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Abstract: This article investigates classes of bounded sequences of complex numbers that are universally good for

the ergodic Hilbert transform in Lp -spaces, 2 ≤ p ≤ ∞. The class of bounded Besicovitch sequences satisfying a rate

condition is among such sequence classes.
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1. Introduction

Let (X,Σ, µ) be a probability space and T : X → X be an invertible measure preserving transformation. For

any f ∈ Lp, the ergodic Hilbert transform (eHt) of f is defined as

Hf(x) := lim
n

n∑′

k=−n

T kf(x)

k

if the limit exists, where

n∑′

k=−n

means summation without the term k = 0. It is well known that the eHt exists

a.e. for f ∈ L1 [5,11]. This result has also been extended to various other settings [1,4,6,8,12]. Given a sequence

a = {ak} of complex numbers, we will define the modulated ergodic Hilbert transform of f ∈ Lp (modulated

by a) as Haf(x) := lim
n

n∑′

k=−n

akT
kf(x)

k
. If (X,Σ, µ, T ) is a dynamical system, a sequence a is called good

for the ergodic Hilbert transform in Lp(X) if the modulated ergodic Hilbert transform exists µ -a.e. for every

f ∈ Lp(X). Let T be a class of measure preserving dynamical systems. We will say that the sequence a is

universally good for the ergodic Hilbert transform in Lp for the class T if a is good for the ergodic Hilbert

transform in Lp of every dynamical system in T . In the case that a is good for the ergodic Hilbert transform

in Lp of every dynamical system, we will say that it is universally good for the ergodic Hilbert transform in Lp .

In [7], the second author investigated some classes of sequences that are universally good for the eHt.

Such sequence classes are rather large; for instance, symmetric sequences of bounded variation and sequences

of Fourier coefficients of functions in Lp[0, 2π], 1 < p < ∞, are universally good for the eHt. Recently, in

[10], a Wiener–Wintner type of theorem for the ergodic Hilbert transform was proven, a remarkable result that
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had eluded mathematicians for 2 decades. A direct consequence of this result is that the sequences of the form

{λk}, with |λ| = 1, are universally good for the eHt in Lp, 1 < p <∞. The techniques utilized in [7] fell short

of proving that some sequence classes, known to be universally good for the ergodic averages, are universally

good for the eHt. There, besides indicating that not all bounded Besicovitch sequences are good modulating

for the eHt, it was proven that a proper subset of the set of bounded Besicovitch sequences is good for the

eHt in L1(X). In this article, having the Wiener–Wintner theorem for the ergodic Hilbert transform, we will

prove that those sequences are universally good for the eHt in L2. Since we are in a probability space setting,

these results also hold for Lp -functions for 2 ≤ p < ∞. We also obtain other classes of sequences universally

good for the eHt. Throughout this article, unless stated otherwise, we will assume 0 < β < 1 and 1 < α ≤ 2.

Furthermore, T will denote the unit circle in complex plane, and C will always denote a constant, which may

not be the same at each occurrence.

2. Bounded universally good sequences for the eHt

In this section we will show that some fairly large classes of bounded complex sequences that satisfy a rate

condition are universally good for the eHt. Let a be a sequence such that

(∗)
n∑

k=−n

|ak| = O(nβ), (n ≥ 1).

In [7] it was shown that if a is a bounded sequence good for the ergodic theorem in L∞ and satisfying the

condition (∗), then it is universally good for the eHt in L1. The class of sequences satisfying (∗) include the

sequences of Fourier coefficients of functions belonging to the function spaces Lp[0, 2π], 1 < p < ∞, Lα[0, 2π]

(the α -Lipschitz functions in L1[0, 2π]), and BV1[0, 2π] (the functions of bounded variation in L1[0, 2π]). The

condition (∗) is naturally satisfied by the sequences belonging to these classes; however, the same assertions

made there are also valid if one considers sequences satisfying a weaker condition. For instance, define

Mα = {a :
n∑

k=−n

|ak| = O

(
nα−1

logα n

)
}.

If n is large enough and α > β+1, then nβ ≤ nα−1

logα n ; hence, any sequence satisfying the condition (∗) belongs

to Mα , if α > β + 1.

In [2] it was shown that, among several other results related to the one-sided ergodic Hilbert transform,

if a = {ak}k∈Z is a sequence of complex numbers satisfying

(∗∗) sup
n≥1

max
|z|=1

1

n1−β
|

n∑
k=1

akz
k| = Ca <∞,

then it is universally good for the eHt in L1. When the (2-sided) ergodic Hilbert transform is concerned, it

turns out that one can consider a larger class of sequences. Let Aα denote the set of sequences a = {ak}k∈Z of

complex numbers satisfying

(1) sup
n≥1

max
|z|=1

logα n

nα−1
|

n∑
k=−n

akz
k| = Ca <∞.
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Since nα−1

logα n ≥ n1−β when n is sufficiently large and α > 2− β, all classes Aα contain sequences satisfying the

condition (∗∗).

Remarks 1. All the sequence classes mentioned above do not contain constant sequences; on the other hand,

constant sequences are trivially universally good for the eHt [5,11].

