath product of 2 thin schemes.
In addition, we characterize association p-schemes whose thin radical and thin residue each have degree equal to p.

We also characterize association p-schemes on p" points whose thin radical and thin residue each have degree equal to

n—1 n—1

D , and whose basis relations each have valency 1 or p"~". Moreover, we show that such schemes are Schurian.
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1. Introduction

Association schemes are related to a variety of combinatorial objects (codes, designs, graphs, etc.). In [0],
schemes are presented as a natural generalization of permutation groups. In this direction, p-schemes correspond
to p-groups, where p is a prime number. The concept of p-schemes was given in [(] as follows: a scheme C
is called p-scheme if the cardinality of each basis relation of C is a power of p. Recently some algebraic and
combinatorial properties of p-schemes were studied in [2, 3, 6, 7, 8].

In this paper we deal with association schemes and refer to them as schemes. Given a scheme C, one can
define its thin radical Oy(C) and thin residue O?(C). Suppose that C is a p-scheme; this implies that the thin
radical Oy (C) of C is a nontrivial p-group [6, Theorem 2.2]. Thus, the degree of its thin radical is a power of p.
All p-schemes of degree p are thin, and they are unique up to isomorphism; we denote this unique p-scheme by
T,. Moreover, the number of isomorphism classes of p-schemes of degree p? is 3, which are T2, T, ®T),, and
T, T,. Thus, any p-scheme on V with |V| € {1,p,p?} is Schurian [2, p. 2]. In [1], non-Schurian p-schemes
of degree p® were constructed. In [2], p-schemes with |V| = p? and thin residue of degree p? were studied. In
[7], it was shown that any p-scheme on V' is isomorphic to a fission of the wreath product of n copies of T},
where |V| =p".

Our main results show that any p-scheme whose thin radical and thin residue are equal is isomorphic to
a fission of the wreath product of 2 thin schemes. Moreover, we provide a characterization of p-schemes whose
degrees of thin radical and thin residue are equal, in terms of the wreath product of thin schemes. The following

theorems are the main results of this paper.

*Correspondence: rahnama@kntu.ac.ir
2010 AMS Mathematics Subject Classification: 05E30, 20F25.
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Theorem 1 Let C be a scheme whose thin radical and thin residue are equal. C is then isomorphic to a fission

of the wreath product of 2 thin schemes.

Theorem 2 Let C be a p-scheme of degree p™. The degrees of the thin radical and the thin residue of C are

then equal to p if and only if C is isomorphic to the wreath product of T, and a thin scheme of degree p"~*.
Theorem 3 Let C be a p-scheme of degree p™. The degrees of the thin radical and the thin residue of C are
then equal to p"~ 1 and the valencies of its basis relations are 1 or p"~' if and only if C is isomorphic to the

wreath product of a thin scheme of degree p"~' and T, .

This paper is organized as follows. In Section 2, we present some notations and terminology on association

schemes and p-schemes. In Section 3, we prove our main theorems.

2. Preliminaries
In this section, we prepare some notations and results for association schemes and p-schemes that will be used
throughout the paper. We refer the reader to [5, 7, 10, 11] for more details about association schemes and

p-schemes.

2.1. Association schemes
Let V' be a nonempty finite set. Let R = {Ro, R1,..., R4} be a set of nonempty binary relations on V' that
partitions V' x V. The pair C = (V,R) is called an association scheme (or shortly a scheme) if it satisfies the

following conditions:
1) A(V)={(v,v)|veV}=Ry.
2) For each R; € R, R!:={(u,v) | (v,u) € R;} € R. We denote R! by R; .

3) For all R;,R;j, Ri, € R there exists an intersection number pfj such that pfj = |R;(u) N Rj/(v)| for all
(u,v) € Ry, where R(u) :={veV | (u,v) € R}.

The elements of V and R are called points and basis relations of C, respectively.

The numbers |V| and |R| are called the degree and the rank of C and are denoted by deg(C) and rk(C),
respectively. We define the valency of R; as d(R;) = pY,. We can described each R; by its {0, 1}-adjacency
matriz  A; defined by (A;)uy = 1 if (u,v) € R;, and 0 otherwise. We denote RY as the set of all unions of

the elements of R.
Let G be a transitive permutation group acting on a set V'; then G acts on V x V' by the componentwise

action. An orbit of this action is called an orbital. The set of orbitals of G is denoted by Orb(G). It is well
known that Orb(G) forms an association scheme on V', denoted by Inv(G). A given scheme C is said to be
Schurian if C = Inv(G) for some permutation group G.

