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Abstract: In this paper, we study spherically symmetric Finsler metrics F = |y|ϕ(|x|, <x,y>
|y| ) , where x ∈ Bn(r) ⊂ Rn ,

y ∈ TxBn(r)\{0} and ϕ : [0, r)× R → R . By investigating a PDE equivalent to these metrics being locally projectively

flat, we manufacture projectively flat spherically symmetric Finsler metrics in terms of error functions and, using Shen’s

result, we give its flag curvature.
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1. Introduction

It is an important problem in Finsler geometry to study and characterize projectively flat Finlser metrics on

an open domain in Rn . This is Hilbert’s fourth problem in the regular case. Beltrami’s theorem tells us that

a Riemannian metric is locally projectively flat if and only if it is of constant sectional curvature [7] . However,

the situation is much more complicated for Finsler metrics. In fact, there are many projectively flat Finsler

metrics that are not of constant flag curvature [2, 6, 8]. Conversely, there are infinitely many nonprojectively

flat Finsler metrics with constant flag curvature. The flag curvature is the most important Riemannian quantity

in Finsler geometry because it is an analogue of sectional curvature in Riemannian geometry [1] .

Recently, Huang and Mo [5] discussed a class of interesting Finsler metrics. They are of the form

F = |y|ϕ(|x|, <x,y>
|y| ), and such metrics were said to spherically symmetric in [5] . Many known projectively flat

Finsler metrics are spherically symmetric.

Below are 3 important spherically symmetric Finsler metrics:

(1) The Klein metric,

F =

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2
, (1.1)

is a spherically symmetric Finsler metric on Bn , where ϕ =

√
1− b2 + s2

1− b2
and s =

< x, y >

|y|
.
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(2) The Funk metric,

F =

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2
+

< x, y >

1− |x|2
, (1.2)

is a spherically symmetric Finsler metric on Bn , where ϕ =

√
1− b2 + s2 + s

1− b2
and s =

< x, y >

|y|
.

(3) The Berwald metric,

F (x, y) =
(
√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >)2

(1− |x|2)2
√
|y|2 − (|x|2|y|2− < x, y >2)

, (1.3)

is a spherically symmetric Finsler metric on Bn , where ϕ =
(
√
1− b2 + s2 + s)2

(1− b2)2
√
1− b2 + s2

and s =
< x, y >

|y|
.

Recall that general (α, β)-metrics are Finsler metrics of the form F = αϕ(∥β∥α, β
α ), where α is a Riemann

metric and β is a 1-form [10] . In particular, (1.1) − (1.3) show that such metrics are general (α, β)-metrics.

In [5] , the second differential equation was obtained for F to be projectively flat.

Lemma 1.1 [5] Let F (x, y) = |y|ϕ(|x|, < x, y >

|y|
) be a spherically symmetric Finsler metric on Bn(r) ⊂ Rn .

Then F = F (x, y) is projectively flat if and only if ϕ = ϕ(s) satisfies

sϕbs + bϕss − ϕb = 0, (1.4)

where b := ∥β∥α, s =:
β

α
.

Note that ϕb means derivation of ϕ with respect to the first variable b .

In this paper, by investigating the PDE (1.4), we manufacture projectively flat spherically symmetric

Finsler metrics in terms of error functions. We have the following:

Theorem 1.1 Let F = |y|ϕ(|x|, < x, y >

|y|
) be a spherically symmetric Finlser metric and ϕ(b, s) be a function

defined by

ϕ(b, s) = eλb
2

[C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)], (1.5)

where λ > 0 , C1, C2 are arbitrary constants. We then have the following properties:

(1) The spherically symmetric Finsler metric given in (1.5) is projectively flat on Bn(r) ⊂ Rn and its

projective factor P is given by

P = λ < x, y > +
1

2
H. (1.6)

(2) F is of scalar flag curvature and its flag cuevature is given by

K =
λ2s2

f2(b)g2(s)
− 2C2λe

−λs2

f2(b)g3(s)
+

3H2

4|y|2f2(b)g2(s)
, (1.7)
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where

f(b) = eλb
2

, (1.8)

g(s) = C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)), (1.9)