2. Mα ⊂ Aα. In fact, A2 contains all Mα for all 1 < α ≤ 2.

3. If a ∈Mα, then for all f ∈ L∞, lim
n→∞

1

n

n−1∑
k=0

akT
kf = 0 a.e.

4. If α > 1+β, then nα−1

logα n ≥ nβ . Hence, it follows that any sequence satisfying the condition (∗) belongs

to Aα. In particular, A2 contains all such sequences.

5. There are Aα sequences that do not belong to any Mα. For instance, let a = {an} be the special case

of the Hardy–Littlewood sequence given by an = ein log |n|. Clearly, a /∈ Mα since
n∑

k=−n

|ak| = O(n). However,

for any |z| = 1, it follows that |
n∑

k=−n

akz
k| = O(

√
n) (see [13, p. 199]); hence, a ∈ A3/2.

A sequence satisfying (∗) (hence in Mα ) need not be bounded. For example, let ak = j if k = ∓2j , and

ak = 0 otherwise. Then a is an unbounded sequence and satisfies (∗) for any β ∈ (0, 1). Having this noted,

however, all the sequences considered throughout the rest of this article will be bounded.

Although sequences satisfying the condition (∗) are included in A2 , and Mα ⊂ Aα, for some values of

α we also have the reverse inclusion.

Proposition 2.1 Let α′ + 1/2 < α ≤ 2; then Aα′ ⊂Mα.

Proof By Hölder’s inequality,

n∑
k=−n

|ak| ≤ (2n)1/2

(
n∑

k=−n

|ak|2
)1/2

= (2n)1/2

[∫
T
|

n∑
k=−n

λkak|2dλ

]1/2
.

Since a ∈ Aα′ , we have
∑n

k=−n |ak| ≤ C nα′−1/2

logα′
n

for some constant C. Hence, since α′ + 1/2 < α ≤ 2, the

assertion follows. 2

Remark 1 It follows from Proposition 2.1 that, if a ∈ Aα, 1 < α < 3/2, then 3/2 < 1/2 + α < 2, and, hence,

for all f ∈ L∞, lim
N→∞

1

N

N−1∑
k=0

akT
kf = 0 a.e.

Next we will prove that Mα sequences are universally good for the eHt. The proof is essentially the same

as the proof of Theorem 2.2 in [7]; hence, we will sketch it here for completeness.

Theorem 2.2 Let a = {ak} ∈Mα. Then we have the weak (1,1) maximal inequality for Haf : for any f ∈ L1,
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AKHMEDOV and ÇÖMEZ/Turk J Math

and for any λ > 0, there is a constant C such that

µ

(
{x : sup

n≥1
|

n∑′

k=−n

akT
kf(x)

k
| > λ}

)
≤ C

λ
∥f∥1.

Furthermore, a is universally good for the eHt in L1.

Proof By Abel’s summation by parts formula,

n∑′

k=−n

akT
kf

k
=

n−1∑
k=1

Sk − S−k

k(k + 1)
+

1

n
(Sn − S−n), where S∓j =

j∑
i=1

a∓iT
∓if.

If E = {x : sup
n≥1

|
n∑′

j=−n

ajT
jf(x)

j
| > λ}, then E ⊂ E1 ∪ E2 ∪ E3, where E1 = {x : sup

n
| 1
n
Sn(x)| >

λ

3
},

E2 = {x : sup
n

| 1
n
S−n(x)| >

λ

3
}, and E3 = {x : sup

n
|

n∑
j=1

1

j(j + 1)
[Sj(x) − S−j(x)]| >

λ

3
}. Since we always have

a weak (1,1) maximal inequality for the operators 1
nS∓n when a is a bounded sequence, µ(E1) ≤ C1

λ ∥f∥1 and

µ(E2) ≤ C2

λ ∥f∥1, for some constants C1 and C2.

If f ∈ L1 and a ∈Mα, we have, for some constant C,

∫ ∣∣∣∣∣∣
∑

1≤k≤n

Sk − S−k

k(k + 1)

∣∣∣∣∣∣ ≤ ∥f∥1
∑

1≤k≤n

1

k2

k∑
j=−k

|aj | ≤ ∥f∥1
∑

1≤k≤n

C

k3−α logα k
≤ C∥f∥1,

where C =
∑

1≤k≤∞

C

k3−α logα k
. Since the sequence {hn} = {

∑
1≤k≤n

1

k2

k∑
j=−k

|aj |T j |f |} ⊂ L1 is monotone

increasing with
∫
hn ≤ C∥f∥1, by the monotone convergence theorem,

∫
hn ↑

∫
h ≤ C∥f∥1 where h is

the pointwise limit of the sequence hn . Hence, by Chebyshev’s inequality, for any λ > 0, µ(E3) ≤ C
λ ∥f∥1.

Hence, the weak (1,1) maximal inequality for Haf follows.