For a given scheme C = (V,;R), an equivalence of C is an equivalence relation E on V such that E is a
union of some basis relations of C. Denote by £(C) the set of all equivalences of C. For each E € £(C) denote
by d(FE) the degree of E, which is defined as the sum of the valencies of all basis relations of C that lie in E.
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Let E be an equivalence of the scheme C. Denote by V/E the set of equivalence classes modulo E. For
any X,Y € V/E and R € R define

RX’YZRQ(XXY), RX:RX,X~

Moreover, we define

Rx = {Rx|Rx # 0},
RV/E = {(X, Y) & (V/E) X (V/E) | RX,Y 75 @},
RX/E = {RV/E ‘ R e R}

It is well known that
Cv/e = (V/E,Rv/E)
is a scheme and is called the factor scheme of C modulo E. It is also clear that Cx = (X, Rx) is a scheme
and is called the restriction of C with respect to X.

Let C = (V,R) be an association scheme, and FE € £(C). According to [9, Definition 2.2] we make an
order on the elements of V' as follows: consider an ordering on the elements of V/E and also suppose that for
each X € V/E we have an ordering on X . First, we order the classes of the equivalence E on the elements of
V using the ordering of V/E. Then, in each class X € V/E and for any u,v € V such that u,v € X, we order
u and v exactly in the same way as in X ; in this case, we say that the elements of V' are ordered according to
the equivalence F.

Let C = (V,R) be a scheme. The set

0s(C) ={RER:d(R) =1}

is called the thin radical of C. We say that C is a thin scheme if Oy(C) = R. It is well known that any thin
scheme is Schurian.

The thin residue of C is the smallest equivalence of C containing basis relations Ry, such that p¥, # 0
for some R; € R, and denoted by O?(C). From [11, Lemma 4.2.7], we know that the thin residue of C is the
uniquely defined smallest equivalence of C having a thin quotient scheme.

If there exists a bijection between the point sets of 2 schemes that induces a bijection between their sets

of basis relations, then these 2 schemes are isomorphic.
For 2 schemes C = (V,R) and C' = (V,R’), we define C < C’ if and only if RY C (R’)”. Then C is a

fusion of C’ and C’ is a fission of C.
Given 2 schemes C; = (V1, R1) and Cy = (V, R2), we put

Rlszz{A(V'g)@R RGRl}U{S(@ViXVl SGRQ\{A(VQ)}}

Define the wreath product of C; and Cs, denoted Cy ! Ca, as the scheme on Vi x V5 with the set of basis
relations R1 ! Ro. Moreover, by considering Ay, A1,...,Aq and By, Bi,..., B, as the adjacency matrices of
basis relations of R; and Rs, respectively, the elements of V; x V5 can be ordered such that the adjacency

matrices of C;1Cy are given by
Co=By® Ay, C1 =By® Ay,...,Cq = By ® Ag,
Cir1=B1 @)+ Care = Be @ Jyyy)s
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where J,, is the n x n matrix whose entries are all equal to 1. It is well known that C; ! Cy is Schurian if and
only if C; and Cy are Schurian. Clearly, the degree of the wreath product of 2 schemes is equal to the product
of their degrees.

A scheme C is called a p-scheme if the cardinality of each basis relation of C is a power of p, where p
is a prime number. This implies that the degree of any p-scheme is a power of p, and so Oy(C) is a nontrivial
p-group with respect to products of basis relations. Therefore, the order of the thin radical of C is a power of

p. In [8], it was shown that the class of p-schemes is closed with respect to taking quotients and restrictions.

3. Main theorems
In this section, we study the relationship between the degree of the thin residue of a scheme and the valency of

its basis relations. Then we prove Theorems 1, 2, and 3.