H =
C1|y| − C2|y|

√
πλerf(

√
λs)

g(s)
. (1.10)

2. Preliminaries

A Finsler metric on a manifold is a family of Minkowski norms on the tangent spaces. By definition, a Minkowski

norm on a vector space V is a nonnegative function F : V → [0,+∞) with the following properties:

(1) F is a positive y -homogeneous of degree one, for any y ∈ V and any λ > 0,

F (λy) = λF (y). (2.1)

(2) F is C∞ on V \{0} and any tangent vector y ∈ V \{0} , and the following bilinear symmetric form

gy : V × V → R is positive definite:

g(u,v) :=
1

2

∂2

∂s∂t
[F 2(y + sµ+ tν)]s=t=0. (2.2)

Let M be a manifold. Let TM = ∪x∈MTxM be the tangent bundle of M, where TxM is the tangent

space at x ∈ M . We set TM0 := TM\{0} , where {0} stands for {(x, 0)|x ∈ M, 0 ∈ TxM} . A Finsler metric

on M is a function F : TM → [0,∞) with the following properties:

(1) F is C∞ on TM0 .

(2) At each point x ∈ M , the restriction Fx := F |TxM is a Minkowski norm on TxM .

Riemannian metrics are a special case of Finsler metrics: they are Finsler metrics with the quadratic

restriction [3] .

A Finsler metric is said to be locally projectively flat if at any point there is a local coordinate in which

the geodesics are straight lines as point sets. It is known that every locally projectively flat Finsler metrics is

of scalar curvature [3] . Similar results on projectively flat Finsler metric were discussed by Chern and Shen in

[3] .

A Finsler metric F = F (x, y) on an open domain U ⊂ Rn is said to be projectively flat in U if all

geodesics are straight lines. Let Gi denote the spray coefficients of F , which are given by

Gi =
1

4
gil{[F 2]xmylym − [F 2]xl}, (2.3)

where (gij) = (
1

2
[F 2]yiyj ).

In this case, the flat curvature K is a scalar function on TU given by

K =
P 2 − Pxmym

F 2
, (2.4)
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where

P =
Fxkyk

2F
(2.5)

is said to be the projective factor [4] .

3. The solutions of the PDE

In order to solve the following linear PDE,

sϕbs + bϕss − ϕb = 0, (3.1)

where ϕ = ϕ(b, s). First, we would like to point out that this partial differential equation is of mixed type.

When s ̸= 0, equation (3.1) is hyperbolic, and when s = 0, equation (3.1) is parabolic. This equation is

interesting, similar to the famous Tricomi equation in gas dynamics.

Second, equation (3.1) obviously has the trivial solution

ϕ(b, s) = C1b+ C2s+ C3. (3.2)

Substituting (3.2) into (3.1) gives

C1 = 0.

Thus, equation (3.1) has the trivial solution

ϕ(b, s) = s+ C ′
1. (3.3)

Third, we can find some solution by the method of variable separation. Let

ϕ(b, s) = f(b)g(s). (3.4)

Substituting (3.4) into (3.1) gives

sf ′(b)g′(s) + bf(b)g′′(s)− f ′(b)g(s) = 0, (3.5)

where ′ denotes the differential with respect to x . Then it follows from (3.5) that

g′′(s)

g(s)− sg′(s)
=

f(b)

bf(b)
=

λ

2
, (3.6)

where λ is a position constant.

Equation (3.6) is equivalent to

f(b) =
λ

2
bf(b), (3.7)

and

g′′(s) =
λ

2
(g(s)− sg′(s)). (3.8)

The general solution to (3.7) is given by

f(b) = C1e
λb2 , (3.9)
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and equation (3.8) can be solved as

g(s) = C2s− C3[e
−λs2 + s

√
πλerf(

√
λs)] (3.10)

where erf(,) denotes the error function and is defined by

erf(z) =
2√
π

∫ z

0

e−t2dt. (3.11)

Thus, combining (3.9) and (3.10) leads to the following solution to (3.1):

ϕ(b, s) = eλb
2

[C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)], (3.12)

where C1 ,C2 are arbitrary constants.