If f ∈ L∞ and m < n are positive integers, then∣∣∣∣∣∣
∑

m≤k≤n

Sk − S−k

k(k + 1)

∣∣∣∣∣∣ ≤ ∥f∥∞
n∑

k=m

1

k2

k∑
j=−k

|aj | ≤ ∥f∥∞
n∑

k=m

C

k3−α logα k
,

which implies that the sequence {
∑

1≤k≤n

1

k(k + 1)
(Sk − S−k)(x)} is Cauchy a.e.; hence, it converges. Since

lim
n

1

n
S∓n(x) also converges a.e. for all f ∈ L∞, lim

n
Haf(x) exists a.e. for all f ∈ L∞. By the Banach prin-

ciple, this fact combined with the weak (1,1) maximal inequality in the first part implies that a is universally

good for the eHt in L1. 2

By Theorem 2.2 and Proposition 2.1, any a ∈ Aα is also universally good for the eHt if 1 < α ≤ 3/2.

For 3/2 < α ≤ 2 we need different arguments. Indeed, the statement below provides an argument valid for all

a ∈ Aα, 1 < α ≤ 2.
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Theorem 2.3 If a = {ak} ∈ Aα, 1 < α ≤ 2, is a sequence good for the ergodic averages, then it is universally

good for the eHt in L2.

Proof Since lim
n

1

n
S∓n exists a.e. by assumption, using Abel’s partial summation, in order to show that

lim
n

n∑′

j=−n

ajT
jf(x)

j
exists a.e. for all f ∈ L2, all we need to show is that lim

n

n−1∑
j=1

Sj − S−j

j(j + 1)
exists a.e., where

S∓j =

j∑
k=1

a∓kT
∓kf(x).

Observe that ∥Sj − S−j∥22 =< Sj , Sj > + < S−j , S−j > − < Sj , S−j > − < S−j , Sj >, where

< f, g >=
∫
fgdµ. Since

< Sj , Sj >=

j∑
k,l=1

< akT
kf, alT

lf >=

j∑
k,l=1

akal < T k−lf, f >,

by the spectral theorem for unitary operators, we have < T k−lf, f >=
∫
T z

k−ldµf (z), where T is the unit

circle. Therefore, < Sj , Sj >=
∫
T

[∑j
k,l=1(akz

k)(alzl)
]
dµf (z); hence, it follows that

∥Sj − S−j∥22 =

∫
T

 j∑
k,l=1

(akz
kalzl − akz

ka−lz−l − a−kz
−kalzl + a−kz

−ka−lz−l)

 dµf (z)

=

∫
T
|
∑

1≤|k|≤j

akz
k|2dµf (z).

Since a ∈ Aα, it satisfies (1); hence, we have |
j∑
−j

akz
k| ≤ Ca

jα−1

logα j
. Thus, ∥Sj − S−j∥2 ≤ C jα−1

logα j ∥f∥2 for

some constant C that depends on a. Therefore, by Hölder’s inequality, it follows that

∫ ∣∣∣∣∣∣
n−1∑
j=1

Sj − S−j

j(j + 1)

∣∣∣∣∣∣ ≤
∫ n−1∑

j=1

|Sj − S−j |
j(j + 1)

≤ C∥f∥2
n−1∑
j=1

1

j3−α logα j
.

Now, by the monotone convergence theorem

∫
lim
n

∣∣∣∣∣∣
n−1∑
j=1

Sj − S−j

j(j + 1)

∣∣∣∣∣∣ ≤ lim
n

∫ n−1∑
j=1

|Sj − S−j |
j(j + 1)

≤ C∥f∥2
∞∑
j=1

1

j3−α logα j
<∞;

hence, we deduce that lim
n

n−1∑
j=1

Sj − S−j

j(j + 1)
exists a.e. 2

Remark 2 It should be noted here that the arguments in the theorem above are purely L2 space arguments.
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The class of Besicovitch sequences are known to be universally good for the ergodic averages [2]. In [7] it

was proven that the sequences of Fourier coefficients of functions in Lp[0, 2π], 1 < p ≤ ∞, which are bounded

Besicovitch sequences, are universally good for the eHt in Lp, 1 < p ≤ ∞. There it was also observed that

not every sequence a ∈ B is good modulating for the eHt where B denotes the class of bounded Besicovitch

sequences (see below for definitions). On the other hand, a smaller subclass Bβ of B produces good modulating

sequences for the eHt, where

Bβ = {a ∈ l∞ : ∃ w induced by a trigonometric polynomial such that a−w satisfies (*)}.

The techniques used in [7], however, fell short of showing that sequences in Bα are universally good for the eHt.

In this section, having the Wiener–Wintner theorem for the eHt [10], we will show that not only the sequence

class Bα but rather a subclass of bounded sequences that contains Bα provides sequences universally good for

the eHt.

In [10], is was shown that if f ∈ Lp, 1 < p < ∞, then there is a set Xf ⊂ X of probability one such

that for all x ∈ Xf

lim
n

n∑′

−n

λkT kf(x)

k
exists for all |λ| = 1.

Let W denote the class of sequences induced by bounded trigonometric polynomials, which are finite linear

combinations of sequences of the form {λk}, |λ| = 1. Hence, it follows that the Lacey–Terwilleger Theorem

holds for sequences in W; that is, if w ∈ W , then it is universally good in Lp, 1 < p <∞.

Two-sided bounded Besicovitch sequences. First, we will consider 2-sided bounded Besicovitch sequences a =

{ak}k∈Z ∈ B, which are defined such that, given ϵ > 0, there exists wϵ ∈ W such that

(†) lim sup
n

1

n

n∑
k=−n

|ak − wϵ(k)| < ϵ.