Lemma 1 Let C be an association scheme. Then, for each basis relation R of the scheme C, we have
A(R) < d(0°(C)).
Proof Let C = (V,R) and R € R. From [I1, Lemma 4.2.7], the scheme Cy /0 c) is a thin scheme. Thus,
d(Ry/009(c)) = 1. It follows that for each X € V/O?(C) there exists exactly one block Y € V/O?(C), such that
RN (X xY) #0(. It follows that

d(R) < |Y] = d(0”(C)),

as desired. O

Lemma 2 Let C be a scheme that is isomorphic to the wreath product of 2 nontrivial thin schemes, C; and
Co. We then have O?(C) = Oy(C). Moreover,

d(0”(C)) = d(0y(C)) = deg(C1).
Proof Let C; = (V1,R1) and Cy = (Va,R2) be 2 nontrivial thin schemes. Let C be the wreath product of C;

and Cs. The basis relations of C are then
R={AVR)®R: RER}U{S®V1 xV1: SR\ {A(Va)}}.

Let R € R1. Then
d(A(Va) ® R) = d(R). (1)

On the other hand, for each S € Ry \ {A(V2)}, we have
d(S @ (Vi x V1)) = deg(Cy)d(5). (2)

Now, since C; is a nontrivial thin scheme, all basis relations of C; are of degree 1, and we also have deg(Cy) > 1.
Thus, from (1) and (2) we conclude that

0s(C) = {A(Vz) ®R: ReRy).

It follows that d(Oy(C)) = deg(Cy).
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To complete the proof of the lemma, it is enough to show that
0”(C)={A(Va) ® R: R€Ry}. (3)
Let R € Rq. Then, for each S € Ry, we have
A(Va)® R € 58,
where § =5 ® (V4 x Vi). From the definition of O?(C) we get

A(Va) @ R e OY(C). (4)

On the other hand, since Cy is a nontrivial scheme, we have deg(C2) > 1. Let S € Rao \ {A(V2)}. Then we
have

S@(Vix W) ¢0”(C). ()

Otherwise, S € O”(Cy). Since Cy is a thin scheme, it follows that O?(C2) = {A(V2)}. Thus, S = {A(Vk)},

which is a contradiction. Therefore, from (4) and (5) we get (3), as desired. O

For a given scheme C, it is not necessary to have the equality O?(C) = Oy(C) even if d(O?(C)) =

d(0y(C)). Considering this condition, we show that C is isomorphic to a fission of the wreath product of 2 thin

schemes.

To prove the main theorems, we need the following remarks:

Remark 1 Since each thin scheme is Schurian, using the corresponding permutation group, one can choose an

ordering in the set of points of this scheme.

Remark 2 Let C be a scheme on V and E € E(C). If the scheme Cx is a thin scheme for X € V/E, then
from separability of thin schemes (see [/, Theorem 2.1] and [9, p. 1908]), for any X,Y € V/E the schemes Cx

and Cy are isomorphic.

Remark 3 Given a bijection ¢ from a set V' to a set W, and a binary relation R on the set V , we will let

R? denote the induced binary relation on the set W .

Proof of Theorem 1

Let C be a scheme on V' with the set of basis relations R. By assumption, suppose that O”(C) = Oy(C). If
the thin radical and the thin residue are both trivial, then the scheme itself must be trivial, and the proof is
complete. Thus, we assume that |Oy(C)| > 1.

Clearly, O”(C) is an equivalence of C; thus, for each X € V/O?(C), the scheme Cx is a thin scheme of de-
gree | X|. Moreover, the scheme Cyov ¢y is a thin scheme of degree [V'[/|X]|. Let V/O?(C) = {X1,..., Xjvix|}
be the set of points of the scheme Cy /oo (cy. Thus, by Remark 1, we have an ordering on V/0?(C); also, for
each X; € V/O?(C), 1 < i < |V|/|X|, we have an ordering on X;. On the other hand, by Remark 2, for
X;, X; € V/O?(C), 1 <1i,j < |V|/|X], the schemes Cx, and Cx, are isomorphic, and so there is a bijection
between the elements of X; and X;. Therefore, we can assume the corresponding order of X; for each X;,
1<i<|V[/|X].
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Now, suppose that the elements of the set V' are ordered according to the equivalence O”(C). Thus, we
have a bijection, ¢, from V to the Cartesian product of the sets X; and V/0Y(C).

We claim that C is isomorphic to a fission of the wreath product of Cx, and Cy,ov ). Suppose that
Cx, 1Cyy0v(cy = (X1 X V/0?(C),S). It is sufficient to show that ¢ induces a bijection such that each element
of S corresponds to a union of some elements of R.