4. Proof

Now we will manufacture a class of projectively flat Finsler metric by (3.12), and we will get its scalar flag

curvature.

Let

F = αϕ(b, s) : TΩ → [0,+∞),

α = |y| , β =< x, y >,

ϕ(b, s) = eλb
2

[C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)]. (4.1)

By Lemma (2.1), we know that

F = αeλb
2

[C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)] (4.2)

is a projectively flat spherically symmetric Finsler metric.

By a simple calculation,we get

αxkyk = 0, sxkyk = |y|, [s2]xkyk = 2 < x, y >,

bxkyk =
< x, y >

|y|
, [b2]xkyk = 2 < x, y > . (4.3)

Fxkyk = αeλb
2 ·

[
C1sxkyk + C2e

−λs2 · λ[s2]xkyk − C2

√
πλerf(

√
λs)sxkyk − C2s

√
πλ · 2

√
λ
π sxkyk

]
+αeλb

2

· λ[b2]xkyk[C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)]

= 2λ < x, y > αf(b)g(s) + αf(b)[C1|y| − C2|y|
√
πλerf(

√
λs)],

(4.4)

where

f(b) = eλb
2

, (4.5)

g(s) = C1s− C2(e
−λs2 + s

√
πλerf(

√
λs)). (4.6)

20



SONG and ZHOU/Turk J Math

P =
F

xky
k

2F = λ < x, y > +C1|y|−C2|y|
√
πλerf(

√
λs)

2g(s)

= λ < x, y > +1
2H,

(4.7)

where

H =
C1|y| − C2|y|

√
πλerf(

√
λs)

g(s)
(4.8)

Hxkyk =
−C2|y|

√
λπ · 2

√
λ
π e

−λs2 · |y|g(s)− [C1|y| − C2|y|
√
πλerf(

√
λs)]2

g2(s)

= −2C2|y|2λe−λs2

g(s)
− [C1|y| − C2|y|

√
πλerf(

√
λs)]2

g2(s)
.

(4.9)

P 2 = λ2 < x, y >2 +λ < x, y > ·

[
C1|y| − C2|y|

√
πλerf(

√
λs)

g(s)

]
+

[C1|y| − C2|y|
√
πλerf(

√
λs)]2

4g2(s)

= λ2 < x, y >2 +λ|y|2 ·

[
C1s− C2s

√
πλerf(

√
λs)

g(s)

]
+

[C1|y| − C2|y|
√
πλerf(

√
λs)]2

4g2(s)
.

(4.10)

By (4.10),we get

Pxkyk = λ|y|2 + 1
2Hxkyk

= λ|y|2 − λ|y|2 ·
[
C2e

−λs2

g(s)

]
− [C1|y|−C2|y|

√
πλerf(

√
λs)]2

2g2(s) .
(4.11)

P 2 − Pxkyk = λ|y|2 ·
[
C1s−C2s

√
πλerf(

√
λs)−C2e

−λs2+2C2e
−λs2

g(s)

]
+ 3[C1|y|−C2|y|

√
πλerf(

√
λs)]2

4g2(s)

+λ2 < x, y >2 −λ|y|2

= λ2 < x, y >2 +λ|y|2 ·
[
2C2e

−λs2

g(s)

]
+ 3[C1|y|−C2|y|

√
πλerf(

√
λs)]2

4g2(s) .

(4.12)

By (2.4) and (4.12), we get

K =
P 2−P

xky
k

F 2

=
[
λ2 < x, y >2 +λ|y|2 · 2C2e

−λs2

g(s) + 3[C1|y|−C2|y|
√
πλerf(

√
λs)]2

4g2(s)

]
/
[
|y|2f2(b)g2(s)

]
= λ2s2

f2(b)g2(s) −
2C2λe

−λs2

f2(b)g3(s) + 3H2

4|y|2f2(b)g2(s) .

(4.13)
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