Now we define

MBα = {a ∈ l∞ : ∀ϵ > 0 ∃ wϵ ∈ W such that lim sup
n

logα n

nα−1

n∑
k=−n

|ak − wϵ(k)| < ϵ} and

ABα = {a ∈ l∞ : ∃ w ∈ W such that a−w ∈ Aα}.

Remarks. 1. MBα ⊂ ABα for all α.

2. If a ∈MBα, then a is bounded Besicovitch.

3. If a ∈ Bβ , then ak = wk + bk, where w = {wk} ∈ W, and {bk} satisfies the condition (∗); hence,
a−w ∈Mα. Therefore, Bβ ⊂MBα ⊂ ABα for all 0 < β < 1 and 1 < α ≤ 2.

4. Sequences induced by trigonometric polynomials belong to the sequence space MBα and hence to

ABα.

By [10] and the remarks above, any w ∈ W is universally good for the eHt in L2. Since for a ∈ ABα,

ak = ak − wϵ(k) + wϵ(k), where wk is the appropriate trigonometric polynomial, all we need to prove is that
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{ n∑′

−n

(ak − wϵ(k))T
kf

k

}
n

converges a.e. In that case, using the same techniques as in Theorem 2.3, we obtain

the following:

Corollary 2.4 If a ∈ ABα, then it is universally good for the eHt in L2.

Remark 3 It follows from Corollary 2.4 that if a = {ak} ∈ Bβ , 0 < β < 1, then it is universally good for the

eHt in L2.

Symmetric (one-sided) bounded Besicovitch sequences. In this section we will consider symmetric bounded

Besicovitch sequences, namely ordinary bounded Besicovitch sequences a = {ak} (with ak = a−k ) such that

given ϵ > 0, there exists wϵ ∈ W satisfying

lim sup
n

1

n

n∑
k=1

|ak − wϵ(k)| < ϵ.

First we make an observation. Let T : T → T be an irrational rotation, say Tz = ϕz for some

|ϕ| = 1, ϕ ̸= 1. Then for any λ on the unit circle, and for any f having ϕ as eigenvalue,

n∑′

k=−n

λ|k|T kf

k
= f

n∑
k=1

(ϕλ)k − (ϕ̄λ)k

k
;

hence, if λ = ϕ̄, then this series is not convergent. Therefore, symmetric bounded Besicovitch sequences defined

by trigonometric polynomials need not be good for irrational rotations, which is different than the 2-sided case.

Consider sequences a = {ak}k≥0 such that γa(k) := lim
n

1

n

n∑
j=1

aj+kāj exists for all k ∈ N. γa is called

the correlation of a, which is extended to negative integers by letting γa(−k) = ¯γa(k). Sequences {γa(k)} are

positive definite; hence, by the Herglotz–Bochner theorem, there exists a unique Borel probability measure µa

on the unit circle T such that

γa(k) =

∫
T
zkdµa(z), n ∈ N.

The measure µa is called the spectral measure of a. Bounded Besicovitch sequences are known to have

correlation; indeed, bounded Besicovitch sequences are exactly those complex sequences such that: (i) µa is

discrete, (ii) Γ(z) := lim
n

1

n

n∑
j=0

aj z̄j exists for every z, and (iii) µa(z) = |Γ(z)|2 for all z ∈ T [2]. Furthermore,

it is also known that Γ(z) = 0 for all but at most countably many z ∈ T [9]. The set σ(a) = {z ∈ T : Γ(z) ̸= 0}
is called the spectrum of a. Obviously, if ak = λk for some λ ∈ T, then σ(a) = {λ}.

If (X,Σ, µ, T ) is an ergodic dynamical system, then L2(X) = κ ⊕ κ⊥, where κ is the closed linear

subspace spanned by the eigenfunctions of T (called the Kronecker factor of the system). Consequently, for a

nonconstant bounded Besicovitch sequence a and a measure-preserving system with {f ∈ L2 : Tf = f} ⊂ κ
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properly, if λ ∈ σ(a) ∩ σ(T ), then, as observed above, lim
n

n∑′

k=−n

λ|k|T kf

k
need not exist a.e. These arguments

also imply that, given any dynamical system (X,Σ, µ, T ) with {f ∈ L2 : Tf = f} ⊂ κ properly, there exists

a bounded Besicovitch sequence a such that lim
n

n∑′

k=−n

a|k|T
kf

k
fails to exist a.e. However, as the next result

shows, symmetric sequences a ∈ Bα are still universally good in L2 in a restricted sense. Let ℑ denote the

class of weakly mixing measure preserving systems. If T ∈ ℑ, then it has a continuous spectrum, and hence its

Kronecker factor is simple; namely, κ = {f ∈ L2 : Tf = f}. Therefore, for a weakly mixing T, lim
n

n∑′

k=−n

λ|k|T kf

k

exists a.e. for any f ∈ κ. Again, using the same techniques as in Theorem 2.3, we obtain the following:

Corollary 2.5 If a ∈ ABα is a symmetric sequence, then it is universally good for the eHt in L2 for the class

ℑ.