Let S € S and d(S) = 1. Then, since |X;| > 1, it follows from the definition of the wreath product that
SN (X; x X1) # 0. Thus, there is a relation R € R such that

S =R?. (6)
Now let S € S and d(S) # 1. We show that S corresponds to a union of some basis relations of R.

Let ~ be the equivalence relation on R induced by the canonical map to Ry 09 ). For each R € R, define

R:= Ry 00y € Ryjo2(cy- Then R corresponds to a permutation gy on the set V/O?(C) as follows:
X% = X; < Rx, x, # 0.

Thus, for each R,T € R, we have R ~ T if and only if R=1T. Let [R] be the equivalence class of R. Then
T € [R] if and only if g; = gp. Suppose that [Ry] contains the diagonal relation. Let X;, X; € V/O?(C),
considering [Ry] such that Ry N (X; x X;) # 0. For each (x,y) € X; x X, there exists a basis relation R € R
such that (z,y) € R, so X/* = X;. Therefore, R € [Ry]. This shows that X; x X; C Urerr, B2 It
then follows that the union of relations R such that R € [Ry] corresponds to the union of X; x X, such that
X% = X;. This implies that

U 7= Pay o o
RE[Ry]

where P, is a permutation matrix corresponding to g B -
k

From Eq. (7) we conclude that for each S € S there exists an equivalence class [Rj] such that

s= |J re (8)

RE[Ry]

This completes the proof of the theorem. O

Proof of Theorem 2.
We first prove the necessity condition of the theorem. Let C = (V,R) be a p-scheme and |V| = p™, such that

d(0”(C)) = d(04(C)) = p. 9)

By Lemma 1, for each basis relation R € R we have d(R) < d(O”(C)) = p. Moreover, since C is a p-scheme,

the valency of each basis relation of C is a power of p. It follows that, for each basis relation R in R, we have
d(R) € {1, p}. (10)

Now we claim that

0%(C) = 0y(C). (11)
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Indeed, since A(V) € OY(C) and d(O?(C)) = > reod(c) UR), we get

do’C) =1+ Y.  dR).

ReO?Y(C)\A(V)

From (9), we have

1+ > dR)=p.

ReO?(C)\A(V)
Now from (10) it is clear that the valency of each basis relation of C is equal to 1 or p. It follows that the basis
relation R belongs to O?(C) if and only if d(R) = 1. Thus, Eq. (11) holds as claimed.

On the other hand, |V| = p” and d(O?(C)) = p imply that [V/OY(C)| = p"~'. Let V/O’(C) =
{Xo,X1,...,Xpn-1_1}. Thus, by Remark 1, we have an ordering on V/O?(C); also, for each X; € V/OY(C),
0 <i < p" ! —1, we have an ordering on X;. On the other hand, by Remark 2, for X;, X; € V/O?(C),
0<i,j <p"!—1, the schemes Cx, and C x, are isomorphic, and so there is a bijection between the elements
of X; and X;. Therefore, we can assume the corresponding order of X, for each X;, 0 <i < p"~! —1. Thus,
we may assume that the elements of V are ordered according to the equivalence OV(C).

Thus, we have a bijection, ¢, from V to the Cartesian product of the sets X, and V/O?(C). Now we
claim that C is isomorphic to the wreath product of Cx, and Cy /0w c)-

Suppose that R € OY(C). From (11), the scheme Cx, is a thin scheme of degree p for each 0 <
i < p" ' —1, and so it is isomorphic to T,. Let Ag and Ary, be the adjacency matrices of R and Rx,,

respectively. Then we have Ag = I,n-1 ® Ag, . It follows that
R? = A(V/O?(C)) ® Rx,. (12)

Now suppose that R ¢ O?(C). From (10) and (11) we conclude that d(R) = p. On the other hand, the

scheme Cy o9 (cy is a thin scheme. Thus, we have
d(Ry, 00 (c)) = 1. (13)
Moreover, since R ¢ OY(C), we have
Ry 00 (c) # A(V/0?(C)). (14)
Let X; € V/OY(C). From (13), there exists exactly one element X; € V/O?(C), such that
RN (X; x X;) #0. (15)