The following theorem is analogous to Theorem 2.3, albeit with a restriction on the class of transforma-

tions. Let L denote the class of measure preserving dynamical systems having a Lebesgue spectrum. Hence,

the spectral measure of any nonconstant f ∈ L2 is absolutely continuous with respect to the Lebesgue measure

on T .

Theorem 2.6 Let T ∈ L and a be a symmetric bounded sequence of complex numbers such that lim
n

1

n

n−1∑
k=0

akT
kg(x)

exists a.e. for every g ∈ L2. Then a is universally good for the eHt in L2 for the class L.

Proof First we observe that L2 = C ⊕ H, where H = {g ∈ L2 : µg = hdz for some 0 ≤ h ≤ 1}. Since

constants are trivially good for the eHt, it is enough to prove the assertion for f ∈ H. Again, we will follow the

proof of Theorem 2.3, and hence it is enough to show that ∥Sn − S−n∥2 = O(nβ), for some 0 < β < 1, where

S∓j =

j∑
i=1

aiT
∓if. Using the spectral theorem, we obtain that

∥Sn − S−n∥22 ≤
∫
T

∣∣∣∣∣
n∑

k=1

(akz
k − akz̄

k)

∣∣∣∣∣
2

dµf (z),

and hence

∥Sn − S−n∥2 ≤ 2

[∫
T
|

n∑
k=1

akz
k|2dµf (z)

]1/2
+ 2

[∫
T
|

n∑
k=1

akz̄
k|2dµf (z)

]1/2
.

Since a ∈ l∞, and T has a continuous spectrum, we have

[∫
T
|

n∑
k=1

akz
k|2dµf (z)

]1/2
≤

[∫
T
|

n∑
k=1

akz
k|2dz

]1/2
=

[
∥f∥22

n∑
k=1

|ak|2
]1/2

= O(n1/2∥f∥2),

and, similarly,
[∫

T |
∑n

k=1 akz̄
k|2dµf (z)

]1/2
= O(n1/2∥f∥2). This implies that ∥Sn − S−n∥2 = O(n1/2∥f∥2). 2
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At this point, one might ask if some other subclasses of bounded Besicovitch sequences are universally

good for the eHt. One such candidate is the class of uniform sequences [3]. However, as the following example

shows, they are not the right choice. Let Y = {1, 2, 3}, σ : Y → Y be a cyclic shift, and µ be the uniform

σ -invariant probability measure on Y (i.e. µ({i}) = 1
3 ). Then (Y, µ, σ) is a strictly L-stable system; hence, for

each measurable U ⊂ Y and y ∈ Y, the sequence {an} = {an(y, U)} where

an =


1 if n ≥ 0 and σn(y) ∈ U,

− 1 if n < 0 and a−n = 1,

0 otherwise.

Let U = {2} and y = 1, and then

an =


1 if n = 3m+ 1 and m ≥ 0,

− 1 if n = 3m− 1 and m ≤ 0,

0 otherwise.

Now, given a measure-preserving dynamical system (X,Σ, ν, τ), let X be divided into 3 sets, A, τA , and τ2A ,

with each set having measure 1
3 . Define

f(x) =


0 if x ∈ A

1 if x ∈ τA

− 1 if x ∈ τ2A.

Then, for x ∈ A, we have

f(τ3kx) = 0, f(τ−3kx) = 0

f(τ3k+1x) = 1, f(τ−3k−1x) = −1

f(τ3k+2x) = −1, f(τ−3k−2x) = 1.

Therefore, f ∈ L2 with ∥f∥2 =
√

2
3 . Hence,

3n+1∑
i=−(3n+1)

aif(τ
ix)

i
=

3n+1∑
i=1

ai(f(τ
ix)− f(τ−ix))

i
,

and for x ∈ A we have,

n∑
m=1

a3m+1(f(τ
3m+1x)− f(τ−3m−1x))

3m+ 1
=

n∑
m=1

1− (−1)

3m+ 1
= 2

n∑
m=1

1

3m+ 1
.

Thus, sup
n≥1

|
3n+1∑

i=−(3n+1

aif(τ
ix)

i
| = ∞, and hence lim

n

n∑′

i=−n

aif(τ
ix)

i
does not exist.
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Remark 4 The system (X,Σ, ν, τ) is not weakly mixing, and the sequence {an} has positive density.

Fourier coefficients of L1 functions. In this section we would like to point out that, contrary to the Lp case ([7]) ,

Fourier coefficients of a function g ∈ L1[0, 2π] need not be universally good for the ergodic Hilbert transform.

In fact, a much stronger claim holds: there exists a function g ∈ L1[0, 2π] such that for any dynamical system

(X,Σ, µ, T ), the Fourier coefficients of g is not good for the ergodic Hilbert transform in Lp for any p ≥ 1.

We will make use of the fact that Fourier coefficients of the functions from L1[0, 2π] may converge to

zero arbitrarily slowly. Examples of such functions are well known (a somewhat implicit example can be found

in [13], combining the results in Chapter V, pp. 183–184 and Chapter III, p. 93). We construct a more direct

and somewhat different example (with a not necessarily convex sequence of Fourier coefficients).

Proposition 2.7 Let h : N ∪ {0} → R be a function such that limn→∞ h(n) = 0 . Then there exists a

sequence {an}n≥0 such that an ≥ h(n) for every n ∈ N ∪ {0} ; moreover, for all x ∈ [0, 2π] , the series

1
2a0 +

∞∑
n=1

ancos(nx)(⋆) converges to g(x) , where g ∈ L1[0, 2π] , and (⋆) is the Fourier series of g .

For the proof of this proposition we will use the following common notations:

1. Given a sequence {xn}n≥0 , we will write ∆xn = xn−xn+1 , and ∆2xn = ∆xn−∆xn+1 , for all n ≥ 0.

2. For a function g ∈ L1[0, 2π] , we will write g+ = gχ{x:g(x)≥0} , and g− = gχ{x:g(x)≤0} . Thus, g
+ and

g− denote the positive part and the negative part of g , respectively. Notice that g(x) = g+(x)+g−(x), a.e. x ∈
[0, 2π] .

3. For all n ∈ N, x ∈ [0, 2π] we will write Dn(x) =
1
2 +

n∑
k=1

cos(kx) and Fn(x) =
1

n+1

n∑
k=1

Dn(x).

Notice that for all x ∈ (0, 2π),

Dn(x) =
sin(n+ 1

2 )x

2sin( 12x)
and Fn(x) =

2

n+ 1

(
sin1

2 (n+ 1
2 )x

2sin( 12x)

)2

.

Proof Let M = 2max{h(n) : n ∈ N ∪ {0}} . Since lim
n→∞

h(n) = 0, we can choose a piecewise linear function

a : [0,∞) → (0,∞) satisfying the following conditions:

(i) a(n) > h(n), ∀n ∈ N ;

(ii) a is strictly decreasing;

(iii) a(0) =M and lim
x→∞

a(x) = 0;

(iv) a is differentiable on (0,∞) except at countably many points n1, n2, . . . , where (assuming n0 = 0),

for all k ∈ N , nk is an integer and nk ≥ nk−1 + 3;

(v) there exists λ > 1 such that for all k ∈ N ∪ {0} , nk+1 ≤ λ(nk+1 − nk);

(vi) if sk denotes the slope of a on the interval (nk−1, nk) [i.e. a′(x) = sk, ∀x ∈ (nk−1, nk)], then for all

k ∈ N , sk < sk+1 − sk < −sk .
We then define our sequence {an}n≥0 by letting an = a(n), ∀n ∈ N ∪ {0} .

By definition of the sequence, if nk−1 ≤ n ≤ nk − 2, then ∆2an = 0, and if n = nk − 1, then

|∆2an| = |sk − sk+1| .
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Then, by conditions (i)–(vi), we obtain that
∞∑

n=1

(n+ 1)|∆2an| <∞ (⋆1).

Indeed, by conditions (ii), (iii), and (iv), we have
∞∑
i=1

(−si)(ni − ni−1) =M . Notice that si < 0, ∀i ∈ N .

Then, by condition (v), we obtain that

∞∑
i=1

(−si)ni ≤ λ

∞∑
i=1

(−si)(ni−ni−1) <∞ . This, combined with condition

(vi), implies that
∑∞

i=1 |si − si+1|ni <∞ ; thus, we obtain (⋆1).

Now let sn(x) =
1
2a0 +

n∑
k=1

akcos(kx) for all n ≥ 0, x ∈ [0, 2π] . Since the sequence {an}n≥0 is positive

and decreasing, by Abel’s summation formula, the limit lim
n→∞

sn(x) exists for all x ∈ (0, 2π).

Also, if x ∈ (0, 2π) and n ≥ 1, by Abel’s summation formula, we obtain that

sn(x) =
n−1∑
k=0

∆akDk(x) + anDn(x).

Applying Abel’s summation formula again, for n ≥ 2, we get

sn(x) =
n−2∑
k=0

(k + 1)∆2akFk(x) + nFn−1(x)∆an−1 + anDn(x).

Notice that lim
n→∞

anDn(x) = lim
n→∞

nFn−1(x)∆an−1 = 0. Hence, g(x) = lim
n→∞

n−2∑
k=0

(k + 1)∆2akFk(x).

Let us now show that g belongs to L1[0, 2π] . For all n ≥ 2, let

gn(x) =

n−2∑
k=0

(k + 1)∆2akFk(x),

S+(n) = {k : 0 ≤ k ≤ n,∆2an > 0}, S−(n) = {k : 0 ≤ k ≤ n,∆2ak < 0},

ϕn(x) =
∑

k∈S+(n)

(k + 1)∆2akFk(x), ψn(x) =
∑

k∈S−(n)

(k + 1)∆2akFk(x).