It is a well-known fact that all classes of an equivalence relation of an association scheme have the same size;
thus, we get |X;| = |X;| = d(0?(C)). From (9) we have

|Xi| = [X;] = p. (16)
On the other hand, since d(R) = p, from (15) and (16) we conclude that
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Moreover, from (14) we have X; # X;. Let Ar and Ag be the adjacency matrices of R and Ry /09 ¢y
respectively. Then, from (17) and by the above ordering on V', we obtain Ap = Ag ® J,,. Thus, we have

RY = RV/O”(C) ® (XO X Xo) (18)

Therefore, from (12) and (18) we conclude that C is isomorphic to the wreath product of Cx, and

Cy/ov(cy- On the other hand, Cx, is isomorphic to T}, and the scheme Cy o9 () is a thin scheme on pnl

points. Thus,
C = Tp I CV/Oﬂ(C)'

Conversely, let T, = (V1,R1) and C' = (V2,R2) be a thin scheme of degree p"~!. Let C be the wreath

product of T, and C’. From Lemma 2, we have
d(0”(C)) = d(Oy(C)) = deg(Ty,).
Since T, is a thin p-scheme on p points, we have deg(7},) = p, and the proof is complete. O

Since each thin scheme is Schurian and the wreath product of 2 Schurian schemes is Schurian, the following

corollary is a direct consequence of Theorem 2:

Corollary 1 Any p-scheme whose degrees of thin radical and thin residue are equal to p is Schurian.

Proof of Theorem 3.
We first assume that C = (V,R) is a p-scheme and |V| = p™, and that

d(0”(C)) = d(0y(C)) = "', (19)

and for each R € R we have d(R) € {1,p""'}. Since A(V) € 0?(C) and d(O?(C)) = X pepo(c) d(R), it is
easy to check that R € O”(C) if and only if d(R) = 1. Hence,

0% (C) = 0y(C). (20)
By the same argument as the proof of Theorem 2, we have a bijection, ¢, from V to the Cartesian product of
the sets Xo and V/O?(C), where V/OY(C) = {Xo, X1,..., Xp—1}-

From (20), it follows that R ¢ O?(C) if and only if d(R) = p"~!. For such a basis relation R, the valency
of Ry o9 () is equal to 1, because Cy /o9 () is a thin scheme. Moreover, from (20) the relation Ry ov(cy is
a nondiagonal basis relation. Thus, for each X; € V/O?(C) there exists exactly one element X; € V/O?(C),
i # j, such that RN(X; x X;) # 0. Since |X;| = |X;| =p"~! and d(R) = p"~!, we conclude that X; x X; C R.
Thus, we have

R? = RV/Oﬂ(C) & (X() X Xo) (21)

Now suppose R € O?(C). From (20), the scheme Cy, is a thin scheme for each 0 < i < p— 1. Moreover,
for each ¢ and j the scheme Cy, is isomorphic to C x; - It follows that

R? = A(V/O?(C)) ® Rx,. (22)
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Therefore, from (21) and (22) we conclude that
(= CXO ZCV/(’)79(C)7

where Cx, is a thin scheme on p"~! points and Cy/0v(c) is a thin scheme on p points. Since any thin scheme
of degree p is uniquely isomorphic to T},:
C= CXO ZTp.

Conversely, let ' = (V1,R1) be a thin scheme of degree p"~! and T, = (V2,R2). Define C = C'1T,.
From Lemma 2, we have
d(0”(C)) = d(0s(C)) = deg(C') = p" .
Now let R be a basis relation of C. Then, from (1) and (2) in the proof of Lemma 2, we have d(R) = 1 or
d(R) = deg(C") = p"~!. This completes the proof of the theorem. O

The following corollary is a direct consequence of Theorem 3:

1

Corollary 2 Any p-scheme of degree p™ whose degrees of thin radical and thin residue are equal to p™~+ and

n—1

the valency of each basis relation is either 1 or p is Schurian.

Note that if C is a p-scheme of degree p™ whose degrees of thin radical and thin residue are equal to
p', 1 <i<n—1,then C is not necessarily Schurian. For example, consider the scheme of degree 16, No. 173
in Hanaki’s classification of association schemes (http://math.shinshu-u.ac.jp/ hanaki/as/). The degree of the
thin radical and the thin residue of this 2-scheme is 4, but it is not Schurian. One can study some conditions
on basis relations of such p-schemes to ensure that these be Schurian.
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