Notice that Fn(x) ≥ 0, ∀x ∈ [0, 2π] . Then for all x ∈ [0, 2π] we have gn(x) = ϕn(x) + ψn(x), where

ϕn(x) ≥ 0 and ψn(x) ≤ 0. Then ϕn(x) ≥ g+n (x) ≥ gn(x), ∀x ∈ [0, 2π] . By Fatou’s lemma, we have∫ 2π

0

g+ =

∫ 2π

0

lim
n
g+n ≤

∫ 2π

0

lim inf
n

ϕn ≤ lim inf
n

∫ 2π

0

ϕn . On the other hand,
∫ 2π

0
Fk(x)dx = π , for all

k ≥ 1. Then by the condition (⋆1) we obtain that lim inf
n

∫ 2π

0

ϕn < ∞ . Hence, g+ ∈ L1[0, 2π] . Similarly, we

obtain that g− ∈ L1[0, 2π] . Thus, g ∈ L1[0, 2π] .
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After establishing integrability of g , it follows from claim 1-8 ([13], p. 184]) that the series 1
2a0 +

∞∑
n=1

ancos(nx)(⋆) is indeed a Fourier series of g . 2

Now let (X,Σ, µ, T ) be a dynamical system, and g ∈ L1[0, 2π] be a function with Fourier coefficients

satisfying the following conditions: an = 0, ∀n ≤ 0, and an ≥ 1
log(n) ,∀n > 0. Let also a = {an}n∈Z and

f(x) = 1, ∀x ∈ X . Then Haf(x) ≥
∞∑

n=1

1

n log(n)
= ∞ , for all x ∈ X . Thus, for any dynamical system

(X,Σ, µ, T ), the sequence {an} is not good for eHt in Lp for any p ≥ 1.

Remark 5 For the convenience of the reader, we quote claim 1-8 from [13]: If {an}n≥1 is a sequence of real

numbers decreasing to zero and the function g(x) =

∞∑
n=1

ancos(nx) is integrable, then the series

∞∑
n=1

ancos(nx)

is a Fourier series of g .

Remark 6 It is indeed easy to construct a function a(x) with the desired properties (i)–(vi). For all k ∈ N ,

let mk = min{n ∈ N ∪ {0} : h(x) ≤ M
2k+1 , ∀x ≥ n} . Then let {nk}k≥0 be a sequence of nonnegative integers

such that n0 = 0, nk ≥ mk , and nk+1 ≥ 2nk + 3, for all k ∈ N ∪ {0} . We define the function a(x) as follows:

we let a(nk) = M
2k
, ∀k ∈ N ∪ {0} , and we affinely extend the function to the interval [nk, nk+1] for every

k ∈ N∪ {0} . Then, by taking λ = 2, it is clear that all of the conditions (i)–(vi) hold. Notice that the function

a(x) constructed in this way will be convex. In general, though, conditions (i)–(vi) allow plenty of nonconvex

functions, as well.

3. Extension to admissible processes

Given a sequence a ∈ l∞, let

∥a∥α := lim sup
n≥1

logα n

nα−1

n∑
−n

|ak| <∞.

Then ∥ ∥α defines a seminorm on Mα; that is, (Mα, ∥ ∥α) is a seminormed subspace of l∞. Now we turn

to obtaining some properties of convergence with respect to ∥ ∥α -seminorm, which will be instrumental in

enlarging the scope of some family of good modulating sequences.

Definition 3.1 A sequence a = {ak}∞k=−∞ of complex numbers is called a Hilbert sequence if limn

n∑′

k=−n

1

k
ak

exists.

Remark 7 For any λ ∈ C, |λ| = 1, the sequence {λk} is a Hilbert sequence, and, hence, every sequence

induced by a trigonometric polynomial is a (bounded) Hilbert sequence.

Proposition 3.2 a) If {ar} is a Hilbert sequence for each r ∈ Z+ and if ∥ar − a∥α → 0 as r → ∞, then

a = {ak} is a Hilbert sequence.
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b) If ar,a ∈ Mα with ∥ar − a∥α → 0 and arb is a bounded Hilbert sequence for all r ∈ Z+, for some

b ∈ l∞, then ab is a bounded Hilbert sequence.

Proof Since
n∑′

k=−n

1

k
ak =

n∑′

k=−n

1

k
(ak − ark) +

n∑′

k=−n

1

k
ark,

and since {
n∑′

k=−n

1

k
ark}n converges, in order to prove (a) it is enough to show that {

n∑′

k=−n

1

k
(ak−ark)}n converges.

Now, by Abel’s summation by parts formula, if Sr
∓k =

∑k
i=1(a∓i − ar∓i), then, for 1 ≤ m < n,

|
n∑′

k=−n

1

k
(ak − ark)−

m∑′

k=−m

1

k
(ak − ark)| ≤

∑
m<|k|≤n

1

k(k + 1)
|Sr

k|

+ | 1
n
Sr
n − 1

m+ 1
Sr
m|+ | 1

n
Sr
−n − 1

m+ 1
Sr
−m|.

By hypothesis, ∥ar−a∥α → 0; therefore, given ϵ > 0, we can pick N large enough such that whenever n, r > N,

we have ∥ar − a∥α < 1 and
∞∑

k=n

1

k3−α logα k
<
ϵ

2
.

Then | 1nS
r
n| ≤ 1

n

n∑′

i=−n

|ai − ari | ≤
1

n

nα−1

logα n
≤ 1

n2−α logα n
; hence, we have lim

n

1

n
Sr
n → 0. Therefore, as

m,n→ ∞, | 1nS
r
n − 1

m+1S
r
m| → 0, and similarly, | 1nS

r
−n − 1

m+1S
r
−m| → 0. Hence, for m,n, r > N (by choosing

even larger N , if necessary),∑
m<|k|≤n

1

k(k + 1)
|Sr

k| <
ϵ

2
, | 1

n
Sr
n − 1

m+ 1
Sr
m| < ϵ

4
and | 1

n
Sr
−n − 1

m+ 1
Sr
−m| < ϵ

4
.

Then it follows that, for m,n > N,

|
n∑′

k=−n

1

k
(ak − ark)−

m∑′

k=−m

1

k
(ak − ark)| <

ϵ

2
+
ϵ

4
+
ϵ

4
< ϵ,

and hence {
n∑′

k=−n

1

k
(ak − ark)}n is Cauchy, and hence it converges.

Since
n∑′

k=−n

1

k
akbk =

n∑′

k=−n

1

k
(ak − ark)bk +

n∑′

k=−n

1

k
arkbk,

to prove (b) it is enough to show that |
n∑′

k=−n

1

k
(ak−ark)bk−

m∑′

k=−m

1

k
(ak−ark)bk| → 0 as m,n→ ∞ . Now, letting

n > m , by the inequality

|
∑

m<|k|≤n

1

k
(ak − ark)bk| ≤ ∥b∥∞

∑
m<|k|≤n

1

k
|ak − ark|,
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the same method used in part (a) proves the assertion. 2

Remark 8 Since for any λ ∈ C, |λ| = 1, the sequence {λk} is a Hilbert sequence, for any a ∈ Mα and for

any |λ| = 1 the sequence {λkak} belongs to Mα and is a Hilbert sequence.

As an application of Proposition 3.1 we will extend the assertion of Theorem 2.3 to T -admissible processes.

Let (X,Σ, µ, T ) be a measure-preserving system. A family of functions F = {fi}i∈Z ⊂ Lp(X), 1 ≤ p ≤ ∞,

is called a T-admissible process on Z if T±1f±i ≤ f±(i+1) for i ≥ 0. When the equality holds, F is called a

T-additive process and is necessarily of the form F = {T if}i∈Z, for some f ∈ Lp(X). A process F = {fi} ⊂ Lp

is called strongly bounded when supn∈Z ∥fn∥p <∞, and it is called symmetric if T 2if−i = fi for all i ∈ Z.

Given a process F = {fi}, define the Hilbert transform of F by limnHnF (x), where HnF (x) =
n∑′

i=−n

1

i
fi(x). The eHt of a symmetric strongly bounded T-admissible process F exists a.e. for all F ⊂ L1

[6]. There it is also shown that if F = {fn} ⊂ Lp is a positive symmetric strongly bounded T -admissible

process, then there exists a monotone increasing sequence {vr} ∈ L+
p and vr ↑ δ ∈ Lp such that fn = Tnv|n|

for all n ∈ Z, fn ≤ Tnδ for all n ∈ Z, and ∥δ∥p = supn∈Z ∥fn∥p.

For r ≥ 1, define gri (x) = fi(x) for 0 ≤ |i| ≤ r and

gri (x) =

T i−rfr(x) for i > r

T−i+rf−r(x) for − i > r.

Thus, gri (x) ≤ fi(x) for every i ∈ Z and for each r ≥ 1, and

0 ≤ fi(x)− gri (x) ≤ T i(δ − vr)(x) if |i| > r, and 0 if |i| ≤ r.

Observe that ∥δ−vr∥p ↓ 0 as r → ∞. Furthermore, ignoring the first r terms, the process {grk}k is T -additive.

It follows that, if a ∈ C ⊕ Aα, then, for each r ≥ 1, lim
n

n∑′

−n

aig
r
i

i
exists a.e. by Theorem 2.3. Therefore, for

each r ≥ 1, for a.e. x ∈ X, the sequence {aigri (x)} is a Hilbert sequence.

Theorem 3.3 Let F ⊂ L2 be a symmetric, strongly bounded T -admissible process. If a ∈Mα, then

lim
n

n∑′

−n

aifi(x)

i
exists a.e.

Proof Let ur and u be defined by ur = {aigri } and u = {aifi}, r ≥ 1, respectively. By the assumptions,

for each r, the sequence ur is a Hilbert sequence a.e. x ∈ X. Since,

0 ≤ logα n

nα−1

n∑
i=−n

|aigri − aifi| ≤
logα n

nα−1

n∑
i=−n

|ai|T i(δ − vr),
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it follows that

0 ≤
∫ [

logα n

nα−1

n∑
i=−n

|ai|T i(δ − vr)

]
dµ ≤ logα n

nα−1

n∑
i=−n

|ai|∥δ − vr∥2 ≤ Ca∥δ − vr∥2 → 0.

Hence, by Proposition 3.1 (a), it follows that u = {aifi(x)} is Hilbert sequence for a.e., which proves that

lim
n

n∑′

−n

aifi(x)

i
exists a.e. 2

Corollary 3.4 Let (X,Σ, µ, T ) be a measure-preserving system and a ∈MBα be a 2-sided sequence. Then

lim
n

n∑′

−n

aifi(x)

i
exists a.e.

for any symmetric, strongly bounded T -admissible process F = {fk} ⊂ L2(X). If a ∈ MBα is a one-sided

sequence, then the assertion holds if (X,Σ, µ, T ) is a weakly mixing system.
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